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ABSTRACT 

Software Quality is that significant nonfunctional requirement 

which is not fulfilled by many software products. In order to 

identify the faulty classes we can use prediction models using 

object oriented metrics. This paper empirically analyses the 

relationship between object oriented metrics and fault 

proneness of NASA Data sets using six machine Learning 

classifiers. It has been exhibited that Random Forest provides 

optimum values for accuracy, precision, sensitivity and 

specificity by performing Multivariate analysis of NASA Data 

sets.   
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1. INTRODUCTION 
Software maintenance is an activity that consumes lot of time 

and resource. In order to improve the effective cost as well as 

to achieve the customers’ satisfaction and reliability of the 

software developed it is important to track the defect as early 

as possible in software life cycle. 

Due to the intensification of complexity and constraints under 

which software is developed, it is becoming difficult to 

produce the software without faults. Because of the software 

failures the faulty classes may increase the development and 

maintenance costs and thus lead to reduction of reliability of 

the software [23]. 

Studies based on defect proneness have been conducted 

earlier [5,8-11, 14,15-20,22,27,29,33]. Software metrics are 

used in these studies [1, 4, 12, 13, 18, 24-26 ] for developing 

mathematical models to forecast the fault proneness. For 

verifying the capability of machine learning algorithms 

empirical validation of machine learning methods are 

required. To test any given hypothesis, clues that are collected 

from these empirical studies are treated to be dominant 

support. 

In this paper software quality estimation using 6 machine 

learning classifies is executed. NASA datasets have been used 

for our empirical study [35]. 

The paper is formed as follows: Section 2 provides the related 

work done. Section 3 gives the metrics that are being taken 

used for analysis, with the research methodology followed in 

this study. Section 4 outlines the results of research. 

Conclusions made from the study are summarized in Section 

5. 

2. RELATED WORK 
To identify model for forecasting fault proneness of classes 

[10] Briand et al. extracted 49 metrics. System that was 

scrutinized was medium sized c++ software system developed 

by undergraduate/graduate students. The eight systems that 

were under study consisted of 180 classes.To find individual 

and aggregate affect of OO metrics and fault proneness 

univariate and multivariate analysis were done. Results of the 

study demonstrated that all metrics were found to be 

substantial predictors of fault proneness where as NOC was 

insignificant predictor. In other study by Briand et al., 

commercial system with 83 classes was utilized where NOC 

was significant predictor of fault proneness and DIT metric 

was associated to fault proneness in inverse manner [8]. 

Chidamber and Kemerer metrics were affirmed by Gyimothy 

et al. on open source software. Linear and logistic regression 

neural and decision tree were utilized by them for model 

prediction. Their results proved that all other metrics except 

NOC were found significant predictors in LR analysis [17]. 

Based on study of open source agile software, WMC, CBO, 

RFC and LCOM metrics were considered to be very 

important as discovered by Olague et al., where as DIT was 

found insignificant in two versions of systems [29]. 

El Emam et al. found that class size has significant effect on 

fault proneness compared to other metrics by analyzing the 

effect of class size metric on defect proneness by taking 

telecommunication application [15]. 

Ramanath Subramanyam and M.S. Krishnan [33] have 

provided experimental proof that a subset of the Chidamber 

and Kemerer suite which are object oriented design 

complexity metrics plays a vital role in determining software 

defects. 

Mohammad Alshayeb and Wei Li [3] provided short-cycled 

agile process and the long cycled framework evolution 

process as the two iterative procedures for the purpose of 

experimental study of object oriented metrics. Their results 

demonstrated that the design efforts and source lines of code 

added, changed, and deleted were not successfully anticipated  

in the long-cycled framework process but the same features 

were successfully anticipated by object oriented metrics in 

short-cycled agile process. 

3. RESEARCH BACKGROUND  
In this section, the metrics selected for this paper, empirical 

data collection, machine learning methods used, research 

hypothesis and measures used for the model are presented. 
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 Metrics and Fault Proneness 

Fault proneness is defined as possibility of fault being present 

in the module. Our research deals with the metrics which are 

independent variables; the only binary dependent variableis 

fault pronenessThe effect of metrics is to be explored, on the 

fault proneness of a class, using machine learning methods. 

 Research Hypothesis  

In this section research hypothesis for this study is presented. 

Hypothesis Set A 

We tested the hypothesis given below to test the machine 

learning methods used. 

Ho: There is no difference in accuracy of six machine learning 

classifiers. 

HA: At least one of the classifiers is more accurate than other. 

 Data Sets 

The data used in this research is collected from the NASA IV 

& V metrics Data Program. The main objective of Metrics 

Data Program is to collect, validate, organize, store and 

deliver the software metrics data. The data repository which 

consists of software metrics and associated error data, at the 

function/method level, can be accessed by the MDP. The data 

collected and validated by the MDP is stored and organized in 

the Data repository. The data in the data repository is for the 

NASA software development projects. The data is not 

generated by IV & V analysis [35].  

The users are given an opportunity to find out the relationship 

among metrics or combinations of metrics to the software, 

with the help of the relation. The main role of the repository is 

to provide non-specific project data to the software 

community. The data is then cleaned, to make the data better, 

and authorized for publication through the MDP website and 

provided to the general users. The repository makes use of 

unparalleled numeric identifiers to identify single error 

records and product entries. The data is free of cost. 

These are the different types of metrics [36] 

Table 1.Types of Metrics for fault prediction 

Type Rationale Used 

By 

Process metrics  Bugs are caused by 

changes. 

Moser 

Previous defects Past defects predict 

future defects 

Kim 

Entropy of changes Complex changes are 

more errorprone 

than simpler ones. 

Hassan 

Churn (source code 

metrics) 

Source code metrics are 

a better 

approximation of code 

churn 

Novel 

Entropy (source code 

metrics) 

Source code metrics 

better describe 

the entropy of changes. 

Novel 

 

We have used Static code here because: Fenton collected 

information on how the software is to be built, what was built, 

and who build it, by dividing the metrics into process, 

product, and personnel. Static code measures do not display 

process and personnel details, but it is only a product metrics. 

Static code measures can be collected in a consistent manner 

across the projects. In the ideal manner, the companies which 

are CMM level 5, those companies carry out data mining, as 

the processes and the data collection is accurately stated. 

Ideally speaking, there is a existence of largely collected 

datasets, over many projects and many years. The datasets 

collected are in coherent form and there is no confusion in the 

nomenclature of the data. 

The one element that can be approached in a connected way 

across many different projects is the source code. Even for 

very large systems, the feature of static code can be obtained, 

automatically and cheaply taken out. In Contrast, the methods 

such as manual code reviews require extensive skill. It 

depends on the review methods, as to 8 to 20 LOC/minute can 

be inspected. The same effort is put by other members of the 

review team, which can be as large as 4 or 6. [27]. 

Hence for all the above reasons, the static attributes are used, 

to guide software quality predictions, by researchers and 

industrial practitioners. 

Datasets used in fault prediction systems may include metrics 

that are present in Table 2. The description is provided with it, 

in the next cell. 

 

Table 2: Metrics Description 

Metrics Description Source 

WMC Weighted methods per 

class (NOM: Number 

of Methods in the 

QMOOD metric suite) 

C&K 

5 N  

 

total Operators + 

operands 

Halstead 

V volume 

 

Halstead 

L Length Halstead 

D Difficulty Halstead 

I Intelligence Halstead 

E Effort Halstead 

B Error Halstead 

DIT Depth of Inheritance 

Tree 

C&K 

NOC Number of Children C&K 

RFC Response for a Class C&K 

CBO Coupling between 

object classes 

C&K 

LCOM Lack of cohesion in 

methods 

C&K 

LCOM3 LCOM Lack of 

cohesion in methods is 

a normalized version 

of the Chidamber and 

Kemerer's LCOM 

metric and its value 

varies between 0 and 2 

 

Henderson-

Sellers 
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IC Inheritance coupling  quality 

oriented 

extension to 

C&ampK 

metric suite 

CBM Coupling Between 

Methods  

quality 

oriented 

extension to 

C & amp K 

metric suite 

AMC Average Method 

Complexity  

quality 

oriented 

extension to 

C & amp K 

metric suite 

NPM Number of Public 

Methods for a 

class(Also called as 

CIS: Class Interface 

Size) 

QMOOD 

DAM Data Access Metric QMOOD 

MOA Measure of 

Aggregation 

QMOOD 

MFA Measure of Functional 

Abstraction 

QMOOD  

CAM Cohesion among 

Methods of Class 

QMOOD  

CC Cyclomatic 

complexity 

McCabe's  

LOC Lines of Code McCabe’s 

EV(G) Essential complexity McCabe’s 

 IV(G) design complexity McCabe’s 

Ca Afferent coupling Martin's 

metrics 

Ce Efferent coupling Martin's 

metrics 

4. MACHINE LEARNING AND MODEL 

PREDICTION 
Machine learning is a type of artificial intelligence that 

provides computers with the ability to learn without being 

explicitly programmed. Machine learning focuses on the 

development of computer programs that can teach themselves 

to grow and change when exposed to new data.Researchers 

are using machine learning, as better results are provided than 

regression and can incorporate complex nature of data . 

Classification is technique in data mining which is used to 

predict group membership for data instances. Various 

classifiers used in this paper are summarized in Table 3. 

 

Table 3: Classifiers and their Description 

Classifier Description 

Naïve Bayes A naive Bayes classifier is a simple probabilistic classifier based on applying Bayes' theorem with strong 

(naive) independence assumptions. A more descriptive term for the underlying probability model would be 

"independent feature model"[11]. 

Logistic Regression Logistic regression is a type of regression analysis used for predicting the outcome of a categorical (a variable 

that can take on a limited number of categories) criterion variable based on one or more predictor variables. 

Logistic regression can be bi- or multinomial [20]. 

Instance Based(IB1) It is Nearest-neighbor classifier and uses normalized Euclidean distance to find the training instance closest to 

the given test instance, and predicts the same class as this training instance. If multiple instances have the 

same (smallest) distance to the test instance, the first one found is used [2]. 

Bagging Bagging is a ``bootstrap’’ ensemble method that creates individuals for its ensemble by training each 

classifier on a random redistribution of the training set. Each classifier's training set is generated by randomly 

drawing, with replacement, N examples - where N is the size of the original training set; many of the original 

examples may be repeated in the resulting training set while others may be left out. Each individual classifier 

in the ensemble is generated with a different random sampling of the training set [7]. 

J48 Decision Tree A decision tree is a predictive machine-learning model that decides the target value (dependent variable) of a 

new sample based on various attribute values of the available data. The internal nodes of a decision tree 

denote the different attributes; the branches between the nodes tell us the possible values that these attributes 

can have in the observed samples, while the terminal nodes tell us the final value (classification) of the 

dependent variable [28]. 

Random Forest It is a learning ensemble consisting of a bagging of un-pruned decision tree learners with a randomized 

selection of features at each split [6]. 
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5.  MEASURES FOR MODEL 

VALIDATION  
Specificity and Sensitivity validate the model’s 

correctness. While specificity means proportion of classes 

predicted to be fault prone, sensitivity states the classes 

correctly predicted to be fault prone. 

•  Precision is the proportion of classes predicted 

correctly and F- measure is the harmonic mean on recall 

(sensitivity) and precision. 

•  Receiver operating characteristic (ROC) is plot of 

sensitivity on Y-coordinate and its specificity on x-coordinate. 

ROC is used effectively to evaluate the performance of 

prediction models [32]. Area under ROC Curve (AUC) is 

combined measure of sensitivity and specificity. To compute 

the accuracy of model being predicted, AUC is used [32]. 

 

6.  EXPERIMENTS AND RESULTS 
In this section we present the results of multivariate analysis 

of NASA IV & V metrics Data Program.The multivariate 

analysis tests the influence of multiple metrics on the fault 

proneness. 

 Multivariate Analysis 

Table 5 shows the multivariate analysis of the Test Project, 

under study where Random Forest with optimum AUC value 

provides a good model for study. Table 4 shows the model 

validation for Random Forest. 

 

Table 4.Multivariate Analysis 

Trainin

g 

Project 

Modeling 

Technique 

Accuracy Precision Recall F-

Measure 

AUC Specificit

y 

CM1 Naive Bayes 0.82 0.89 0.91 0.90 0.69 0.33 

 Logistic 0.85 0.94 0.90 0.92 0.73 0.21 

 IB1 0.79 0.88 0.88 0.88 0.52 0.17 

 Bagging 0.88 0.99 0.88 0.93 0.78 0.02 

 J48 0.85 0.94 0.90 0.92 0.52 0.26 

 Random Forest 0.84 0.94 0.89 0.91 0.72 0.12 

JM1 Naive Bayes 0.81 0.95 0.84 0.89 0.68 0.21 

 Logistic 0.82 0.98 0.83 0.90 0.71 0.10 

 IB1 0.72 0.80 0.78 0.79 0.68 0.57 

 Bagging 0.82 0.97 0.84 0.90 0.74 0.16 

 J48 0.80 0.92 0.84 0.88 0.65 0.25 

 Random Forest 0.80 0.91 0.86 0.88 0.73 0.32 

MW1 Naive Bayes 0.82 0.85 0.94 0.89 0.73 0.56 

 Logistic 0.89 0.96 0.92 0.94 0.65 0.26 

 IB1 0.84 0.91 0.92 0.91 0.60 0.30 

 Bagging 0.88 0.98 0.90 0.94 0.65 0.00 

 J48 0.89 0.97 0.92 0.94 0.49 0.22 

 Random Forest 0.91 0.97 0.92 0.95 0.75 0.30 

PC1 Naive Bayes 0.88 0.93 0.94 0.94 0.77 0.36 

 Logistic 0.92 0.98 0.93 0.96 0.83 0.18 

 IB1 0.89 0.95 0.94 0.94 0.63 0.31 

 Bagging 0.92 0.99 0.93 0.96 0.83 0.11 

 J48 0.91 0.97 0.94 0.95 0.72 0.25 

 Random Forest 0.91 0.97 0.93 0.95 0.79 0.13 

PC2 Naive Bayes 0.95 0.96 0.99 0.98 0.88 0.31 

 Logistic 0.98 0.99 0.99 0.99 0.78 0.06 

 IB1 0.98 0.99 0.99 0.99 0.53 0.06 

 Bagging 0.99 1.00 0.99 0.99 0.75 0.00 

 J48 0.99 1.00 0.99 0.99 0.45 0.00 

 Random Forest 0.99 1.00 0.99 0.99 0.69 0.00 
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PC3 Naive Bayes 0.36 0.28 0.95 0.44 0.74 0.89 

 Logistic 0.87 0.97 0.89 0.93 0.82 0.20 

 IB1 0.86 0.93 0.91 0.92 0.65 0.38 

 Bagging 0.88 0.99 0.89 0.93 0.83 0.11 

 J48 0.86 0.94 0.90 0.92 0.66 0.31 

  

Random Forest 0.86 0.94 0.91 0.92 0.79 0.31 

MC1 

 Naive Bayes 0.94 0.94 1.00 0.97 0.91 0.62 

 Logistic 0.99 1.00 0.99 1.00 0.88 0.28 

 IB1 0.99 1.00 1.00 1.00 0.69 0.38 

 Bagging 0.99 1.00 0.99 1.00 0.95 0.25 

 J48 0.99 1.00 0.99 1.00 0.83 0.28 

 Random Forest 1.00 1.00 1.00 1.00 0.87 0.47 

MC2 Naive Bayes 0.73 0.92 0.74 0.82 0.72 0.39 

 Logistic 0.76 0.83 0.80 0.82 0.71 0.61 

 IB1 0.72 0.80 0.78 0.79 0.68 0.57 

 Bagging 0.70 0.90 0.71 0.80 0.65 0.32 

 J48 0.63 0.76 0.70 0.73 0.59 0.39 

 Random Forest 0.61 0.76 0.68 0.72 0.64 0.32 

PC4 Naive Bayes 0.87 0.94 0.91 0.93 0.83 0.38 

 Logistic 0.91 0.97 0.93 0.95 0.91 0.48 

 IB1 0.86 0.92 0.92 0.92 0.68 0.45 

 Bagging 0.90 0.96 0.93 0.95 0.92 0.47 

 J48 0.90 0.94 0.94 0.94 0.77 0.60 

 Random Forest 0.89 0.95 0.93 0.94 0.90 0.48 

PC5 Naive Bayes 0.96 0.98 0.98 0.98 0.94 0.46 

 Logistic 0.97 0.99 0.98 0.99 0.96 0.29 

 IB1 0.97 0.99 0.99 0.99 0.76 0.54 

 Bagging 0.98 0.99 0.98 0.99 0.97 0.38 

 J48 0.97 0.99 0.98 0.99 0.81 0.44 

 

Random Forest 

0.98 

 

0.99 

 

0.99 

 

0.99 

 

0.80 

 

0.51 

 

KC1 Naive Bayes 0.82 0.91 0.89 0.90 0.791 0.37 

 Logistic 0.86 0.98 0.87 0.92 0.80 0.22 

 IB1 0.84 0.92 0.89 0.90 0.66 0.41 

 Bagging 0.86 0.97 0.88 0.92 0.82 0.26 

 J48 0.84 0.95 0.87 0.91 0.67 0.26 

 Random Forest 0.85 0.93 0.89 0.91 0.80 0.38 

KC3 Naive Bayes 0.79 0.88 0.86 0.87 0.64 0.33 

 Logistic 0.80 0.90 0.86 0.88 0.71 0.33 

 IB1 0.78 0.89 0.84 0.87 0.57 0.25 

 Bagging 0.82 0.98 0.83 0.90 0.74 0.08 

 J48 0.81 0.90 0.87 0.88 0.62 0.36 

  

Random Forest 0.79 0.90 0.85 0.87 0.72 0.28 

 Random forest gives the overall better results compared to 

other classifiers. AUC for random forest is 0.87. It gives 
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specificity of 0.47 while sensitivity is 1.00. Accuracy and 

precision are 1.00. ROC plot for multivariate analysis using 

top six classifiers for the dataset MC1 is given in Figure 1. 

            

 

 

Figure 1: ROC plot for MC1 

 

7. CONCLUDING REMARKS AND 

FUTURE WORK  
The goal of our research is to empirically study performance 

of various classifiers on the data sets of NASA. Multivariate 

analysis performed on NASA datasets. We analyzed the 

metrics given by C&K, Martin, Handerson-seller, Mc-cabe 

and QMOOD.  

Random Forest provided best ROC for most of the datasets. 

This study confirms that constructing Random Forest models 

for fault prediction is feasible and can be adapted for OO 

systems providing usefulness in predicting fault proneness. 

More studies similar to this research may be conducted on 

different datasets to provide the generalized results for 

different organizations. Open Source projects are being now 

considered for fault prediction learning.We plan to replicate 

this study on other machine learning algorithms and focus on 

cost/benefit analysis to determine whether model would be 

economically possible. 
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