
International Journal of Computer Applications (0975 – 8887)

08th National Conference on Next generation Computing Technologies & Applications (NGCTA - 2013)

1

Validation of Software Quality Models using Machine

Learning: An Empirical Study

Surbhi Gaur

Department of CSE/IT

GGSIPU, Dwarka

Savleen Kaur

Department of CSE/IT

GGSIPU, Dwarka

Inderpreet Kaur

Department of CSE/IT

GGSIPU, Dwarka

ABSTRACT

Software Quality is that significant nonfunctional requirement

which is not fulfilled by many software products. In order to

identify the faulty classes we can use prediction models using

object oriented metrics. This paper empirically analyses the

relationship between object oriented metrics and fault

proneness of NASA Data sets using six machine Learning

classifiers. It has been exhibited that Random Forest provides

optimum values for accuracy, precision, sensitivity and

specificity by performing Multivariate analysis of NASA Data

sets.

General Terms

Software Maintenance, Software quality, confusion matrix,

Accuracy, Precision, Recall, F-Measure, Sensitivity,

Specificity, Bug

Keywords
Object-Oriented Software Metrics, Quality Metrics,

Classifiers, ROC, Fault Proneness.

1. INTRODUCTION
Software maintenance is an activity that consumes lot of time

and resource. In order to improve the effective cost as well as

to achieve the customers’ satisfaction and reliability of the

software developed it is important to track the defect as early

as possible in software life cycle.

Due to the intensification of complexity and constraints under

which software is developed, it is becoming difficult to

produce the software without faults. Because of the software

failures the faulty classes may increase the development and

maintenance costs and thus lead to reduction of reliability of

the software [23].

Studies based on defect proneness have been conducted

earlier [5,8-11, 14,15-20,22,27,29,33]. Software metrics are

used in these studies [1, 4, 12, 13, 18, 24-26] for developing

mathematical models to forecast the fault proneness. For

verifying the capability of machine learning algorithms

empirical validation of machine learning methods are

required. To test any given hypothesis, clues that are collected

from these empirical studies are treated to be dominant

support.

In this paper software quality estimation using 6 machine

learning classifies is executed. NASA datasets have been used

for our empirical study [35].

The paper is formed as follows: Section 2 provides the related

work done. Section 3 gives the metrics that are being taken

used for analysis, with the research methodology followed in

this study. Section 4 outlines the results of research.

Conclusions made from the study are summarized in Section

5.

2. RELATED WORK
To identify model for forecasting fault proneness of classes

[10] Briand et al. extracted 49 metrics. System that was

scrutinized was medium sized c++ software system developed

by undergraduate/graduate students. The eight systems that

were under study consisted of 180 classes.To find individual

and aggregate affect of OO metrics and fault proneness

univariate and multivariate analysis were done. Results of the

study demonstrated that all metrics were found to be

substantial predictors of fault proneness where as NOC was

insignificant predictor. In other study by Briand et al.,

commercial system with 83 classes was utilized where NOC

was significant predictor of fault proneness and DIT metric

was associated to fault proneness in inverse manner [8].

Chidamber and Kemerer metrics were affirmed by Gyimothy

et al. on open source software. Linear and logistic regression

neural and decision tree were utilized by them for model

prediction. Their results proved that all other metrics except

NOC were found significant predictors in LR analysis [17].

Based on study of open source agile software, WMC, CBO,

RFC and LCOM metrics were considered to be very

important as discovered by Olague et al., where as DIT was

found insignificant in two versions of systems [29].

El Emam et al. found that class size has significant effect on

fault proneness compared to other metrics by analyzing the

effect of class size metric on defect proneness by taking

telecommunication application [15].

Ramanath Subramanyam and M.S. Krishnan [33] have

provided experimental proof that a subset of the Chidamber

and Kemerer suite which are object oriented design

complexity metrics plays a vital role in determining software

defects.

Mohammad Alshayeb and Wei Li [3] provided short-cycled

agile process and the long cycled framework evolution

process as the two iterative procedures for the purpose of

experimental study of object oriented metrics. Their results

demonstrated that the design efforts and source lines of code

added, changed, and deleted were not successfully anticipated

in the long-cycled framework process but the same features

were successfully anticipated by object oriented metrics in

short-cycled agile process.

3. RESEARCH BACKGROUND
In this section, the metrics selected for this paper, empirical

data collection, machine learning methods used, research

hypothesis and measures used for the model are presented.

International Journal of Computer Applications (0975 – 8887)

08th National Conference on Next generation Computing Technologies & Applications (NGCTA - 2013)

2

 Metrics and Fault Proneness

Fault proneness is defined as possibility of fault being present

in the module. Our research deals with the metrics which are

independent variables; the only binary dependent variableis

fault pronenessThe effect of metrics is to be explored, on the

fault proneness of a class, using machine learning methods.

 Research Hypothesis

In this section research hypothesis for this study is presented.

Hypothesis Set A

We tested the hypothesis given below to test the machine

learning methods used.

Ho: There is no difference in accuracy of six machine learning

classifiers.

HA: At least one of the classifiers is more accurate than other.

 Data Sets

The data used in this research is collected from the NASA IV

& V metrics Data Program. The main objective of Metrics

Data Program is to collect, validate, organize, store and

deliver the software metrics data. The data repository which

consists of software metrics and associated error data, at the

function/method level, can be accessed by the MDP. The data

collected and validated by the MDP is stored and organized in

the Data repository. The data in the data repository is for the

NASA software development projects. The data is not

generated by IV & V analysis [35].

The users are given an opportunity to find out the relationship

among metrics or combinations of metrics to the software,

with the help of the relation. The main role of the repository is

to provide non-specific project data to the software

community. The data is then cleaned, to make the data better,

and authorized for publication through the MDP website and

provided to the general users. The repository makes use of

unparalleled numeric identifiers to identify single error

records and product entries. The data is free of cost.

These are the different types of metrics [36]

Table 1.Types of Metrics for fault prediction

Type Rationale Used

By

Process metrics Bugs are caused by

changes.

Moser

Previous defects Past defects predict

future defects

Kim

Entropy of changes Complex changes are

more errorprone

than simpler ones.

Hassan

Churn (source code

metrics)

Source code metrics are

a better

approximation of code

churn

Novel

Entropy (source code

metrics)

Source code metrics

better describe

the entropy of changes.

Novel

We have used Static code here because: Fenton collected

information on how the software is to be built, what was built,

and who build it, by dividing the metrics into process,

product, and personnel. Static code measures do not display

process and personnel details, but it is only a product metrics.

Static code measures can be collected in a consistent manner

across the projects. In the ideal manner, the companies which

are CMM level 5, those companies carry out data mining, as

the processes and the data collection is accurately stated.

Ideally speaking, there is a existence of largely collected

datasets, over many projects and many years. The datasets

collected are in coherent form and there is no confusion in the

nomenclature of the data.

The one element that can be approached in a connected way

across many different projects is the source code. Even for

very large systems, the feature of static code can be obtained,

automatically and cheaply taken out. In Contrast, the methods

such as manual code reviews require extensive skill. It

depends on the review methods, as to 8 to 20 LOC/minute can

be inspected. The same effort is put by other members of the

review team, which can be as large as 4 or 6. [27].

Hence for all the above reasons, the static attributes are used,

to guide software quality predictions, by researchers and

industrial practitioners.

Datasets used in fault prediction systems may include metrics

that are present in Table 2. The description is provided with it,

in the next cell.

Table 2: Metrics Description

Metrics Description Source

WMC Weighted methods per

class (NOM: Number

of Methods in the

QMOOD metric suite)

C&K

5 N

total Operators +

operands

Halstead

V volume

Halstead

L Length Halstead

D Difficulty Halstead

I Intelligence Halstead

E Effort Halstead

B Error Halstead

DIT Depth of Inheritance

Tree

C&K

NOC Number of Children C&K

RFC Response for a Class C&K

CBO Coupling between

object classes

C&K

LCOM Lack of cohesion in

methods

C&K

LCOM3 LCOM Lack of

cohesion in methods is

a normalized version

of the Chidamber and

Kemerer's LCOM

metric and its value

varies between 0 and 2

Henderson-

Sellers

International Journal of Computer Applications (0975 – 8887)

08th National Conference on Next generation Computing Technologies & Applications (NGCTA - 2013)

3

IC Inheritance coupling quality

oriented

extension to

C&K

metric suite

CBM Coupling Between

Methods

quality

oriented

extension to

C & amp K

metric suite

AMC Average Method

Complexity

quality

oriented

extension to

C & amp K

metric suite

NPM Number of Public

Methods for a

class(Also called as

CIS: Class Interface

Size)

QMOOD

DAM Data Access Metric QMOOD

MOA Measure of

Aggregation

QMOOD

MFA Measure of Functional

Abstraction

QMOOD

CAM Cohesion among

Methods of Class

QMOOD

CC Cyclomatic

complexity

McCabe's

LOC Lines of Code McCabe’s

EV(G) Essential complexity McCabe’s

 IV(G) design complexity McCabe’s

Ca Afferent coupling Martin's

metrics

Ce Efferent coupling Martin's

metrics

4. MACHINE LEARNING AND MODEL

PREDICTION
Machine learning is a type of artificial intelligence that

provides computers with the ability to learn without being

explicitly programmed. Machine learning focuses on the

development of computer programs that can teach themselves

to grow and change when exposed to new data.Researchers

are using machine learning, as better results are provided than

regression and can incorporate complex nature of data .

Classification is technique in data mining which is used to

predict group membership for data instances. Various

classifiers used in this paper are summarized in Table 3.

Table 3: Classifiers and their Description

Classifier Description

Naïve Bayes A naive Bayes classifier is a simple probabilistic classifier based on applying Bayes' theorem with strong

(naive) independence assumptions. A more descriptive term for the underlying probability model would be

"independent feature model"[11].

Logistic Regression Logistic regression is a type of regression analysis used for predicting the outcome of a categorical (a variable

that can take on a limited number of categories) criterion variable based on one or more predictor variables.

Logistic regression can be bi- or multinomial [20].

Instance Based(IB1) It is Nearest-neighbor classifier and uses normalized Euclidean distance to find the training instance closest to

the given test instance, and predicts the same class as this training instance. If multiple instances have the

same (smallest) distance to the test instance, the first one found is used [2].

Bagging Bagging is a ``bootstrap’’ ensemble method that creates individuals for its ensemble by training each

classifier on a random redistribution of the training set. Each classifier's training set is generated by randomly

drawing, with replacement, N examples - where N is the size of the original training set; many of the original

examples may be repeated in the resulting training set while others may be left out. Each individual classifier

in the ensemble is generated with a different random sampling of the training set [7].

J48 Decision Tree A decision tree is a predictive machine-learning model that decides the target value (dependent variable) of a

new sample based on various attribute values of the available data. The internal nodes of a decision tree

denote the different attributes; the branches between the nodes tell us the possible values that these attributes

can have in the observed samples, while the terminal nodes tell us the final value (classification) of the

dependent variable [28].

Random Forest It is a learning ensemble consisting of a bagging of un-pruned decision tree learners with a randomized

selection of features at each split [6].

International Journal of Computer Applications (0975 – 8887)

08th National Conference on Next generation Computing Technologies & Applications (NGCTA - 2013)

4

5. MEASURES FOR MODEL

VALIDATION
Specificity and Sensitivity validate the model’s

correctness. While specificity means proportion of classes

predicted to be fault prone, sensitivity states the classes

correctly predicted to be fault prone.

• Precision is the proportion of classes predicted

correctly and F- measure is the harmonic mean on recall

(sensitivity) and precision.

• Receiver operating characteristic (ROC) is plot of

sensitivity on Y-coordinate and its specificity on x-coordinate.

ROC is used effectively to evaluate the performance of

prediction models [32]. Area under ROC Curve (AUC) is

combined measure of sensitivity and specificity. To compute

the accuracy of model being predicted, AUC is used [32].

6. EXPERIMENTS AND RESULTS
In this section we present the results of multivariate analysis

of NASA IV & V metrics Data Program.The multivariate

analysis tests the influence of multiple metrics on the fault

proneness.

 Multivariate Analysis

Table 5 shows the multivariate analysis of the Test Project,

under study where Random Forest with optimum AUC value

provides a good model for study. Table 4 shows the model

validation for Random Forest.

Table 4.Multivariate Analysis

Trainin

g

Project

Modeling

Technique

Accuracy Precision Recall F-

Measure

AUC Specificit

y

CM1 Naive Bayes 0.82 0.89 0.91 0.90 0.69 0.33

 Logistic 0.85 0.94 0.90 0.92 0.73 0.21

 IB1 0.79 0.88 0.88 0.88 0.52 0.17

 Bagging 0.88 0.99 0.88 0.93 0.78 0.02

 J48 0.85 0.94 0.90 0.92 0.52 0.26

 Random Forest 0.84 0.94 0.89 0.91 0.72 0.12

JM1 Naive Bayes 0.81 0.95 0.84 0.89 0.68 0.21

 Logistic 0.82 0.98 0.83 0.90 0.71 0.10

 IB1 0.72 0.80 0.78 0.79 0.68 0.57

 Bagging 0.82 0.97 0.84 0.90 0.74 0.16

 J48 0.80 0.92 0.84 0.88 0.65 0.25

 Random Forest 0.80 0.91 0.86 0.88 0.73 0.32

MW1 Naive Bayes 0.82 0.85 0.94 0.89 0.73 0.56

 Logistic 0.89 0.96 0.92 0.94 0.65 0.26

 IB1 0.84 0.91 0.92 0.91 0.60 0.30

 Bagging 0.88 0.98 0.90 0.94 0.65 0.00

 J48 0.89 0.97 0.92 0.94 0.49 0.22

 Random Forest 0.91 0.97 0.92 0.95 0.75 0.30

PC1 Naive Bayes 0.88 0.93 0.94 0.94 0.77 0.36

 Logistic 0.92 0.98 0.93 0.96 0.83 0.18

 IB1 0.89 0.95 0.94 0.94 0.63 0.31

 Bagging 0.92 0.99 0.93 0.96 0.83 0.11

 J48 0.91 0.97 0.94 0.95 0.72 0.25

 Random Forest 0.91 0.97 0.93 0.95 0.79 0.13

PC2 Naive Bayes 0.95 0.96 0.99 0.98 0.88 0.31

 Logistic 0.98 0.99 0.99 0.99 0.78 0.06

 IB1 0.98 0.99 0.99 0.99 0.53 0.06

 Bagging 0.99 1.00 0.99 0.99 0.75 0.00

 J48 0.99 1.00 0.99 0.99 0.45 0.00

 Random Forest 0.99 1.00 0.99 0.99 0.69 0.00

International Journal of Computer Applications (0975 – 8887)

08th National Conference on Next generation Computing Technologies & Applications (NGCTA - 2013)

5

PC3 Naive Bayes 0.36 0.28 0.95 0.44 0.74 0.89

 Logistic 0.87 0.97 0.89 0.93 0.82 0.20

 IB1 0.86 0.93 0.91 0.92 0.65 0.38

 Bagging 0.88 0.99 0.89 0.93 0.83 0.11

 J48 0.86 0.94 0.90 0.92 0.66 0.31

Random Forest 0.86 0.94 0.91 0.92 0.79 0.31

MC1

 Naive Bayes 0.94 0.94 1.00 0.97 0.91 0.62

 Logistic 0.99 1.00 0.99 1.00 0.88 0.28

 IB1 0.99 1.00 1.00 1.00 0.69 0.38

 Bagging 0.99 1.00 0.99 1.00 0.95 0.25

 J48 0.99 1.00 0.99 1.00 0.83 0.28

 Random Forest 1.00 1.00 1.00 1.00 0.87 0.47

MC2 Naive Bayes 0.73 0.92 0.74 0.82 0.72 0.39

 Logistic 0.76 0.83 0.80 0.82 0.71 0.61

 IB1 0.72 0.80 0.78 0.79 0.68 0.57

 Bagging 0.70 0.90 0.71 0.80 0.65 0.32

 J48 0.63 0.76 0.70 0.73 0.59 0.39

 Random Forest 0.61 0.76 0.68 0.72 0.64 0.32

PC4 Naive Bayes 0.87 0.94 0.91 0.93 0.83 0.38

 Logistic 0.91 0.97 0.93 0.95 0.91 0.48

 IB1 0.86 0.92 0.92 0.92 0.68 0.45

 Bagging 0.90 0.96 0.93 0.95 0.92 0.47

 J48 0.90 0.94 0.94 0.94 0.77 0.60

 Random Forest 0.89 0.95 0.93 0.94 0.90 0.48

PC5 Naive Bayes 0.96 0.98 0.98 0.98 0.94 0.46

 Logistic 0.97 0.99 0.98 0.99 0.96 0.29

 IB1 0.97 0.99 0.99 0.99 0.76 0.54

 Bagging 0.98 0.99 0.98 0.99 0.97 0.38

 J48 0.97 0.99 0.98 0.99 0.81 0.44

Random Forest

0.98

0.99

0.99

0.99

0.80

0.51

KC1 Naive Bayes 0.82 0.91 0.89 0.90 0.791 0.37

 Logistic 0.86 0.98 0.87 0.92 0.80 0.22

 IB1 0.84 0.92 0.89 0.90 0.66 0.41

 Bagging 0.86 0.97 0.88 0.92 0.82 0.26

 J48 0.84 0.95 0.87 0.91 0.67 0.26

 Random Forest 0.85 0.93 0.89 0.91 0.80 0.38

KC3 Naive Bayes 0.79 0.88 0.86 0.87 0.64 0.33

 Logistic 0.80 0.90 0.86 0.88 0.71 0.33

 IB1 0.78 0.89 0.84 0.87 0.57 0.25

 Bagging 0.82 0.98 0.83 0.90 0.74 0.08

 J48 0.81 0.90 0.87 0.88 0.62 0.36

Random Forest 0.79 0.90 0.85 0.87 0.72 0.28

 Random forest gives the overall better results compared to

other classifiers. AUC for random forest is 0.87. It gives

International Journal of Computer Applications (0975 – 8887)

08th National Conference on Next generation Computing Technologies & Applications (NGCTA - 2013)

6

specificity of 0.47 while sensitivity is 1.00. Accuracy and

precision are 1.00. ROC plot for multivariate analysis using

top six classifiers for the dataset MC1 is given in Figure 1.

Figure 1: ROC plot for MC1

7. CONCLUDING REMARKS AND

FUTURE WORK
The goal of our research is to empirically study performance

of various classifiers on the data sets of NASA. Multivariate

analysis performed on NASA datasets. We analyzed the

metrics given by C&K, Martin, Handerson-seller, Mc-cabe

and QMOOD.

Random Forest provided best ROC for most of the datasets.

This study confirms that constructing Random Forest models

for fault prediction is feasible and can be adapted for OO

systems providing usefulness in predicting fault proneness.

More studies similar to this research may be conducted on

different datasets to provide the generalized results for

different organizations. Open Source projects are being now

considered for fault prediction learning.We plan to replicate

this study on other machine learning algorithms and focus on

cost/benefit analysis to determine whether model would be

economically possible.

8. REFERENCES
[1] Aggarwal, K.K., Singh, Y, Kaur, A. and Malhotra, R.

2006. Empirical Study of Object-Oriented Metrics,

Journal of Object Technology, 5, 8.

[2] AHA, D. W. and Daniel, J. J. 1991. Instance-Based

Learning Algorithms, Kluwer Academic Publishers,

Boston. Manufactured in The Netherlands, Machine

Learning, 6,37-66.

 [3]Alshayeb M. and Li, W. 2003. An Empirical Validation of

Object-Oriented Metrics in Two Different Iterative

Software Processes.IEEE transaction on software

engineering, 12, 11, 1043-1049.

[4]Basili, V., Briand L. and Melo, W.L. 1996. A Validation of

Object-Oriented Design Metrics as Quality

Indicators.IEEE Transactions on Software Engineering,

22, 10,267-271.

[5]Bellini, P., Bruno, I., NesiandP. andRogai, D. 2005.

Comparing fault-proneness estimation models”, in Proc.

of 10th IEEE International Conference on Engineering of

Complex Computer Systems, 205–214.

[6]Breiman L. 2001. Random Forests. Machine Learning, 45,

1, 5-32.

[7]Breiman, L. 1996. Bagging Predictors. Machine Learning,

26, 123-140

[8]Briand, L. and Wust, J. 2001. Replicated Case Studies for

Investigating Quality Factors in Object-Oriented

Designs, Empirical Software Engineering: An

International Journal , 6(1),11-58.

[9]Briand, L., Daly, J. and Wust, J. 1999. A Unified

Framework for Coupling Measurement in Object-

Oriented Systems, IEEE Transactions on software

Engineering, 25, 91-121.

[10]Briand, L., Daly, J., Porter, V. and Wust, J. 2000.

Exploring the relationships between design measures and

software quality, Journal of Systems and Software, 5,

245-273.

[11]Briand, L., Melo, W.L. and Wust J. 2002. Assessing the

applicability of fault-proneness models across object

oriented software projects, IEEE Trans. on Software

Engineering, vol. 28-7, 706–720.

[12]Chidamber, S. and Kemerer, C.F. 1994. A metrics Suite

for Object-Oriented Design. IEEE Transactions on

Software Engineering.,SE-20, 6, 476-493.

[13]Chidamber, S. R. and Kemerer, C. F. 1991. Towards a

metrics suite for object oriented design", in Proceedings

of 6th ACM Conference on Object-Oriented

Programming Systems Languagesand Applications

(OOPSLA), Phoenix, Arizona, 197–211.

[14]Chidamber, S., Darcy, D. and Kemerer, C. 1998.

Managerial use of Metrics for Object-Oriented Software:

An Exploratory Analysis. IEEE Transactions on

Software Engineering, 24, 8, 629-639. Clerk Maxwell, A

Treatise on Electricity and Magnetism, 3rd ed., vol. 2.

Oxford: Clarendon, 1892, pp.68–73.

[15]Emam, K. El, Benlarbi, S., Goel, N. and Rai, S. 2001. The

Confounding Effect of Class Size on The Validity of

Object-Oriented Metrics.IEEE Transactions on Software

Engineering, 27, 7, 630-650.

[16]Emam, K. El, Melo, W. and Machado, J. 2001. The

Prediction of Faulty Classes Using Object-Oriented

Design Metrics, Journal of Systems and Software, 56,

63-75.

[17]Gyimothy, T., Ferenc, R. and Siket, I. 2005. Empirical

validation of object-oriented metrics on open source

software for fault prediction. IEEE Trans. Software

Engineering, 31, 10, 897– 910.

[18]Henderson-sellers, B. 1996. Object-Oriented Metrics,

Measures of Complexity, Prentice Hall, 1996 ISBN: 0-

13-239872-9.

International Journal of Computer Applications (0975 – 8887)

08th National Conference on Next generation Computing Technologies & Applications (NGCTA - 2013)

7

[19]Hitz, M. and Montazeri,B. 1995. Measuring Coupling and

Cohesion in Object-Oriented Systems.Proc. Int.

Symposium on Applied Corporate Computing,

Monterrey, Mexico.

[20]Hosmer, D. W.andLemeshow, S. Applied Logistic

Regression ISBN: 9780471356325.

[21]Huang, K. 2003. Discriminative Naive Bayesian

Classifiers, Department of Computer Science and

Engineering, the Chinese University of Hong Kong.

[22]Khoshgoftaar, T.M. and Seliya, N. 2004. Comparative

assessment of software quality classification techniques:

An empirical study. Empirical Software Engineering, 9,

229–257.

[23]Koru, A. and Liu, H. 2005. Building effective defect

prediction models in practice, IEEE Software,.23–29

[24]Li, W. and Henry, S. 1993. Object Oriented Metrics that

Predict Maintainability. Journal of Systemsand Software,

23, 2,111-122.

[25]Lorenz, M. and Kidd,J. 1994. Object-Oriented Software

Metrics.Prentice-Hall.

[26]McCabe & Associates, McCabe Object Oriented Tool

User’s Instructions, 1994.

[27]Menzies, T., Greenwald, J. and Frank, A. 2007. Data

mining static code attributes to learn defect predictors.

IEEE Trans.on Software Engineering, 33, 1, 2–13.

[28]Mitchell, T. 1997 Machine Learning, ISBN 0070428077,

McGraw Hill, 1997,available at

http://www.cs.cmu.edu/~tom/mlbook-chapter-slides.html

[29]Olague, H., Etzkorn ,L., Gholston, S. and Quat-tlebaum S.

2007 Empirical Validation of Three Software Metrics

Suites to Predict Fault-Proneness of Object-Oriented

Classes Developed Using Highly Iterative or Agile

Software Development Processes. IEEE Transactions on

software Engineering, 33, 8, 402-419.

[30]Rosenberg, L. and Hyatt, L. 1995. Software Quality

Metrics for Object Oriented System Environments,

NASA Technical Report.

[31] Schroeder, M. 1999. A practical Guide to Object-

Oriented Metrics, IT Professional,1-6, 30-36.

[32]Stone, M. 1974. Cross-validatory choice and assessment

of statistical predictions, J. Royal Stat. Soc., 36,111-147.

[33]Subramanyam, R. and Krishnan, M.S. 2003. Empirical

Analysis of CK Metrics for Object-Oriented Design

Complexity: Implications for Software Defects. IEEE

transaction on software engineering, 29, 4, 297-310.

[34]Witten, IH. and Frank, E. 2005. Data mining: practical

machine learning tools and techniques. Morgan

Kaufmann

[35] http://nasa-softwaredefectdatasets.wikispaces.com/

[36] M.D’Ambros, M.Lanza and R. Robbes, “Evaluating

Defect Prediction Approaches: A Benchmark nd an

Extensive Comparison,” Empir Software Eng , Vol.

17,2012, pp. 531 -577, DOI 10.1007/s10664-011-9173-9.

IJCATM : www.ijcaonline.org

http://www.cs.cmu.edu/~tom/mlbook-chapter-slides.html
http://nasa-softwaredefectdatasets.wikispaces.com/

