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ABSTRACT 

Real time operating systems have become an integral part of the 

embedded systems software. They play crucial role in allocating 

the available constrained resources efficiently. The resource can 

be anything like ALU in the processor, networking hardware, 

memory etc. The user program is broken into tasks and they 

will be competing for the resources. But in software RTOS, the 

RTOS itself has few tasks along with the user tasks which are 

resource hungry. So the resources are not confined to the user 

programs which reduce the efficiency of the overall system. The 

idea of implementing the RTOS in hardware itself comes here. 

Only the user program is to be programmed. The efficiency has 

increased drastically with some limitations. Here, a typical basic 

processor is developed. How the software RTOS effects the 

efficiency is discussed. Then the same processor is added to the 

hardware OS kernel. Scope of hybridization of RTOS is given 

which increases the efficiency to greater extent. The concept of 

hybridization is provided with an example and a programming 

environment for such hybrid RTOS is emphasized. 
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1. INTRODUCTION 
Operating systems for embedded applications have following 

features. Encapsulates the hardware and provides easy to use 

style interfaces to the programmer. Schedules user tasks based 

on priorities assigned to them. Provides task synchronizing 

mechanisms. Provides communication services between tasks. 

These are the basic services provided by most of the RTOS 

kernels. The RTOS most of the time is a software by itself. So it 

shares the resources with the user tasks. Thus reducing the 

efficiency. Here efficiency is measured as the ratio of machine 

cycles expended on user tasks to the total number of machine 

cycles over a considerable period of time. In a time period 

driven scheduler, most of the machine cycles will be expended 

on updating the timer values, checking the timer outs, context 

switching, checking the priorities of the tasks whose timers are 

out and triggering them.  

The basic processor which is shown in the figure 1 consumes 

three to four machine cycles for normal instruction. The 

operating system need to be invoked at the end of every  

 

instruction either by a special instruction or interrupt. For 4 user 

tasks which are to be scheduled based on timers and priority, 

the overhead imposed by the RTOS scheduler itself is very 

high.  

The cycle requirement of the basic processor can be seen in the 

figure 1. It is capable of loading values in accumulator, 

memory, data transfer between memory, basic conditional and 

unconditional jumps in the program ROM by changing the 

value in the program counter, basic arithmetic operations, 

increment and decrement the accumulator. In the figure 1, the 

pcvalue shows the current program counter value. The value is 

changed abruptly because of jump instruction. The accumulator 

is loaded with the number 5, and then it is written to RAM. 

From RAM this value is read into regB and then addition is 

performed. Finally the result in the accumulator (regA) is 

outputted through outport.  Such instructions are sufficient to 

build a simple scheduler, task switching and basic user 

programs.  

Since there are four user tasks, each task will have its own 

accumulator, program counter, Timer etc at least as seen from 

the perspective of a user. Task switching means to save the 

contents of these on RAM and bring in the context of the task 

that is to be run. So 12 cycles are expended here. To decrement 

the timers of each task, 4 more cycles are used. To check the 

timer outs, another 4 more. And this continues further when the 

scheduler has to check priority and switch the task. The basic 

processor gave a clocking capability of 88 MHz theoretically 

when programmed on target device (Xilinx Spartan 

XC3S4000).  

That means if the processor is programmed with just only user 

tasks without scheduler of RTOS, the user tasks straight away 

sees this clocking speed. If the scheduler is implemented, the 

user program part will only see frequency which is much less 

than 4.4 MHz (obtained by division, 88 MHz / 20 cycles) 

assuming I cycle per each instruction. Since each instruction 

will take four cycles, user instructions without scheduler will 

see a frequency of 22 MHz. And with scheduler it comes down 

to 1.1 MHz.  This is the case only for the scheduler. This 

worsens when the kernel starts to have advanced features like 

semaphores, message queues, etc which heavily rely on data 

structures implemented in software. 

2. THE HARDWARE KERNEL 

2.1 Basic working 
Hardware OS has been suggested by proceedings of several 

conferences. They rely on making most of the data structures 

used by RTOS available in hardware and switching of register 

banks. Such a system is developed and the performance is 

evaluated. But the approach used here is relatively simple and 

easier to implement. 
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Fig 1: Operation of the basic processor

Further the advanced features are explored and scope of their 

existence in hardware is studied. The hardware RTOS designed 

here is capable of scheduling 4 tasks. The tasks can be timer 

driven, Interrupt driven or mix of both. And even the running 

tasks can trigger the tasks. Each task has a counter to schedule 

the timer based events. A trigger counter is dedicated for each 

task which will count the number of times the task is to be 

triggered or initiated. At this level, task is composed of the 

basic instruction set which is said earlier and a special system 

call that is implemented as an instruction which is used to 

indicate the task switcher that an iteration of the task is 

completed. This will decrement the trigger counter for that 

particular task. The other components of the developed 

hardware RTOS can be seen in the figure 2.  

2.2  Functional Modules 
All the blocks shown in the figure 2 are clocked from the same 

source without any gating. The system call interface will 

respond to the system call instructions and suitably updates the 

flags in the switching logic module. Selective task block 

responds to the system calls that are intended to suspend or 

resume some or all tasks (except the one that executes the 

instruction with some limitations). ROM, RAM, ALU and 

Control Logic Unit form the basic processor. Other shared 

resource can be anything like high precision floating point unit, 

signal or image processing unit, output ports, input ports, 

communication peripherals like UART, and other hardware data 

structures like queues, stacks etc intended for communication 

between tasks. These are connected by expanding the 

instruction set suitably. Some of these can be even system calls.  

The register bank consists of the basic register set like 

accumulators banked for the use by each task. They are 

switched depending on the running task. Higher address lines of 

RAM and ROM are multiplexed and decoded by task switcher 

so as to assign separate code memory and data memory for each 

task. The principle can be extended to any other shared resource 

as well. The interrupt and task trigger controller takes care of 

interrupts, system calls use to trigger tasks and increments the 

trigger counter that corresponds to the particular task. There is a 

dedicated timer and a shadow register for each task. The 

shadow register consists of the period of the task if that task is 

periodic. The timer is counted down. Upon timer out, it reloads 

the value from the shadow register and increments the trigger 

counter value of that particular task. The switching logic 

switches the tasks depending on several criteria.  The Hardware 

RTOS provides the functionalities of a basic RTOS kernel in 

three respects. They are scheduling the tasks, providing 

communication between tasks, synchronizing between tasks. 

 
Fig 2: Functional Modules 

3. SCHEDULING OF TASKS 
The tasks can be in any of the states. They are blocked, ready 

and running. There is no difference between ready and running 

task as their corresponding flag says that the task is ready. Only 

the task switcher decides which task to run and the tasks 

priority is hardwired. Tasks can be triggered by timer outs of 

the timers, interrupts and by the tasks itself. From the figure 3, 

the runtaskid gives the id of the task that is running which is 0 

(which has highest priority), 1, 2, and 3 (which has lowest 

priority). Siga, sigb, sigc, and sigd are the internal signals used 

to increment trigger counter. Here, task 2 runs first because it is 

only available at that time. Then tasks 0 and 1 are triggered via 

interrupts. Then task 0 completes execution followed by task1. 

During this time task 2 is  
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Fig 3: Tasks competing for the processor 

preempted. It is to be noted that the preemption took only 1 

machine cycle compared to many machine cycles in other 

RTOS cases. All the tasks on their completion will issue end of 

the task system call which is used to decrement the trigger 

counter of that particular task. Since tasks 0 and 1 are triggered 

by interrupts, their trigger counter is 0 after the completion. So 

they don’t execute again. Tasks 2 and 3 are periodic. So they 

take the processor again and again.  

The theoretical clocking frequency of the basic processor is 88 

MHz. When the scheduler is added, because of the overhead of 

the logic even after the synthesizer (here Xilinx XST is used) 

optimizing, the speed dropped down to 71 MHz.  This can be 

justified. The decoder in the processor should be able to handle 

additional instructions. The switching logic should decide 

which task to run. Since this should happen in a single clock 

cycle, propagation delay between the components synthesized 

to handle the logic had caused this drop in frequency. This is far 

better than software scheduler and context switching where the 

user tasks see a clocking frequency of only 2.2 MHz. But this is 

at the cost of increased hardware. But when we want to target 

such approaches on FPGAs and other programmable logic 

devices, the modern versions of them are suitable of handling 

such requirements. 

4. COMMUNICATION 
Communication between the tasks rely heavily on the data 

structures like queues, stacks, message pipes, shared memory 

etc. When these are provided by software RTOS, this is made 

possible by using software data structures. Reading from them, 

writing to them, checking error conditions, will take a lot of 

machine cycles. To implement in hardware is simpler. In 

software, RAM is primarily used as it is by encapsulating it 

within the operating system services for such data structures. 

The control of the RAM operations will be taken by OS which 

in turn consumes the processor. This would further degrade the 

performance of the RTOS itself.  

In the figure 2, the shared resource can be the data structures 

implemented in hardware. These data structures can be accessed 

very easily just as reading and writing RAM. And the error 

conditions are given by special flags. They consume as many 

cycles as a RAM would consume. The additional logic would 

definitely add overhead which influences the clocking speed. 

But the task switching logic had influenced the clocking speed 

the most. Since all blocks are clocked parallel, the overhead can 

be accommodated within the time that task switching takes 

place. Thus showing no additional influence on the clocking 

frequency.   

Here in this paper no hardware data structure that provides 

communication between tasks is given as it cannot influence the 

crucial parameter ( here it is clocking speed) and hardware 

resources (in a sense that hardware structures also uses RAM 

with very little additional logic just like software structures uses 

RAM for data and additional RAM for control entries). As 

many data structures as needed can be created. And they are 

interfaced to the processor just as addressable locations like 

RAM. Even many of such things together cannot influence the 

clocking speed as all of them are clocked parallel and are 

independent of each other. Thus the advantage of using 

hardware data structures lies in the fact that they can be used 

with  lesser machine cycles (equal to machine cycles taken by 

RAM) even though they consume similar resources as 

consumed by software data structures. 

5. SYNCHRONIZATION 
Synchronization in simple is implemented using two methods. 

That is by blocking the tasks at a stretch, and triggering the 

tasks at a stretch. Here at a stretch means it can be from one 

task to the total number of available tasks within the same cycle 

by use of some masks. To suspend selected task or tasks, a 

mask is issued as a system call to the task switching module. 

The MSB of the mask corresponds to the first or highest priority 

task. The LSB corresponds to last or lowest priority task. The 

task that is to be suspended is given 1 in its bit position. Then 

the mask is given to the switching unit through a system call. 

The switching unit reads the mask and updates the suspend 

mask register. If a tasks bit position in the suspend mask 

register is 1, the task will be blocked until it’s brought again to 

0. This is achieved by framing the mask again and sending it to 

the switching unit through a system call. In the switching 

module, the values in the suspend mask register are retained 

until it is changed by another system call. Similarly there is 

trigger mask register in the switching module. This is also 

updated using a system call. The MSB corresponds to the 

highest priority task and the LSB corresponds to lowest priority 

task. Whenever the mask is  
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Fig 4: Tasks getting triggered in series 

updated, the tasks whose corresponding positions are 1 will be 

triggered by incrementing the trigger register. The values are 

not retained and brought to 0 as the triggers are already 

registered in the trigger register of the corresponding task. 

In figure 4, the triggering system call implemented can be seen. 

Here, task 0 triggers task1. Task 1 triggers task 2 which further 

triggers task 3. The task 0 is triggered by interrupt. This simple 

flow can be seen in the figure 4. In figure 5, even though all 

tasks are triggered via interrupts, only task 0 ran. At the end it 

had issued a block system call imposing suspension on all the 

other three tasks and then finally issued an end task call. 

Though the trigger register of task 0 is now 0, the remaining 

tasks are not run because the suspend register has the 

corresponding positions 1 and are not brought down to 0. That 

means not resumed. 

 

Fig 5: All the other three tasks are blocked by task 0 

Task triggering along with the scheduler brought down the 

theoretical operational speed to 67 MHz. Task suspending 

brought it down further to 66 MHz. But when such things are 

incorporated in software RTOS the user programs will only 

see a clock which is less than 2.2 MHz. The total logic of such 

hardware RTOS consumed only 2 percent of the available 

resources on the target platform (here it is Xilinx Spartan 

XC3S4000). 

These techniques seem to be simple, but offer a great tool to 

control the synchronization process.  These can be used to 

achieve the advantages of advanced features like semaphores, 

mutexes, wait on a task, and suspend a task etc, with little 

overhead to the user tasks. That means little code is to be 

added for the user tasks to make use of the above features. 

This may seem to waste the machine cycles, but relatively 

better results are achieved using this approach rather than 

using complete software. This approach will lead us to a new 

concept, known as hybridization of RTOS. 

 

6. HYBRIDIZATION OF RTOS 

a. Need for Hybridization 
It is not always possible to scale the above approach to as 

many tasks as needed. Even though there are only 4 user 

tasks, Basic kernel has brought down the clocking speed from 

88 MHz to 66 MHz. When the number of tasks is increased or 

RTOS features are increased they would degrade it. But when 

it is compared with the software counterpart, it is always 

better. The solution is not in making everything in hardware 

as at this point, the resources used will start to get increase. 

For example if we want to create a semaphore manager, the 

manger has to keep the track of all the running tasks, tasks 
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that are waiting on it and then set the flags of the task to ready 

on the release of semaphore. There may be number of 

semaphores used in a system. Each should be properly 

registered in the semaphore manager. Even the logic used to 

implement starts getting complex. Either the clocking speed 

should be reduced, or the entire manager should be isolated 

and should be brought into use whenever required by 

suspending the other operations. But a better result can be 

achieved using another approach. That is to divide the 

available RTOS in terms of hardware and software. The 

semaphore manager has become very complex as said above. 

It gets further complicated when mutex has to be 

implemented. 

b. Mutex in hybrid RTOS 
Now as a new approach, the mutex management system can 

be partitioned as follows. One part is the one which suspends 

and resumes the tasks. Another one will check the semaphore 

variables. The first one will be in hardware. In the presented 

hardware RTOS system, this is possible by issuing a system 

call. The second one is implemented in software. The 

semaphore variables are checked by conditions that are 

programmed in the RAM. A task can be specially created to 

encapsulate the semaphore and can be triggered whenever the 

semaphore is needed. This will check the semaphore variable 

and suspends or resumes the task. Or even this can be done by 

user task itself. Here the software part relies on the single 

cycle instruction in hardware (In case of software RTOS, such 

system instruction will not exist and suspending a task 

requires updating the task control block, switching the context 

etc).  And the hardware part relies on the conditional checks 

performed by software part (Actually, comparing as a 

software instruction is easy to implement in the existing 

processor, rather than to duplicate the hardware to check 

conditions in special semaphore hardware and the delay in 

checking conditions in both cases is same and unavoidable). 

The effect is that the hardware is consumed little. The 

efficiency is not compromised (In fact, it improved). This can 

be demonstrated in the system presented in this paper.  

To implement mutex, when a task wants to acquire a mutex it 

should check a RAM entry which acts like a mutex. Then if it 

is available, it will update it as locked and suspends all the 

tasks that are likely to use the same mutex. After using the 

shared resource, the mutex  is unlocked and suspension mask 

is updated again to resume tasks. Here resume means to make 

them ready. This straight away solves the priority inversion 

problem. If the RAM entry is already locked, it suspends itself 

by framing a suspension mask and updating the suspension 

mask register.  Before that, it should use a flag to indicate 

itself to continue from the point it has suspended itself. Here 

after resuming, triggering the task triggering the task should 

be done. On triggering, the resumed task will check the status 

of its flag and then jumps to the semaphore instruction or runs 

from start.  

The same protocol should be followed by all tasks that use the 

mutex.  So when one task suspends itself because of locked 

mutex, other tasks that are using the semaphore will trigger it. 

The task on resume and being triggered will know from where 

it should start again. That means the tasks will have break 

points (which are actually conditional jumps and the 

conditions are set as flags by the same or other tasks, in the 

RAM entries). This approach has drastically reduced the need 

of special semaphore manager in hardware.  

Instead of break points, the program counter value can be 

changed before triggering. And instead of suspension, an end 

of the task can be issued by the running task. On resume the 

task will start running from where it has to start. This would 

require a special instruction that would change the value of 

program counter. In this way the semaphore manager is 

partitioned into hardware and software. This is efficient 

compared to complete software semaphore management 

(Many machine cycles are expended) or complete hardware 

semaphore management (consumes heavily resources, 

basically replicating the same that are in processor). 

c. Wait on task in hybrid RTOS 
The task that has to wait on other task will communicate with 

the other task to tell it that it is waiting on it. Then it will 

trigger it. Then waiting task will set a flag to know its break 

point. The other task after performing its function will try to 

identify which task is waiting on it based on the 

communication received from it. Then it will trigger that task. 

In this way, the wait on task is implemented. 

d. Comments on hybrid RTOS 

The approach is similar to hardware software co-design. This 

is a recent emerging trend and the standardizations are not 

completed yet. This paper confines the development of system 

to RTOS. Embedded designers make use of software RTOS 

libraries to program their user programs and finally a ROM 

image of the total system is obtained. This is dumped to the 

specific processor or controller. Here neither the processor is 

developed keeping RTOS in mind, nor is the RTOS developed 

keeping processor in mind. Thus a single processor can run 

many operating systems and a single operating system can be 

ported on several processors. So there is a chance that the 

systems developed using such hardware and software are 

always sub optimal. So the hybrid RTOS would be the ideal 

and optimal solution for real time applications. 

7. RESULTS 
This system tried to partition RTOS into hardware and 

software manually. For limited number of tasks, mutexes, and 

breakpoints, it worked well. But to scale it to a larger size, 

such manual partitioning will not help. Even the components 

in the RTOS in hardware and software cannot be as straight as 

they are now. They get more complex. So a programming 

environment is needed which readily forms the hardware and 

software components on programming like a normal software 

RTOS. Some system calls may be implemented in hardware 

and some in software. Some user code may be implemented in 

software and some in hardware, like for example user data 

structures can be in hardware. So this has opened a new area 

of research in the domain of hardware software co-design. 

Here the optimization is left to the programming environment 

itself. 

8. FUTURE WORK 
FPGAs and other programmable logic arrays are highly 

configurable. A single programming environment will be 

developed. In this environment, the programmer programs 

using RTOS of his choice. The only thing is that he will be 

unaware of the target processor. Then the environment will 

analyze it and decides which components will go to hardware 

and which will go to software. In such approach the operating 

system is broken down into hardware parts and software parts. 

The user will not know which parts are of hardware, which 

are of software. Even some system calls are implemented in 

software and some in hardware which are highly dependent 

on the user program. Then finally, as a part of hardware, a 

HDL code is generated and as a part of software ROM image 
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is created. HDL (can be Verilog, VHDL etc) is used to 

synthesize the hardware on FPGA or other programmable 

logic devices. ROM image is put in ROM and both of them 

are interfaced. The advantage is that the hardware will 

become application specific (here, it is mostly RTOS) and the 

software will become hardware specific. So the result is 

optimal. 
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