
International Journal of Computer Applications (0975 – 8887)

National conference on VSLI and Embedded systems 2013

23

Implementation of RTOS Kernel in Hardware and the
Scope of Hybridization of RTOS

Ponnaganti Sudhi Varun
M.Tech (EST), Dept. of ECE,

SRM University, Kattankulathur

ABSTRACT

Real time operating systems have become an integral part of the

embedded systems software. They play crucial role in allocating

the available constrained resources efficiently. The resource can

be anything like ALU in the processor, networking hardware,

memory etc. The user program is broken into tasks and they

will be competing for the resources. But in software RTOS, the

RTOS itself has few tasks along with the user tasks which are

resource hungry. So the resources are not confined to the user

programs which reduce the efficiency of the overall system. The

idea of implementing the RTOS in hardware itself comes here.

Only the user program is to be programmed. The efficiency has

increased drastically with some limitations. Here, a typical basic

processor is developed. How the software RTOS effects the

efficiency is discussed. Then the same processor is added to the

hardware OS kernel. Scope of hybridization of RTOS is given

which increases the efficiency to greater extent. The concept of

hybridization is provided with an example and a programming

environment for such hybrid RTOS is emphasized.

General Terms

Real time operating system, Hardware kernel, Hybrid RTOS,

Programming environment for hybrid RTOS, FPGA.

Keywords

Real time operating system, Hardware kernel, Hybrid RTOS,

Hardware scheduler, Hardware semaphore manager.

1. INTRODUCTION
Operating systems for embedded applications have following

features. Encapsulates the hardware and provides easy to use

style interfaces to the programmer. Schedules user tasks based

on priorities assigned to them. Provides task synchronizing

mechanisms. Provides communication services between tasks.

These are the basic services provided by most of the RTOS

kernels. The RTOS most of the time is a software by itself. So it

shares the resources with the user tasks. Thus reducing the

efficiency. Here efficiency is measured as the ratio of machine

cycles expended on user tasks to the total number of machine

cycles over a considerable period of time. In a time period

driven scheduler, most of the machine cycles will be expended

on updating the timer values, checking the timer outs, context

switching, checking the priorities of the tasks whose timers are

out and triggering them.

The basic processor which is shown in the figure 1 consumes

three to four machine cycles for normal instruction. The

operating system need to be invoked at the end of every

instruction either by a special instruction or interrupt. For 4 user

tasks which are to be scheduled based on timers and priority,

the overhead imposed by the RTOS scheduler itself is very

high.

The cycle requirement of the basic processor can be seen in the

figure 1. It is capable of loading values in accumulator,

memory, data transfer between memory, basic conditional and

unconditional jumps in the program ROM by changing the

value in the program counter, basic arithmetic operations,

increment and decrement the accumulator. In the figure 1, the

pcvalue shows the current program counter value. The value is

changed abruptly because of jump instruction. The accumulator

is loaded with the number 5, and then it is written to RAM.

From RAM this value is read into regB and then addition is

performed. Finally the result in the accumulator (regA) is

outputted through outport. Such instructions are sufficient to

build a simple scheduler, task switching and basic user

programs.

Since there are four user tasks, each task will have its own

accumulator, program counter, Timer etc at least as seen from

the perspective of a user. Task switching means to save the

contents of these on RAM and bring in the context of the task

that is to be run. So 12 cycles are expended here. To decrement

the timers of each task, 4 more cycles are used. To check the

timer outs, another 4 more. And this continues further when the

scheduler has to check priority and switch the task. The basic

processor gave a clocking capability of 88 MHz theoretically

when programmed on target device (Xilinx Spartan

XC3S4000).

That means if the processor is programmed with just only user

tasks without scheduler of RTOS, the user tasks straight away

sees this clocking speed. If the scheduler is implemented, the

user program part will only see frequency which is much less

than 4.4 MHz (obtained by division, 88 MHz / 20 cycles)

assuming I cycle per each instruction. Since each instruction

will take four cycles, user instructions without scheduler will

see a frequency of 22 MHz. And with scheduler it comes down

to 1.1 MHz. This is the case only for the scheduler. This

worsens when the kernel starts to have advanced features like

semaphores, message queues, etc which heavily rely on data

structures implemented in software.

2. THE HARDWARE KERNEL

2.1 Basic working
Hardware OS has been suggested by proceedings of several

conferences. They rely on making most of the data structures

used by RTOS available in hardware and switching of register

banks. Such a system is developed and the performance is

evaluated. But the approach used here is relatively simple and

easier to implement.

International Journal of Computer Applications (0975 – 8887)

National conference on VSLI and Embedded systems 2013

24

Fig 1: Operation of the basic processor

Further the advanced features are explored and scope of their

existence in hardware is studied. The hardware RTOS designed

here is capable of scheduling 4 tasks. The tasks can be timer

driven, Interrupt driven or mix of both. And even the running

tasks can trigger the tasks. Each task has a counter to schedule

the timer based events. A trigger counter is dedicated for each

task which will count the number of times the task is to be

triggered or initiated. At this level, task is composed of the

basic instruction set which is said earlier and a special system

call that is implemented as an instruction which is used to

indicate the task switcher that an iteration of the task is

completed. This will decrement the trigger counter for that

particular task. The other components of the developed

hardware RTOS can be seen in the figure 2.

2.2 Functional Modules
All the blocks shown in the figure 2 are clocked from the same

source without any gating. The system call interface will

respond to the system call instructions and suitably updates the

flags in the switching logic module. Selective task block

responds to the system calls that are intended to suspend or

resume some or all tasks (except the one that executes the

instruction with some limitations). ROM, RAM, ALU and

Control Logic Unit form the basic processor. Other shared

resource can be anything like high precision floating point unit,

signal or image processing unit, output ports, input ports,

communication peripherals like UART, and other hardware data

structures like queues, stacks etc intended for communication

between tasks. These are connected by expanding the

instruction set suitably. Some of these can be even system calls.

The register bank consists of the basic register set like

accumulators banked for the use by each task. They are

switched depending on the running task. Higher address lines of

RAM and ROM are multiplexed and decoded by task switcher

so as to assign separate code memory and data memory for each

task. The principle can be extended to any other shared resource

as well. The interrupt and task trigger controller takes care of

interrupts, system calls use to trigger tasks and increments the

trigger counter that corresponds to the particular task. There is a

dedicated timer and a shadow register for each task. The

shadow register consists of the period of the task if that task is

periodic. The timer is counted down. Upon timer out, it reloads

the value from the shadow register and increments the trigger

counter value of that particular task. The switching logic

switches the tasks depending on several criteria. The Hardware

RTOS provides the functionalities of a basic RTOS kernel in

three respects. They are scheduling the tasks, providing

communication between tasks, synchronizing between tasks.

Fig 2: Functional Modules

3. SCHEDULING OF TASKS
The tasks can be in any of the states. They are blocked, ready

and running. There is no difference between ready and running

task as their corresponding flag says that the task is ready. Only

the task switcher decides which task to run and the tasks

priority is hardwired. Tasks can be triggered by timer outs of

the timers, interrupts and by the tasks itself. From the figure 3,

the runtaskid gives the id of the task that is running which is 0

(which has highest priority), 1, 2, and 3 (which has lowest

priority). Siga, sigb, sigc, and sigd are the internal signals used

to increment trigger counter. Here, task 2 runs first because it is

only available at that time. Then tasks 0 and 1 are triggered via

interrupts. Then task 0 completes execution followed by task1.

During this time task 2 is

International Journal of Computer Applications (0975 – 8887)

National conference on VSLI and Embedded systems 2013

25

Fig 3: Tasks competing for the processor

preempted. It is to be noted that the preemption took only 1

machine cycle compared to many machine cycles in other

RTOS cases. All the tasks on their completion will issue end of

the task system call which is used to decrement the trigger

counter of that particular task. Since tasks 0 and 1 are triggered

by interrupts, their trigger counter is 0 after the completion. So

they don’t execute again. Tasks 2 and 3 are periodic. So they

take the processor again and again.

The theoretical clocking frequency of the basic processor is 88

MHz. When the scheduler is added, because of the overhead of

the logic even after the synthesizer (here Xilinx XST is used)

optimizing, the speed dropped down to 71 MHz. This can be

justified. The decoder in the processor should be able to handle

additional instructions. The switching logic should decide

which task to run. Since this should happen in a single clock

cycle, propagation delay between the components synthesized

to handle the logic had caused this drop in frequency. This is far

better than software scheduler and context switching where the

user tasks see a clocking frequency of only 2.2 MHz. But this is

at the cost of increased hardware. But when we want to target

such approaches on FPGAs and other programmable logic

devices, the modern versions of them are suitable of handling

such requirements.

4. COMMUNICATION
Communication between the tasks rely heavily on the data

structures like queues, stacks, message pipes, shared memory

etc. When these are provided by software RTOS, this is made

possible by using software data structures. Reading from them,

writing to them, checking error conditions, will take a lot of

machine cycles. To implement in hardware is simpler. In

software, RAM is primarily used as it is by encapsulating it

within the operating system services for such data structures.

The control of the RAM operations will be taken by OS which

in turn consumes the processor. This would further degrade the

performance of the RTOS itself.

In the figure 2, the shared resource can be the data structures

implemented in hardware. These data structures can be accessed

very easily just as reading and writing RAM. And the error

conditions are given by special flags. They consume as many

cycles as a RAM would consume. The additional logic would

definitely add overhead which influences the clocking speed.

But the task switching logic had influenced the clocking speed

the most. Since all blocks are clocked parallel, the overhead can

be accommodated within the time that task switching takes

place. Thus showing no additional influence on the clocking

frequency.

Here in this paper no hardware data structure that provides

communication between tasks is given as it cannot influence the

crucial parameter (here it is clocking speed) and hardware

resources (in a sense that hardware structures also uses RAM

with very little additional logic just like software structures uses

RAM for data and additional RAM for control entries). As

many data structures as needed can be created. And they are

interfaced to the processor just as addressable locations like

RAM. Even many of such things together cannot influence the

clocking speed as all of them are clocked parallel and are

independent of each other. Thus the advantage of using

hardware data structures lies in the fact that they can be used

with lesser machine cycles (equal to machine cycles taken by

RAM) even though they consume similar resources as

consumed by software data structures.

5. SYNCHRONIZATION
Synchronization in simple is implemented using two methods.

That is by blocking the tasks at a stretch, and triggering the

tasks at a stretch. Here at a stretch means it can be from one

task to the total number of available tasks within the same cycle

by use of some masks. To suspend selected task or tasks, a

mask is issued as a system call to the task switching module.

The MSB of the mask corresponds to the first or highest priority

task. The LSB corresponds to last or lowest priority task. The

task that is to be suspended is given 1 in its bit position. Then

the mask is given to the switching unit through a system call.

The switching unit reads the mask and updates the suspend

mask register. If a tasks bit position in the suspend mask

register is 1, the task will be blocked until it’s brought again to

0. This is achieved by framing the mask again and sending it to

the switching unit through a system call. In the switching

module, the values in the suspend mask register are retained

until it is changed by another system call. Similarly there is

trigger mask register in the switching module. This is also

updated using a system call. The MSB corresponds to the

highest priority task and the LSB corresponds to lowest priority

task. Whenever the mask is

International Journal of Computer Applications (0975 – 8887)

National conference on VSLI and Embedded systems 2013

26

Fig 4: Tasks getting triggered in series

updated, the tasks whose corresponding positions are 1 will be

triggered by incrementing the trigger register. The values are

not retained and brought to 0 as the triggers are already

registered in the trigger register of the corresponding task.

In figure 4, the triggering system call implemented can be seen.

Here, task 0 triggers task1. Task 1 triggers task 2 which further

triggers task 3. The task 0 is triggered by interrupt. This simple

flow can be seen in the figure 4. In figure 5, even though all

tasks are triggered via interrupts, only task 0 ran. At the end it

had issued a block system call imposing suspension on all the

other three tasks and then finally issued an end task call.

Though the trigger register of task 0 is now 0, the remaining

tasks are not run because the suspend register has the

corresponding positions 1 and are not brought down to 0. That

means not resumed.

Fig 5: All the other three tasks are blocked by task 0

Task triggering along with the scheduler brought down the

theoretical operational speed to 67 MHz. Task suspending

brought it down further to 66 MHz. But when such things are

incorporated in software RTOS the user programs will only

see a clock which is less than 2.2 MHz. The total logic of such

hardware RTOS consumed only 2 percent of the available

resources on the target platform (here it is Xilinx Spartan

XC3S4000).

These techniques seem to be simple, but offer a great tool to

control the synchronization process. These can be used to

achieve the advantages of advanced features like semaphores,

mutexes, wait on a task, and suspend a task etc, with little

overhead to the user tasks. That means little code is to be

added for the user tasks to make use of the above features.

This may seem to waste the machine cycles, but relatively

better results are achieved using this approach rather than

using complete software. This approach will lead us to a new

concept, known as hybridization of RTOS.

6. HYBRIDIZATION OF RTOS

a. Need for Hybridization
It is not always possible to scale the above approach to as

many tasks as needed. Even though there are only 4 user

tasks, Basic kernel has brought down the clocking speed from

88 MHz to 66 MHz. When the number of tasks is increased or

RTOS features are increased they would degrade it. But when

it is compared with the software counterpart, it is always

better. The solution is not in making everything in hardware

as at this point, the resources used will start to get increase.

For example if we want to create a semaphore manager, the

manger has to keep the track of all the running tasks, tasks

International Journal of Computer Applications (0975 – 8887)

National conference on VSLI and Embedded systems 2013

27

that are waiting on it and then set the flags of the task to ready

on the release of semaphore. There may be number of

semaphores used in a system. Each should be properly

registered in the semaphore manager. Even the logic used to

implement starts getting complex. Either the clocking speed

should be reduced, or the entire manager should be isolated

and should be brought into use whenever required by

suspending the other operations. But a better result can be

achieved using another approach. That is to divide the

available RTOS in terms of hardware and software. The

semaphore manager has become very complex as said above.

It gets further complicated when mutex has to be

implemented.

b. Mutex in hybrid RTOS
Now as a new approach, the mutex management system can

be partitioned as follows. One part is the one which suspends

and resumes the tasks. Another one will check the semaphore

variables. The first one will be in hardware. In the presented

hardware RTOS system, this is possible by issuing a system

call. The second one is implemented in software. The

semaphore variables are checked by conditions that are

programmed in the RAM. A task can be specially created to

encapsulate the semaphore and can be triggered whenever the

semaphore is needed. This will check the semaphore variable

and suspends or resumes the task. Or even this can be done by

user task itself. Here the software part relies on the single

cycle instruction in hardware (In case of software RTOS, such

system instruction will not exist and suspending a task

requires updating the task control block, switching the context

etc). And the hardware part relies on the conditional checks

performed by software part (Actually, comparing as a

software instruction is easy to implement in the existing

processor, rather than to duplicate the hardware to check

conditions in special semaphore hardware and the delay in

checking conditions in both cases is same and unavoidable).

The effect is that the hardware is consumed little. The

efficiency is not compromised (In fact, it improved). This can

be demonstrated in the system presented in this paper.

To implement mutex, when a task wants to acquire a mutex it

should check a RAM entry which acts like a mutex. Then if it

is available, it will update it as locked and suspends all the

tasks that are likely to use the same mutex. After using the

shared resource, the mutex is unlocked and suspension mask

is updated again to resume tasks. Here resume means to make

them ready. This straight away solves the priority inversion

problem. If the RAM entry is already locked, it suspends itself

by framing a suspension mask and updating the suspension

mask register. Before that, it should use a flag to indicate

itself to continue from the point it has suspended itself. Here

after resuming, triggering the task triggering the task should

be done. On triggering, the resumed task will check the status

of its flag and then jumps to the semaphore instruction or runs

from start.

The same protocol should be followed by all tasks that use the

mutex. So when one task suspends itself because of locked

mutex, other tasks that are using the semaphore will trigger it.

The task on resume and being triggered will know from where

it should start again. That means the tasks will have break

points (which are actually conditional jumps and the

conditions are set as flags by the same or other tasks, in the

RAM entries). This approach has drastically reduced the need

of special semaphore manager in hardware.

Instead of break points, the program counter value can be

changed before triggering. And instead of suspension, an end

of the task can be issued by the running task. On resume the

task will start running from where it has to start. This would

require a special instruction that would change the value of

program counter. In this way the semaphore manager is

partitioned into hardware and software. This is efficient

compared to complete software semaphore management

(Many machine cycles are expended) or complete hardware

semaphore management (consumes heavily resources,

basically replicating the same that are in processor).

c. Wait on task in hybrid RTOS
The task that has to wait on other task will communicate with

the other task to tell it that it is waiting on it. Then it will

trigger it. Then waiting task will set a flag to know its break

point. The other task after performing its function will try to

identify which task is waiting on it based on the

communication received from it. Then it will trigger that task.

In this way, the wait on task is implemented.

d. Comments on hybrid RTOS

The approach is similar to hardware software co-design. This

is a recent emerging trend and the standardizations are not

completed yet. This paper confines the development of system

to RTOS. Embedded designers make use of software RTOS

libraries to program their user programs and finally a ROM

image of the total system is obtained. This is dumped to the

specific processor or controller. Here neither the processor is

developed keeping RTOS in mind, nor is the RTOS developed

keeping processor in mind. Thus a single processor can run

many operating systems and a single operating system can be

ported on several processors. So there is a chance that the

systems developed using such hardware and software are

always sub optimal. So the hybrid RTOS would be the ideal

and optimal solution for real time applications.

7. RESULTS
This system tried to partition RTOS into hardware and

software manually. For limited number of tasks, mutexes, and

breakpoints, it worked well. But to scale it to a larger size,

such manual partitioning will not help. Even the components

in the RTOS in hardware and software cannot be as straight as

they are now. They get more complex. So a programming

environment is needed which readily forms the hardware and

software components on programming like a normal software

RTOS. Some system calls may be implemented in hardware

and some in software. Some user code may be implemented in

software and some in hardware, like for example user data

structures can be in hardware. So this has opened a new area

of research in the domain of hardware software co-design.

Here the optimization is left to the programming environment

itself.

8. FUTURE WORK
FPGAs and other programmable logic arrays are highly

configurable. A single programming environment will be

developed. In this environment, the programmer programs

using RTOS of his choice. The only thing is that he will be

unaware of the target processor. Then the environment will

analyze it and decides which components will go to hardware

and which will go to software. In such approach the operating

system is broken down into hardware parts and software parts.

The user will not know which parts are of hardware, which

are of software. Even some system calls are implemented in

software and some in hardware which are highly dependent

on the user program. Then finally, as a part of hardware, a

HDL code is generated and as a part of software ROM image

International Journal of Computer Applications (0975 – 8887)

National conference on VSLI and Embedded systems 2013

28

is created. HDL (can be Verilog, VHDL etc) is used to

synthesize the hardware on FPGA or other programmable

logic devices. ROM image is put in ROM and both of them

are interfaced. The advantage is that the hardware will

become application specific (here, it is mostly RTOS) and the

software will become hardware specific. So the result is

optimal.

REFERENCES
[1]. P. Kuacharoen, M. A. Shalan and V. J. Mooney III, “A

Configurable Hardware Scheduler for Real-Time

Systems,” in Proceedings of the International Conference

on Engineering of Reconfigurable Systems and

Algorithms, Las Vegas, USA, June 2003.

[2]. A.Parisoto, A. Souza, L. Carro, M. Pontremoli, C.

Pereira, and A.Suzim, “F-Timer: dedicated FPGA to

real-time systems design support.In Real-Time Systems”,

In Proceedings of the Ninth Euromicro Workshop, June,

1997.

[3]. T. Samuelsson, M. Akerholm, P. Nygren, J. Starner and

L. Lindh, “A Comparison of Multiprocessor Real-Time

Operating Systems Implemented in Hardware and

Software.” in proceedings of International Workshop on

Advanced Real-Time Operating System Services,

Porto,Portugal, 2003.

[4]. Vetromille M., Ost L., Marcon C. A. M., Reif C. and

Hessel F. “RTOS Scheduler Implementation in Hardware

and Software for Real Time Applications,” Seventeenth

IEEE International Workshop on Rapid System

Prototyping, 2006.

[5]. T.Nakan, M.Itabash A.Shiomi and M.Imai "Hardware

Implementation of a Real-time Operating System"in

Proceedings of the Twelwth TRON Project International

Symposium, IEEE Computer Society Press,Nov 1995.

[6]. P. Kohout, B. Ganesh, and B.Jacob, "Hardware support

for real-time operating systems," in Proceedings of the

first IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis,

Newport Beach, CA, USA, 2003.

[7]. G. Bloom, G. Parmer, B. Narahari, and R. Simha, “Real-

Time Scheduling with Hardware Data Structures”, IEEE

Real-Time Systems Symposium, 2010, December 2010.

[8]. H. Jamal, and Z. A. Khan, "Hardware IP for Scheduling

of Periodic Tasks in Multiprocessor Systems", in

WSEAS Transactions on Computer Research, Issue 3,

Volume 3, March 2008.

[9]. S. Chandra, F. Regazzoni, and M. Lajolo,

“Hardware/Software partitioning of operating systems: a

behavioral synthesis approach”, in Proceedings of ACM

GLSVLSI, 2006.

[10]. N. Gupta, S.K. Mandal, J. Malave, A. Mandal, R.N.

Mahapatra, "A Hardware Scheduler for Real Time

Multiprocessor System on Chip", in 23rd International

Conference on VLSI Design, 2010.

[11]. J. Hildebrandt, F. Golatowski, and D. Timmermann,

“Scheduling coprocessor for enhanced Least-Laxity-First

scheduling in hard Real-Time systems,” in Real-Time

Systems, in proceedings of Euromicro Conference, Los

Alamitos, CA, USA ,1999.

[12]. S. Saez, J. Vila, A. Crespo, and A. Garcia, “A hardware

scheduler for complex real-time systems,” in

Proceedings of the IEEE International Symposium on

Industrial Electronics, 1999.

