
International Journal of Computer Applications (0975 – 8887)

National conference on VSLI and Embedded systems 2013

32

Implementation of a High Speed Single Precision

Floating Point Unit using Verilog

Ushasree G
ECE-VLSI, VIT University,

Vellore- 632014, Tamil
Nadu, India

R Dhanabal
ECE-VLSI, VIT University,

Vellore- 632014, Tamil
Nadu, India

Sarat Kumar Sahoo
ECE-VLSI, VIT University,

Vellore- 632014, Tamil
Nadu, India

ABSTRACT

To represent very large or small values, large range is

required as the integer representation is no longer appropriate.

These values can be represented using the IEEE-754 standard

based floating point representation. This paper presents high

speed ASIC implementation of a floating point arithmetic unit

which can perform addition, subtraction, multiplication,

division functions on 32-bit operands that use the IEEE 754-

2008 standard. Pre-normalization unit and post normalization

units are also discussed along with exceptional handling. All

the functions are built by feasible efficient algorithms with

several changes incorporated that can improve overall latency,

and if pipelined then higher throughput. The algorithms are

modeled in Verilog HDL and have been implemented in

ModelSim.

Keywords

Floating point number, normalization, exceptions, latency,

etc.

1. INTRODUCTION
An arithmetic circuit which performs digital arithmetic

operations has many applications in digital coprocessors,

application specific circuits, etc. Because of the advancements

in the VLSI technology, many complex algorithms that

appeared impractical to put into practice, have become easily

realizable today with desired performance parameters so that

new designs can be incorporated [2]. The standardized

methods to represent floating point numbers have been

instituted by the IEEE 754 standard through which the

floating point operations can be carried out efficiently with

modest storage requirements,.

The three basic components in IEEE 754 standard floating

point numbers are the sign, the exponent, and the mantissa

[3]. The sign bit is of 1 bit where 0 refers to positive number

and 1 refers to negative number [3]. The mantissa, also called

significand which is of 23bits composes of the fraction and a

leading digit which represents the precision bits of the number

[3] [2]. The exponent with 8 bits represents both positive and

negative exponents. A bias of 127 is added to the exponent to

get the stored exponent [2]. Table 1 show the bit ranges for

single (32-bit) and double (64-bit) precision floating-point

values [2].

The value of binary floating point representation is as follows

where S is sign bit, F is fraction bit and E is exponent field.

Value of a floating point number= (-1)S x val(F) x 2val(E)

Table 1. Bit Range for Single (32-bit) and Double (64-bit)

Precision Floating-Point Values [2]

 Sign Exponent Fraction Bias

Single

precision

1[31] 8[30-23] 23[22-00] 127

Double

precision

1[63] 11[62-52] 52[51-00] 1023

There are four types of exceptions that arise during floating

point operations. The Overflow exception is raised whenever

the result cannot be represented as a finite value in the

precision format of the destination [13]. The Underflow

exception occurs when an intermediate result is too small to

be calculated accurately, or if the operation's result rounded to

the destination precision is too small to be normalized [13]

The Division by zero exception arises when a finite nonzero

number is divided by zero [13]. The Invalid operation

exception is raised if the given operands are invalid for the

operation to be performed [13].In this paper ASIC

implementation of a high speed FPU has been carried out

using efficient addition, subtraction, multiplication, division

algorithms. Section II depicts the architecture of the floating

point unit and methodology, to carry out the arithmetic

operations. Section III presents the arithmetic operations that

use efficient algorithms with some modifications to improve

latency. Section IV presents the results that have been

simulated in ModelSim. Section V presents the conclusion.

2. ARCHITECTURE AND

METHODOLOGY
The FPU of a single precision floating point unit that performs

add, subtract, multiply, divide functions is shown in figure 1

[1]. Two pre-normalization units for addition/subtraction and

multiplication/division operations has been given[1]. Post

normalization unit also has been given that normalizes the

mantissa part[2]. The final result can be obtained after post-

normalization. To carry out the arithmetic operations, two

IEEE-754 format single precision operands are considered.

Pre-normalization of the operands is done. Then the selected

operation is performed followed by post-normalizing the

output obtained .Finally the exceptions occurred are detected

and handled using exceptional handling. The executed

operation depends on a two bit control signal (z) which will

determine the arithmetic operation is shown in table 2.

International Journal of Computer Applications (0975 – 8887)

National conference on VSLI and Embedded systems 2013

33

Fig 1: Block diagram of floating point arithmetic unit [1]

Table 2. Floating Point Unit Operations

z(control signal) Operation

2’b00 Addition

2’b01 Subtraction

2’b10 Multiplication

2’b11 Division

3. 32 BIT FLOATING POINT

ARITHMETIC UNIT

3.1 Addition Unit
One of the most complex operation in a floating-point unit

comparing to other functions which provides major delay and

also considerable area. Many algorithms has been developed

which focused to reduce the overall latency in order to

improve performance. The floating point addition operation is

carried out by first checking the zeros, then aligning the

significand, followed by adding the two significands using an

efficient architecture. The obtained result is normalized and is

checked for exceptions. To add the mantissas, a high speed

carry look ahead has been used to obtain high speed.

Traditional carry look ahead adder is constructed using AND,

XOR and NOT gates. The implemented modified carry look

ahead adder uses only NAND and NOT gates which decreases

the cost of carry look ahead adder and also enhances its speed

also [4].

The 16 bit modified carry look ahead adder is shown in figure

2 and the metamorphosis of partial full adder is shown in

figure 3 using which a 24 bit carry look ahead adder has been

constructed and performed the addition operation.

Fig 2: 16 bit modified carry look ahead adder [4]

Fig 3: Metamorphosis of partial full adder [4]

3.2 Subtraction Unit
Subtraction operation is is implemented by taking 2’s

complement of second operand. Similar to addition operation,

subtraction consists of three major operations, pre

normalization, addition of mantissas, post normalization and

exceptional handling[4]. Addition of mantissas is carried out

using the 24 bit modified carry look ahead adder .

3.3 Multiplication
Constructing an efficient multiplication module is a iterative

process and 2n-digit product is obtained from the product of

two n-digit operands. In IEEE 754 floating-point

multiplication, the two mantissas are multiplied, and the two

exponents are added. Here first the exponents are added from

which the exponent bias (127) is removed. Then mantissas

have been multiplied using feasible algorithm and the output

sign bit is determined by exoring the two input sign bits. The

obtained result has been normalized and checked for

exceptions.

To multiply the mantissas Bit Pair Recoding (or Modified

Booth Encoding) algorithm has been used, because of which

the number of partial products get reduces by about a factor of

two, with no requirement of pre-addition to produce the

partial products. It recodes the bits by considering three bits at

a time. Bit Pair Recoding algorithm increases the efficiency of

multiplication by pairing. To further increase the efficiency of

the algorithm and decrease the time complexity, Karatsuba

algorithm can be paired with the bit pair recoding algorithm.

One of the fastest multiplication algorithm is Karatsuba

algorithm which reduces the multiplication of two n-digit

numbers to 3nlog32 ~ 3n1.585 single-digit multiplications and

therefore faster than the classical algorithm, which requires n2

single-digit products [11]. It allows to compute the product of

two large numbers x and y using three multiplications of

smaller numbers, each with about half as many digits as x or

International Journal of Computer Applications (0975 – 8887)

National conference on VSLI and Embedded systems 2013

34

y, with some additions and digit shifts instead of four

multiplications[11]. The steps are carried out as follows

Let x and y be represented as n-digit numbers with base B and

m<n.

x = x1Bm + x0

y = y1Bm + y0

where x0 and y0 are less than Bm [11]. The product is then

xy = (x1Bm + x0)(y1Bm + y0)= c1B2m + b1Bm + a1

Where c1 = x1y1

b1 = x1y0+ x0y1

a1 = x0y0.

b1 = p1- z2 - z0

p1 = (x1 + x0)(y1 + y0)

Here c1, a1, p1 has been calculated using bit pair recoding

algorithm. Radix-4 modified booth encoding has been used

which allows for the reduction of partial product array by half

[n/2]. The bit pair recoding table is shown in table 3. In the

implemented algorithm for each group of three bits (y2iþ1,

y2i, y2i_1) of multiplier, one partial product row is generated

according to the encoding in table 3. Radix-4 modified booth

encoding signals and their respective partial products has been

generated using the figures 4 and 5. For each partial product

row, figure 4 generates the one, two, and neg signals. These

values are then given to the logic in figure 5 with the bits of

the multiplicand, to produce the whole partial product array.

To prevent the sign extension the obtained partial products are

extended as shown in figure 6 and the the product has been

calculated using carry save select adder.

Table 3. Bit-Pair Recoding [11]

BIT

PATTERN

 OPERATION

0 0 0 NO

OPERATION

0 0 1 1xa prod=prod+a;

0 1 0 2xa-a prod=prod+a;

0 1 1 2xa prod=prod+2a;

1 0 0 -2xa prod=prod-2a;

1 0 1 -2xa+a prod=prod-a;

1 1 0 -1xa prod=prod-a;

1 1 1 NO

OPERATION

Fig 4: MBE Signal Generation [10]

Fig 5: partial product generation [10]

Fig 6: Sign Prevention Extension of Partial Products [10]

3.4 Division Algorithm
Division is the one of the complex and time-consuming

operation of the four basic arithmetic operations. Division

operation has two components as its result i.e. quotient and a

remainder when two inputs, a dividend and a divisor are

given. Here the exponent of result has been calculated by

using the equation, e0 = eA – eB + bias (127) -zA + zB

followed by division of fractional bits [5] [6]. Sign of result

has been calculated from exoring sign of two operands. Then

the obtained quotient has been normalized [5] [6].

Division of the fractional bits has been performed by using

non restoring division algorithm which is modified to improve

the delay. The non-restoring division algorithm is the fastest

among the digit recurrence division methods [5] [6].

Generally restoring division require two additions for each

iteration if the temporary partial remainder is less than zero

and this results in making the worst case delay longer[5] [6].

To decrease the delay during division, the non-restoring

division algorithm was introduced which is shown in figure 7.

Non-restoring division has a different quotient set i.e it has

one and negative one, while restoring division has zero and

one as the quotient set[5] [6] Using the different quotient set,

reduces the delay of non-restoring division compared to

restoring division. It means, it only performs one addition per

iteration which improves its arithmetic performance[6].

The delay of the multiplexer for selecting the quotient digit

and determining the way to calculate the partial remainder can

be reduced through rearranging the order of the computations.

In the implemented design the adder for calculating the partial

remainder and the multiplexer has been performed at the same

time, so that the multiplexer delay can be ignored since the

adder delay is generally longer than the multiplexer delay.

Second, one adder and one inverter are removed by using a

new quotient digit converter. So, the delay from one adder and

one inverter connected in series will be eliminated.

International Journal of Computer Applications (0975 – 8887)

National conference on VSLI and Embedded systems 2013

35

Fig 7: Non Restoring Division algorithm

4. RESULTS

4.1 Addition Unit
The single precision addition operation has been

implementation in modelsim for the inputs, input1=25.0 and

input2=4.5 which is input2=4.5 shown in figure 8 for which

result has been obtained as 29.5

Fig 8: Implementation of 32 bit Addition operation

4.2 Subtraction Unit
The single precision addition operation has been

implementation in modelsim for the inputs, input1=25.0 and

input2=4.5 which is shown in figure 9 for which result has

been obtained as 20.5.

Fig 9: Implementation of 32 bit Subtraction operation

4.3 Multiplication Unit
The single precision multiplication operation has been

implementation in modelsim is shown in figure 10. For inputs

in_sign1=1’b0,in_sign2=1’b0;in_exp1=8’b10000011,in_exp2

=8’b10000010,in_mant1=23’b00100,in_mant2=23’b001100

and the output obtained is out_sign=1’b0;out_exp=8’d131;

,out_mant=23’b00101011.

Fig 10: Implementation of 32 bit Multiplication operation

4.4 Division Operation
The single precision division operation has been

implementation in modelsim for the inputs, input1=32’d100

and input2=32’d36 which is shown in figure 11 for which

quotient has been obtained as 23’d2 and the remainder as

23’d28.

International Journal of Computer Applications (0975 – 8887)

National conference on VSLI and Embedded systems 2013

36

Fig 11: Implementation of 32 bit Multiplication operation

5. REFERENCES
[1] Rudolf Usselmann, “Open Floating Point Unit, The Free

IP Cores Projects”.

[2] Edvin Catovic, Revised by: Jan Andersson, “GRFPU –

High Performance IEEE754 Floating Point Unit”,

Gaisler Research, Första Långatan 19, SE413 27

Göteborg, and Sweden.

[3] David Goldberg, “What Every Computer Scientist

Should Know About Floating-Point Arithmetic”, ACM

Computing Surveys, Vol 23, No 1, March 1991, Xerox

Palo Alto Research Center, 3333 Coyote Hill Road, Palo

Alto, California 94304.

[4] Yu-Ting Pai and Yu-Kumg Chen, “The Fastest Carry

Lookahead Adder”, Department of Electronic

Engineering, Huafan University.

[5] S. F. Oberman and M. J. Flynn, “Division algorithms and

implementations,” IEEE Transactions on Computers,

vol. 46, pp. 833–854, 1997.

[6] Milos D. Ercegovac and Tomas Lang, Division and

Square Root: Digit-Recurrence Algorithms and

Implementations, Boston: Kluwer Academic Publishers,

1994.

[7] ANSI/IEEE Standard 754-1985, IEEE Standard for

Binary Floating-Point Arithmetic, 1985.

[8] Behrooz Parhami, Computer Arithmetic - Algorithms

and Hardware Designs, Oxford: Oxford University Press,

2000.

[9] Steven Smith, (2003), Digital Signal Processing-A

Practical guide for Engineers and Scientists, 3rd Edition,

Elsevier Science, USA.

[10] D. J. Bernstein. Multidigit Multiplication for

Mathematicians. Advances in Applied Mathemat-ics, to

appear

[11] A. Karatsuba and Y. Ofman. Multiplication of Multidigit

Numbers on Automata. Soviet Physics- Doklady, 7

(1963), 595-596.

[12] D. E. Knuth. The Art of Computer Programming.

Volume 2: Seminumerical Algorithms.Addison-Wesley,

Reading, Massachusetts, 3rd edition, 1997.

Yamin Li and Wanming Chu, “Implementation of Single

Precision Floating Point Square Root on FPGAs”, Proc

of FCCM’97, IEEE Symposium on FPGAs for Custom

Computing Machines, April 16 – 18, 1997, Napa,

California, USA, pp.226-232.

