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ABSTRACT 

To represent very large or small values, large range is 

required as the integer representation is no longer appropriate. 

These values can be represented using the IEEE-754 standard 

based floating point representation. This paper presents high 

speed ASIC implementation of a floating point arithmetic unit 

which can perform addition, subtraction, multiplication, 

division functions on 32-bit operands that use the IEEE 754-

2008 standard. Pre-normalization unit and post normalization 

units are also discussed along with exceptional handling. All 

the functions are built by feasible efficient algorithms with 

several changes incorporated that can improve overall latency, 

and if pipelined then higher throughput. The algorithms are 

modeled in Verilog HDL and have been implemented in 

ModelSim. 
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1. INTRODUCTION 
An arithmetic circuit which performs digital arithmetic 

operations has many applications in digital coprocessors, 

application specific circuits, etc. Because of the advancements 

in the VLSI technology, many complex algorithms that 

appeared impractical to put into practice, have become easily 

realizable today with desired performance parameters so that 

new designs can be incorporated [2]. The standardized 

methods to represent floating point numbers have been 

instituted by the IEEE 754 standard through which the 

floating point operations can be carried out efficiently with 

modest storage requirements,. 

The three basic components in IEEE 754 standard floating 

point numbers are the sign, the exponent, and the mantissa 

[3]. The sign bit is of 1 bit where 0 refers to positive number 

and 1 refers to negative number [3]. The mantissa, also called 

significand which is of 23bits composes of the fraction and a 

leading digit which represents the precision bits of the number 

[3] [2]. The exponent with 8 bits represents both positive and 

negative exponents. A bias of 127 is added to the exponent to 

get the stored exponent [2]. Table 1 show the bit ranges for 

single (32-bit) and double (64-bit) precision floating-point 

values [2].  

The value of binary floating point representation is as follows 

where S is sign bit, F is fraction bit and E is exponent field. 

Value of a floating point number= (-1)S  x val(F) x 2val(E) 

 

 

 

 

Table 1. Bit Range for Single (32-bit) and Double (64-bit) 

Precision Floating-Point Values [2] 

 Sign Exponent Fraction Bias 

Single 

precision 

1[31] 8[30-23] 23[22-00] 127 

Double 

precision 

1[63] 11[62-52] 52[51-00] 1023 

 

There are four types of exceptions that arise during floating 

point operations. The Overflow exception is raised whenever 

the result cannot be represented as a finite value in the 

precision format of the destination [13]. The Underflow 

exception occurs when an intermediate result is too small to 

be calculated accurately, or if the operation's result rounded to 

the destination precision is too small to be normalized [13] 

The Division by zero exception arises when a finite nonzero 

number is divided by zero [13]. The Invalid operation 

exception is raised if the given operands are invalid for the 

operation to be performed [13].In this paper ASIC 

implementation of a high speed FPU has been carried out 

using efficient addition, subtraction, multiplication, division 

algorithms. Section II depicts the architecture of the floating 

point unit and methodology, to carry out the arithmetic 

operations. Section III presents the arithmetic operations that 

use efficient algorithms with some modifications to improve 

latency. Section IV presents the results that have been 

simulated in ModelSim. Section V presents the conclusion.  

2. ARCHITECTURE AND 

METHODOLOGY 
The FPU of a single precision floating point unit that performs 

add, subtract, multiply, divide functions is shown in figure 1 

[1]. Two pre-normalization units for addition/subtraction and 

multiplication/division operations has been given[1]. Post 

normalization unit also has been given that normalizes the 

mantissa part[2]. The final result can be obtained after post-

normalization. To carry out the arithmetic operations, two 

IEEE-754 format single precision operands are considered. 

Pre-normalization of the operands is done. Then the selected 

operation is performed followed by post-normalizing the 

output obtained .Finally the exceptions occurred are detected 

and handled using exceptional handling. The executed 

operation depends on a two bit control signal (z) which will 

determine the arithmetic operation is shown in table 2. 
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Fig 1: Block diagram of floating point arithmetic unit [1] 

Table 2. Floating Point Unit Operations  

z(control signal) Operation 

2’b00 Addition 

2’b01 Subtraction 

2’b10 Multiplication 

2’b11 Division 

 

 

3. 32 BIT FLOATING POINT 

ARITHMETIC UNIT 

3.1 Addition Unit 
One of the most complex operation in a floating-point unit 

comparing to other functions which provides major delay and 

also considerable area. Many algorithms has been developed 

which focused to reduce the overall latency in order to 

improve performance. The floating point addition operation is 

carried out by first checking the zeros, then aligning the 

significand, followed by adding the two significands using an 

efficient architecture. The obtained result is normalized and is 

checked for exceptions. To add the mantissas, a high speed 

carry look ahead has been used to obtain high speed. 

Traditional carry look ahead adder is constructed using AND, 

XOR and NOT gates. The implemented modified carry look 

ahead adder uses only NAND and NOT gates which decreases 

the cost of carry look ahead adder and also enhances its speed 

also [4]. 

The 16 bit modified carry look ahead adder is shown in figure 

2 and the metamorphosis of partial full adder is shown in 

figure 3 using which a 24 bit carry look ahead adder has been 

constructed and performed the addition operation.  

 

Fig 2: 16 bit modified carry look ahead adder [4] 

 

Fig 3: Metamorphosis of partial full adder [4] 

3.2 Subtraction Unit 
Subtraction operation is is implemented by taking 2’s 

complement of second operand. Similar to addition operation, 

subtraction consists of three major operations, pre 

normalization, addition of mantissas, post normalization and 

exceptional handling[4]. Addition of mantissas is carried out 

using the 24 bit modified carry look ahead adder . 

3.3 Multiplication  
Constructing an efficient multiplication module is a iterative 

process and 2n-digit product is obtained from the product of 

two n-digit operands. In IEEE 754 floating-point 

multiplication, the two mantissas are multiplied, and the two 

exponents are added. Here first the exponents are added from 

which the exponent bias (127) is removed. Then mantissas 

have been multiplied using feasible algorithm and the output 

sign bit is determined by exoring the two input sign bits. The 

obtained result has been normalized and checked for 

exceptions.  

To multiply the mantissas Bit Pair Recoding (or Modified 

Booth Encoding) algorithm has been used, because of which  

the number of partial products get reduces by about a factor of 

two, with no requirement of pre-addition to produce the 

partial products. It recodes the bits by considering three bits at 

a time. Bit Pair Recoding algorithm increases the efficiency of 

multiplication by pairing. To further increase the efficiency of 

the algorithm and decrease the time complexity, Karatsuba 

algorithm can be paired with the bit pair recoding algorithm. 

One of the fastest multiplication algorithm is Karatsuba 

algorithm which reduces the multiplication of two n-digit 

numbers to 3nlog32 ~ 3n1.585 single-digit multiplications and 

therefore faster than the classical algorithm, which requires n2 

single-digit products [11]. It allows to compute the product of 

two large numbers x and y using three multiplications of 

smaller numbers, each with about half as many digits as x or 
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y, with some additions and digit shifts instead of four 

multiplications[11]. The steps are carried out as follows 

Let x and y be represented as n-digit numbers with base B and 

m<n. 

x = x1Bm + x0 

y = y1Bm + y0 

where x0 and y0 are less than Bm  [11]. The product is then 

xy = (x1Bm + x0)(y1Bm + y0)= c1B2m + b1Bm + a1 

Where c1 = x1y1  

b1 = x1y0+ x0y1 

a1 = x0y0. 

b1 = p1- z2 - z0 

p1 = (x1 + x0)(y1 + y0) 

Here c1, a1, p1 has been calculated using bit pair recoding 

algorithm. Radix-4 modified booth encoding has been used 

which allows for the reduction of partial product array by half 

[n/2]. The bit pair recoding table is shown in table 3. In the 

implemented algorithm for each group of three bits (y2iþ1, 

y2i, y2i_1) of multiplier, one partial product row is generated 

according to the encoding in table 3. Radix-4 modified booth 

encoding signals and their respective partial products has been 

generated using the figures 4 and 5. For each partial product 

row, figure 4 generates the one, two, and neg signals. These 

values are then given to the logic in figure 5 with the bits of 

the multiplicand, to produce the whole partial product array. 

To prevent the sign extension the obtained partial products are 

extended as shown in figure 6 and the the product has been 

calculated using carry save select adder. 

Table 3. Bit-Pair Recoding [11] 

BIT 

PATTERN 

 OPERATION 

0        0     0 NO 

OPERATION 

 

0        0     1 1xa prod=prod+a; 

0        1     0 2xa-a prod=prod+a; 

0        1     1 2xa prod=prod+2a; 

1        0     0 -2xa prod=prod-2a; 

1        0     1 -2xa+a prod=prod-a; 

1        1     0 -1xa prod=prod-a; 

1        1     1 NO 

OPERATION 

 

 

 

Fig 4: MBE Signal Generation [10] 

 

Fig 5: partial product generation [10] 

 

Fig 6: Sign Prevention Extension of Partial Products [10] 

3.4 Division Algorithm 
Division is the one of the complex and time-consuming 

operation of the four basic arithmetic operations. Division 

operation has two components as its result i.e. quotient and a 

remainder when two inputs, a dividend and a divisor are 

given. Here the exponent of result has been calculated by 

using the equation, e0 = eA – eB + bias (127) -zA + zB 

followed by division of fractional bits [5] [6]. Sign of result 

has been calculated from exoring sign of two operands. Then 

the obtained quotient has been normalized [5] [6].  

Division of the fractional bits has been performed by using 

non restoring division algorithm which is modified to improve 

the delay. The non-restoring division algorithm is the fastest 

among the digit recurrence division methods [5] [6]. 

Generally restoring division require two additions for each 

iteration if the temporary partial remainder is less than zero 

and this results in making the worst case delay longer[5] [6]. 

To decrease the delay during division, the non-restoring 

division algorithm was introduced which is shown in figure 7. 

Non-restoring division has a different quotient set i.e it has 

one and negative one, while restoring division has zero and 

one as the quotient set[5] [6] Using the different quotient set, 

reduces the delay of non-restoring division compared to 

restoring division. It means, it only performs one addition per 

iteration which improves its arithmetic performance[6]. 

The delay of the multiplexer for selecting the quotient digit 

and determining the way to calculate the partial remainder can 

be reduced through rearranging the order of the computations. 

In the implemented design the adder for calculating the partial 

remainder and the multiplexer has been performed at the same 

time, so that the multiplexer delay can be ignored since the 

adder delay is generally longer than the multiplexer delay. 

Second, one adder and one inverter are removed by using a 

new quotient digit converter. So, the delay from one adder and 

one inverter connected in series will be eliminated. 
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Fig 7: Non Restoring Division algorithm 

 

4. RESULTS 

4.1 Addition Unit 
The single precision addition operation has been 

implementation in modelsim for the inputs, input1=25.0 and 

input2=4.5 which is input2=4.5 shown in figure 8 for which 

result has been obtained as 29.5 

 

Fig 8: Implementation of 32 bit Addition operation 

4.2 Subtraction Unit 
The single precision addition operation has been 

implementation in modelsim for the inputs, input1=25.0 and 

input2=4.5 which is shown in figure 9 for which result has 

been obtained as 20.5. 

 

Fig 9: Implementation of 32 bit Subtraction operation 

4.3 Multiplication Unit 
The single precision multiplication operation has been 

implementation in modelsim is shown in figure 10. For inputs 

in_sign1=1’b0,in_sign2=1’b0;in_exp1=8’b10000011,in_exp2

=8’b10000010,in_mant1=23’b00100,in_mant2=23’b001100 

and the output obtained is out_sign=1’b0;out_exp=8’d131; 

,out_mant=23’b00101011.  

 

Fig 10: Implementation of 32 bit Multiplication operation 

4.4 Division Operation 
The single precision division operation has been 

implementation in modelsim for the inputs, input1=32’d100 

and input2=32’d36 which is shown in figure 11 for which 

quotient has been obtained as 23’d2 and the remainder as 

23’d28.  
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Fig 11: Implementation of 32 bit Multiplication operation 
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