
MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

36

Adapting some Rules and Principles of TPS (Toyota
Production System) to Software Development

S.R. Subramanya

School of Engineering, Technology, and Media
National University, San Diego, CA

ABSTRACT

The Toyota Production System (TPS) has been widely studied

and copied by various companies to improve several of their

processes. However, many of them have not been successful

due to the fact that only the tools and tactics have been

focused and the core underlying principles have been

overlooked. There are examples of a few companies which

have achieved cost savings and operational efficiencies by

applying the TPS principles. TPS principles have also had

significant influence on lean software development. In this

paper, we present the adoption and adaptation of the spirit

behind some of the principles from TPS to the software

development process in a mobile phone software development

scenario.

General Terms

Software Development, Lean Principles.

Keywords

Software Development, Toyota Production System, Lean

Software Development.

1. INTRODUCTION
The Toyota Production System (TPS), which has enabled

Toyota to outperform its competitors in quality, reliability,

production, cost reduction, and growth, has been attributed to

Taiichi Ohno for developing and systematizing the principles

therein [1]. The TPS, its principles, and the underlying

scientific method were never designed consciously or

imposed upon. They grew naturally over time out of workings

of the company. One of the striking features of the TPS is the

continuous improvement of processes. The improvements are

very many and each improvement is small and highly focused

to a small operation, and these improvements are quickly tried

out and incorporated. The TPS has been widely studied by

industrialists, executives, researchers, and journalists (ex. [2],

[3], [4], [5]). The book Lean Thinking [6] was popular and

introduced some Toyota ideas to a much wider audience.

Several companies have studied and tried to copy the TPS, but

have not been successful. One of the reasons attributed to this

is that they have focused on the tools and tactics of TPS

without focusing on the basic set of operating principles. In

the TPS, the people bring the system to life by working,

communicating, resolving issues, and growing together [2].

There have also been a few companies which have adapted

the basic principles of TPS to their advantages, by focusing on

some of the core principles.

Any changes and improvements done using the TPS are based

on sound scientific methods. They are made using rigorous

problem solving processes. The changes and improvements

are clearly specified, which is as if a set of hypothesis is

established which is then tested. The experiment is carefully

planned to carry out the test of hypothesis. Without the

scientific methods, the changes and improvements would be

more of random trials and errors.

There have been a few studies and experiments to adapt the

TPS to software development, and the earliest among them

are [7] and [8]. It is reported in [8] that the concepts of TPS

such as elimination of waste, leveled production, and

automatic detection of abnormal conditions were adapted

which resulted in significant improvements in both of their

processes and organizational climate. Several work also trace

the concepts of lean software develop to lean manufacturing

arising out of TPS.

An experiment was performed to adapt several of the rules

and principles of TPS to the mobile phone (feature phones,

not smart phones) software development process with the

objective of improving the software development process and

improving the quality of software. Since the results are

proprietary, this paper presents the results of the study,

observations, and recommendations. It also presents

qualitative descriptions of outcomes, as appropriate.

In this paper, we consider four „rules‟ in TPS – three of these

are design rules, and one is an improvement rule. We believe

that the spirit behind several of the core principles of TPS

could be used to benefit any process. The software

development process has several radically different

characteristics compared to a manufacturing process. Despite

this, the spirit of these TPS rules could be adapted and

adopted to improve software development practices. We first

describe the adaptation of the four TPS rules for improving

software development. Subsequently, we describe several

other best practices that could be used to improve the software

development process.

In the next section we present some background of mobile

(feature) phone software and development scenario, and

motivation for this work. Sections 3 and 4 describe

respectively, the adaptation of some of the TPS rules and TPS

principles. This is followed by conclusions.

2. BACKGROUND
The mobile phones industry is fast-paced and highly

competitive. Newer models with ever expanding and

improving features need to be introduced by mobile phone

vendors for survival in the marketplace. Software for the

newer phone models, as well as software updates, must be

deployed in quick succession, without compromising quality

and with low software maintenance costs.

The mobile phone software is highly complex and would

necessarily have to deal with bugs. The code base for a typical

mobile (feature) phone consists of about 12,000 source files,

with about 40% of them being header files and resource files.

The software development for a mobile phone seldom starts

from scratch. The broad process usually involves starting

from a baseline code of a similar model and then adding new

features/functionalities and/or customizing existing features/

functionalities. Innovative software development processes

which improve the quality in a cost-effective way, reduce

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

37

development times, and lower maintenance costs are highly

desirable. Recently, several studies are being conducted in

the mobile software reliability domain (a couple of examples

being [9], [10]).

The study of this paper dealt with the software development

scenario wherein (a) the UI (user interface) or feature of a

given phone model of a particular operator had to be

customized for the same or similar hardware but for a

different operator, (b) the UI or feature had to be adapted for a

similar but different phone model for the same operator, (c)

new feature(s) had to be developed for a given model. In this

scenario, the actual implementation of a new feature spanned

2–6 weeks, whereas the subsequent addressing of bugs, and

modifications due to some changes in the requirements were

done over a period of about 12–15 weeks. Thus the better part

of developers‟ times were spent in fixing bugs as opposed to

the actual development. It was our belief that by adapting TPS

rules and principles to the software development process, the

software development could be done in lesser time with

higher quality and less cost.

The significant phases of any software development project

are: (a) requirements acquisition, (b) requirements analysis,

(c) specification, (d) design, (e) development, (f) testing, and

(g) deployment and maintenance. Irrespective of the

development model (waterfall model, spiral model, etc), these

phases have to be executed.

2.1 Major differences between

manufacturing and software development
Since TPS basically arose in the manufacturing domain, in

order to adapt it to the software development, we need to look

at their basic characteristics in order to understand and

strategize the adaptation of TPS rules and principles. Some of

the major characteristics are given Table 1 below.

Table 1. Some of the major characteristics of

manufacturing and software development

Manufacturing Software Development

Several automated processes. Highly human-intensive.

Well-define engineering

methodologies. For example,

an engineering drawing for a

component is unambiguous

and would have the same

interpretation.

Immature engineering

methodologies (more of

craft). For example, the

requirements are often

ambiguous and subject to

different interpretations by

different people.

Almost every quantity is

measurable using

standardized techniques and

instruments.

Most quantities defy

accurate and standardized

measurements. There is

lack of metrics and

effective techniques for

such measurements.

Long history. Relatively short history.

Linear scaling in complexity. Super-linear (quadratic)

scaling in complexity.

Failures (wear/tear) of

machines well studied

(MTTF, MTBF).

Bugs crop up unexpectedly;

Time to fix bugs is hard to

determine.

Fixes for faults are highly

localized.

Fixes for bugs tend to have

side effects.

Time to fix a problem after

detection is well

defined/estimated.

Time to fix a bug after

detection is not well

defined.

Individual quality-tested

components when put

Individual tested modules

(components) when put

together, would (almost

always) result in a working

subsystem.

together, would (almost

always) fail integration

tests.

In order to adapt some of the efficiency-improving practices

in manufacturing to software development, it is important to

identify the components of software development which are

repetitive and make them amenable for measurements and

automation.

3. ADAPTING SOME TPS RULES
In this paper, we focus on a few of the TPS rules and a few of

the TPS principles and present our analyses on how to adopt

them in the software development process.

3.1 TPS rules
First, we will consider four rules in TPS – (1) how people

work; (2) how people connect; (3) how the production line is

constructed; (4) how to improve. These rules are concisely

presented in Figure 1 below, followed by brief descriptions.

Fig 1: Four of the TPS rules

1. How people work: All work is decomposed into fine-

grained activities, each of which is highly specified with

respect to content, sequence, timing, and outcome. This

ensures that the outcome of each activity is highly consistent

irrespective of the person performing it. This principle is

applied not just to the repetitive activities, but to the activities

of all the people irrespective of their functional specialty or

hierarchical role. The detection of any deviation from

performing any of the activities which have been so clearly

laid out in detail would become easier and corrective action

could be taken quickly. If the deviations occur frequently,

then the process is redesigned.

2. How people connect: Person-to-person communications

are standardized, direct, and unambiguous, with no gray

zones. This makes the requests for goods, services, and

assistance very clear with regard to how to make requests, to

whom to make requests, when to make requests. Also, it is

clear as to who provides the services, to whom, and when.

3. How the production line is constructed: Pathway of every

product and service is simple and direct. Generally, there are

no forks and loops to convolute simple paths. This principle is

also applicable to services (e.g. help requests) as well. One

important thing to note in the flow is that the product does not

go to the next available machine, but rather to a specific

machine down the path. Similarly, the service will not come

from the first available person, but rather from a specific

person. Although the products (and services) flow in simple,

well-defined paths, the production line is flexible – the paths

accommodating many different types of products.

4. How to improve: The first step in improvement is to

identify problems and to look for opportunities for

improvements. People are explicitly taught how to improve, in

addition to learning from personal experience. The

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

38

improvements are made according to scientific principles at

the lowest possible level in the organization under guidance of

a teacher. An improvement effort is designed as an

experiment with an explicit, clearly specified, and verifiable

hypothesis (“If the following specific changes are made, we

can expect to achieve this specific outcome”).

3.2 Adaptation of TPS rules
In this section, we describe how to adapt the TPS rules to

software development practices. In Tables 2a – 2d, we present

the current (general) practices in software development in the

realm of the four rules of TPS outlined above, and then

describe the corresponding proposed practices which

incorporate the spirit of the TPS rules.

Table 2a. Current and proposed practices related to “how people work”

How people work

Current practice Proposed practice

Many times customer requirements are written down in

detail at the beginning of the project. However, most

changes to specifications in the later stages seem to be less

detailed and formal. Often times, it may be just a few emails

and/or notes from phone or oral discussions. This leads to

semantic gaps between the customer and the project leader,

as well as between the project leader and team members.

Any changes in the requirements are clearly written down

(documented), and then communicated to the team members. This

reduces gaps in communications and understanding, and avoids re-

work (which is waste) later in the project. The effort / time in clearly

writing/documenting the changes would pay back (several times

over) over the lifetime of he project.

Specifications from the project manager to team members

are informal or absent.

Project manager decomposes the customer‟s requirements

specifications into smaller chunks and writes a concise description

for each of them. This can be done in collaboration with the team

members. Breakdown the functionalities to as low level as possible,

while clearly describing each functionality at every level

Specifications of work shared / work dependencies among

team members are either informal or absent, due to lack of

any standardized way.

Any significant interactions, work sharing, and dependencies among

team members should be clearly laid out and documented.

Documentation of the progress of work by team members is

absent.

At the beginning, each team member writes a 1-page description

(text + figure) of the finer details of the functional and interface

requirements of the component that one is responsible for. The

textual descriptions should be put in the code as comments (just cut-

n-paste), with some key-words (for quick searching). Any changes in

the implementation are documented.

Note: the documentations need to be concise and clear, not too

verbose or elaborate.

Recommendation: A simple, standardized format should be developed for the various documentations. There could be a central

„scribe‟. All descriptions from project manager and team members are rough but complete and communicated to the scribe. Scribe

converts them to a concise, clearly specified document. This provides uniformity and single style, and saves reading time.

Table 2b. Current and proposed practices related to “how people work”

How people connect

Current practice Proposed practice

The „project leader – team members‟

communications is primarily via meetings,

emails, and phone calls. There is virtually no

written documentation.

Project leader – team members

Meetings, Emails, Phone calls, Clear and concise (1-2 pages) written

documentation of functionality, interface requirements expected from team

members

Among team members:

Emails, Phone calls, Discussions, Practically no

written, descriptive communication

Among team members

Emails, Phone calls, Discussions, Clear and concise (1-2 pages) written

descriptive communication

Note: The written communications are only for significant and non-trivial

requirements/change communications

Recommendation: The written communications should not be too many, rather only for significant and non-trivial ones. Written

communications have several advantages. While writing, several hidden aspects of design/change may emerge. It facilitates clear

articulation of ideas and tasks to be performed. It overcomes several inherent ambiguities of oral/email communications. Over the

life of the project, it saves tremendous time lost due to miscommunications and re-work. It also serves as a good documentation

during the project life cycle, post-delivery, and also perhaps for other projects

Table 2c. Current and proposed practices related to “product line construction”

Production line construction

Current practice Proposed practice

Work to be done is partitioned

into modules. Modules assigned

to team members.

Divided the modules further into finer grained components. Look for opportunities of

independent development of components. This increases concurrent development; decreases

sequentiality and dependencies. Independent components could be distributed among team

members for development and then combined together. Thus, work could be more balanced

among team members.

Team members work on their Develop precise interface requirements between components and between modules. Testing of a

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

39

assigned modules. Team

members perform unit tests on

their modules.

component or module can proceed even when other components or modules on which it depends

are not ready, by use of suitable „stubs‟.

Test engineers perform system /

integration tests when a

workable system is ready.

By making complete releases very frequently, albeit with smaller sets of features, the integration

tests can be performed almost continuously. Thus, a working product (although with limited

features) is always available.

Recommendation: Frequent builds have to go together with „smoke tests‟. The smoke test need not be exhaustive, but it should be

capable of exposing major bugs. Frequent builds and integration tests have several advantages. Generally debugging would take

longer if the integration occurred later. They facilitate quality problems to be kept under check. They enable location of the bugs

more easily since not many changes would have occurred between successive builds where the bugs appear.

Table 2d. Current and proposed practices related to “how to improve”

How to improve

Current practice Proposed practice

Occasional code improvements Continuous code improvements – develop a methodology for code improvement on a regular or

need basis. For example, code/algorithm improvements to improve the response times or battery

power

Lack of rigorous principles Develop scientific principles – based on Computer Science and Software Engineering. For

algorithmic improvements, it is easy to analyze the improved algorithm and estimate the

improvements. Thus the improvements can be formulated as hypothesis. Tools and metrics

should be used for measuring improvements. Design suitable experiments under which

hypotheses are tested

Manager – team-member

relationship

Teacher / Tutor guidance is used to teach the skills required to look for (a) opportunities for

improvements, (b) developing experiments / schemes for improvements, and (c) implementing

the improvements (Doesn‟t teach any particular improvement to a component)

Inadequate grass roots

participation in improvements

Foster a culture of participation in continuous improvements (competitions, incentives, rewards)

at the lowest possible level in the organization. (Managers act as tutors and facilitators)

Recommendation: Develop appropriate development methodology incorporating sound scientific/engineering principles. Institute

some form of incentives for product / process improvements.

4. ADAPTING SOME TPS PRINCIPLES

4.1 Some principles of the TPS
Some of the major principles (elements) of the TPS which are

relevant to software development process are given in this

section.

Elimination of waste. This is one of the main themes of TPS.

Many of the tools and techniques are focused on this

principle. The broad definition of waste is “anything other

than the minimum amount of equipment, space, and worker‟s

time, which are not absolutely essential to add value to the

product” (Fujio Cho, President, Toyota).

Kaizen. „Kaizen‟ refers to „continuous improvement‟. The

basis for this principle is that a large number of small

improvements in processes are easier to implement and would

have a significant cumulative effect than a few large-scale

improvements.

Jidoka. This refers to the stopping the assembly line when a

problem is encountered at any workstation, so that the

problems do not propagate. The cause of the problem is

detected and immediate and permanent solutions are put in

place.

Mixed model production. This refers to the practice of

building multiple models on the same assembly line

simultaneously, rather than in large batches.

Pokayoke. This refers to the use of a variety of devices and

techniques to prevent the occurrence of defects. (ex. using an

attachment to gasoline tank cap to prevent it from being lost).

Heijunka. This refers to „leveled production‟ – the

distribution of work and exchange of knowledge. This ensures

that all the employees engaged in the production of a product

have about the same share of work and about the same level

of knowledge about the work.

Work standardization. This refers to the development of

specifications for the exact manner of performing a task and

adhering to it. This ensures that workers execute their tasks in

a well-defined manner and results in variations in different

work methods.

Design of experiments for improvements. The proposed

improvements to a process are designed as experiments with a

explicit, clearly specified, and verifiable hypotheses (“If the

following specific changes are made, we can expect to

achieve this specific outcome”).

4.2 Adapting some of the principles of the

TPS to software development
A summary of the adaption of several TPS principles

(elements) to the domain of software development is given in

Table 3 below. The columns of the matrix give the stages in

software development process, while the rows give the

principles of TPS. The cells briefly outline how a particular

TPS principle is adopted to a given software development

stage.

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

40

Table 3. Some of the TPS principles adapted to software development stages

 Requirements

Analysis /

Specification

Design

Development

Testing

Maintenance

Elimination of

waste

Get as clear requirements

as possible using

standard/known templates,

as applicable. Develop

precise specifications.

Iterate quickly before

moving to development.

Design

reusable

components.

Develop reusable

code; Automate

repetitive work;

Eliminate re-work.

Design test cases

judiciously.

Focus on the 20%

which cause 80%

of the faults.

Develop and

maintain clear error

logs and update /

maintenance

documents.

Kaizen

(continuous

improvement)

Develop more precise

requirements / specs

learning from past

mistakes

Use frequent

design reviews

and

improvements

Frequent code

refactoring.

Perform

regression test

even when a

small feature is

implemented.

Incorporate lessons

learnt from previous

upgrades into

current/future cycles

Jidoka

(automatic error

detection and

stopping

propagation)

Eliminate / minimize

ambiguous specifications

as early as possible.

Design review:

early

prevention of

errors getting

into code.

Code review: early

prevention of error

propagation in later

versions.

Reexamine

requirements /

specs and/or

design upon

serious errors.

Go back to redesign

as applicable.

Proactively examine

similar models

based on the same

baseline.

Mixed model

production

Maintain a document with

differences between

similar models based off

of the same baseline

(Delta document)

Design for

„device

independence‟

/ support for

heterogeneity.

Use of „code

guards‟ for

conditional

compilation;

Parameterize device

specific

characteristics (ex.

LCD size).

Effectively use

test

schemes/cases of

previous models

for current

models based off

of the same

baseline.

Design / schedule

upgrades for models

suitably (ex.

batching models

using same

baseline).

Heijunka
(„leveled

production‟ – the

distribution of

work and

exchange of

knowledge)

Make use of team

members from different

groups (ex. Applications,

Firmware, UI, etc.) of the

same project to gather the

related requirements.

Decompose

modules into

smaller

components so

that more

people can

concurrently

work on bigger

modules.

Concurrent

development of

several modules

with well-defined

interfaces by many

teams.

Develop a

distributed test

plan for

concurrent

testing, taking

into account the

interactions

among modules.

Decompose the

upgrade /

maintenance into

independent tasks

which can be

carried out

concurrently.

Work

standardization

Use formal models (ex.

UML).

Use standard

design

templates

(STL) and

design patterns

as much as

possible.

Develop and adopt

standardized

programming

methods (Norms on

function sizes,

naming

conventions, inter-

module

communications,

documentation, etc).

Use standardized

testing

procedures.

Develop and use

standardized

upgrade /

maintenance

procedures.

5. CONCLUSIONS
The Toyota Production System (TPS) has been widely studied

and copied by various companies to improve several of their

processes. TPS principles have also had significant influence

on lean software development. This paper presented the

adoption and adaptation of the spirit behind some of the rules

and principles in TPS to the software development process in

a mobile phone software development scenario. The results

were quite positive with better use of developer times, smaller

turn-around times, and better quality.

6. REFERENCES
[1] T. Ohno 1998. Toyota Production System: Beyond Large

Scale Production. Productivity Press

[2] J. Liker. 2004. The Toyota Way, McGraw-Hill.

[3] Hino, S. 2006. Inside the Mind of Toyota: Management

Principles for Enduring Growth, Productivity Press.

[4] J. Liker and J. Morgan. 2006. The Toyota Product

Development System, Productivity Press.

[5] S. Spear and H.K. Bowen. 1999. Decoding the DNA of

the Toyota Production System. Harvard Business

Review. (Sep. – Oct. 1999) 96–106.

[6] J. Womack and D. T. Jones. 1996. Lean Thinking, Free

Press.

[7] T. Sekimura and T. Maruyama. 2006. Development of

Enterprise Business Application Software by Introducing

Toyota Production System. Fujitsu Sci. Tech. J. 42(3),

407–413.

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

41

[8] K. Furugaki, et. al. 2007. Innovation in Software

Development Process by Introducing Toyota Production

System. Fujitsu Sci. Tech. J. 43(1), 139–150.

[9] S. Malek, et. al. 2009. Improving the reliability of

mobile software systems through continuous analysis and

proactive reconfiguration. International Conference on

Software Engineering, May 2009 (Companion Volume

978-1-4244-3495-4).

[10] S.R. Subramanya. 2011. Analysis of Some of the Root

Causes of Bugs in a Mobile Phone Software

Development Environment. International Conference on

Computer Applications in Industry and Engineering,

Honolulu, HI, Nov. 2011, 210–215.

