
MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

1

An Approach for Load Balancing using Process
Migration in Parallel System

Chandu Vaidya

M-Tech (2
nd

 Year) RKNEC Nagpur (INDIA), WCE
Sangli (INDIA)

 M.B. Chandak

H.O.D. RKNEC, NAGPUR (INDIA)

ABSTRACT
Given paper contain proposed approached for task scheduling

to achieve load balancing which is done on a group of

computers. Consideration of process data part by dividing them

into number of fixed part & merge into single set that as good

as previous original data set. Parallelism an approach for doing

jobs in amount of time i.e. very fast. The paper contains

dynamic approach for process migration using thread level

paradigm. Creating a thread of process into number of task, that

leads to reduce total execution time of process. An algorithm is

used to calculate PCB for decision purpose to achieve load

balancing. We are taking CPU and MEMORY parameter in this

approach. Fair share approach is considered to allocating task to

every processor using preemption strategy. The MPI is used for

process communication. This system has defined to reduce total

execution time on onboard & between board times. Open

knoppix & MOSIX platform (Middleware) are used to show the

results. Prime number calculation code is used to show parallel

architecture like SIMD computer. Cluster computing is way of

resource managing & scheduling strategy.

General Terms

Cluster server, Middleware, Node, Resources.

Keywords
Cluster computing, MOSIX, MPI, load balancing, threads, Task

load. Onboard-time, betweenbord time.

1 INTRODUCTION
The objective is to develop an algorithm for load sharing by

inducing parallelism (granular programming)[6]mechanism on

a group of interconnected machines. This algorithm is useful

only when the cost factor can be underestimated when

compared to time. The algorithm developed should be smart

enough to migrate thread to other node in the cluster [3] only

when the time requirement for completion of process can be

reduced by doing so. Traditionally, computer software has been

written for serial computation. To solve a problem, an algorithm

is constructed and implemented as a serial stream of instruction.

These instructions are executed on a CPU on one computer.

Only one instruction may execute at a time after that instruction

is finished, the next is executed. If load increase or more load is

given the time requirement for execution will be more. For

reducing the execution time to get output concept of Parallel

Computing arises. Parallel computing uses multiple processing

elements simultaneously to solve a problem. This is

accomplished by breaking the problem into independent parts

so that each processing element can execute its part of the

algorithm with the others. A computer cluster is a group of

linked computers, working together closely thus in many

respects forming a single computer. The components of a

cluster are commonly, but not always, connected to each other

through fast LAN. Clusters are usually deployed to improve

performance and availability over that of a single computer,

while typically being much more cost-effective than single

computers of comparable speed or availability. Load balancing

[1][2]is when multiple computers are linked together to share

computational workload or function as a single virtual

computer. Logically, from the user side, they are multiple

machines, but function as a single virtual machine. Requests

initiated from the user are managed by, and distributed among,

all the standalone computers to form a cluster. This results in

balanced computational work among different machines,

improving the performance of the cluster systems. Scheduling

refers to the way processes are assigned to run on the available

CPUs. This assignment is carried out by software known as

scheduler and dispatcher. Scheduler and dispatcher operate with

the help of a software known as middleware’s. Middleware is

computer software that connects software components or people

and their applications. The software consists of a set of services

that allows multiple processes running on noe or more machines

to interact. The middleware we are using is MPICH2. MPICH2

is an high performance and widely portable implementation of

the Message Passing Interface standard. It efficiently support

different computation and communication platforms including

commodity clusters, SMPs, massively parallel systems and

high-speed networks.

2 BACKGROUND
This system is refined from the concept of executing of tasks

using single processor. Uniprocessor system functioning

includes preemptive scheduling scheme. We change this by

using multiple processors to execute a particular task in

proportional manner to reduce time to execute the task in

relatively short time. The processors are connected with each

other in a Cluster, such that it is viewed as a single coherent

entity .Non-preemptive scheduling scheme is used for this

project. This improves the performance of execution of tasks as

compared to earlier type. This project uses fair scheduling

approach for providing fair access to users. This system is

an example of a distributed system [8]. This project is a

scheduling system that provides allocation of system resources

of one or more processor sets among groups of processes. Each

of the process groups is assigned a fixed number of shares,

which is the number that is used to allocate system resources

among processes of various process groups within a given

processor set. The described fair share scheduler considers each

processor set to be a separate virtual computer.

Cluster computing[9][10] (or the use of computational Clusters)

is the application of several computers to a single problem at

the same time usually to a scientific or technical problem that

requires a great number of computer processing cycles or access

to large amounts of data. A Cluster can provide significant

processing power for users with extraordinary needs. Animation

software, for instance, which is used by students in the arts,

architecture, and other departments, eats up vast amounts of

processor capacity.

Description:

The main function of client/user is to submit the process in the

process pool related with a processor. The processes in the

process pool are waiting for the execution. From these

processes the higher priority process is selected by using the

appropriate scheduler and is given to the Cluster server. The

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

2

process division is a function that divides the process into the

pieces or threads.

Fig-Overall model.

Thread distribution distributes these threads proportionally

among the several nodes in the Cluster network [10]. Thread

execution is a function that executes each thread independently

on different nodes. The threads are executed using Fair-Share

Scheduling[20]. It allocates equal CPU time for each node.

While executing threads, the resources required for the

execution of that thread on the node, the load on the node and

the complexity of each threads are taken into account. Each

node may require same or different resources for the execution

of the thread. These resources must be provided to each node.

Above simple model(fig) show the general idea regarding

project. Finally the output from each node is combined and the

final output is given to the Cluster server.

2.1 Related Work
Migration can be achieved at various levels in a system. It can

be implemented in the operating system, as was the case with

many monolithic operating systems, such as MOS(IX) [7][8],

Locus [12], Sprite [11],etc. Then there are examples of

migration for microkernel’s, such as the V kernel [13] and

Mach [14] There are also examples of user level migration

implementations such as in Condor [15], and on top of UNIX

[12][16]. In these systems, migration was designed outside of

the kernel, independent of applications.

Plenty of researchers have proposed and most of the, has been

implemented scheduling algorithms [17], [18], [19] for parallel

and distributed systems, Cluster computing, as well as for Grid

computing environment. For a dynamic load-balancing

algorithm, it is unacceptable to frequently exchange state data

because of the high overheads. In order to reduce the total

execution time among cluster. Proposed a decentralized load-

balancing algorithm for a cluster environment. Although this

work attempts to include the communication time between two

nodes during the scheduling process on their model, it did not

consider the actual cost for a job transfer. Our approach takes

the job migration cost into account for the load-balancing

decision. A sender processor collects status information about

neighboring processors by communicating with them at every

load-balancing instant. This can lead to frequent message

transfers among the node.

3 IMPLEMENTATION
Implementation purpose some steps are considered to achieve

this project, which are as follows.

3.1 BASIC STEPS

3.1.1 CLUSTERING/HIGH PERFORMANCE
It’s first step in our project in which we are going to deal with

cluster computing i.e. connect more than one computer

together to perform high performance task .the main purpose of

cluster computing is resource utilization, where applications

have traditionally used parallel or distributed computing

platforms. Simple LAN and Cluster are two different things that

are application specific. High performance clusters, which are

also referred to as computational cluster systems. These systems

are normally utilized to support very large data volumes (of

computational processing). In such an environment, a parallel

file system distributes the processing resources across the

nodes, Load balancing clusters distribute the workload as

evenly as possible across multiple server or small computer

systems, such as web or application servers, respectively.

OpenMOSIX [7], [8] was a free cluster management system

that provided single-system image (SSI) capabilities, e.g.

automatic work distribution among nodes. It allowed program

processes (not threads) to migrate to machines in the node's

network that would be able to run that process faster (process

migration). It was particularly useful for running parallel and

intensive input/output (I/O) applications. Diagram contains the

result of cluster configuration (MOSIX) among three nodes

with their IP addresses.

Fig-MOSIX 3 Node Cluster SnapShot.

3.1.2 STATISTICAL COLLECTION
This is second step of our project in which we are going to

collect some statistical information in regular interval

dynamically, only for a purpose where that collected

information can used somewhere for taking decision .Here we

got successes to collect statistical information .This information

is about the processor and memory related for decision purpose

which is over loaded and which under loaded only to load

balancing. Main contain is CPU utilization and MEMORY

information. There is several way for calculating the processor

information like top and free command. The syntax for this

command is and result store in text file for further requirement.

system ("top -n 1 | grep Cpu > cpu_stats.txt")

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

3

Fig-Result of processor(Statastic)

system ("free -m > mem_statc.txt")

Fig-Result of Memory(Statastic).

3.1.3 SETTING THRESHOLD/MAKING

DECISION
In this step we are considering two parameter i.e. free memory

and CPU utilization .we are setting the CPU utilization up to

some percentage like 80% or more, so that we will be in the

position to take the decision for process migration that we are

going to deal in next step.

Once we get statistical information so we need to take exact

decision on that threshold. Generally load balancing purpose we

need this mechanism Collection of statistical information,

Decision making, Data migration.

Decision code
Calculation of the server CPU utilization:

if server is overloaded then

 t1=compute the time required to complete task on

server

 t2=compute the time required to complete task after

sharing threads with the nodes

/* Check t1 with t2 */

if (t1>t2) then

 Migrate threads to nodes

else

no process migration will occur.

3.1.4 THREAD CREATION
Process thread creation is a mechanism of separating data part

from process. Our idea is somewhat about to use

multithreading, hyperthreding. Pthread are used to create such

process chunks like child processes. Process distribution on

multicore processor is very big deal in today’s era. Actually the

problem on physical and logical processor threads distribution.

We are using one SIMD application to demonstrate this

mechanism.

Before understanding a thread, one first needs to understand a

UNIX process. A process is created by the operating system,

and requires a fair amount of "overhead". Processes contain

information about program resources and program execution

state, including Process ID, process group ID, user ID, and

group ID Environment Working directory, Program,

instructions, registers, Stack, Heap ,File descriptors ,Signal

actions ,Shared libraries ,Inter-process communication tools

(such as message queues, pipes, semaphores, or shared

memory).

routin’s.

pthread_create (thread,attr,start_routine,arg)

pthread_join()

pthread_exit (status)

pthread_cancel (thread)

pthread_attr_init (attr)

pthread_attr_destroy (attr)

OpenMP+MPI[4][10] is an implementation of multithreading, a

method of parallelization whereby the master "thread" (a series

of instructions executed consecutively) "forks" a specified

number of slave "threads" and a task is divided among them.

The threads then run concurrently, with the runtime

environment allocating threads to different processors. Given

diagram showing the main process and different threads.

Fig-Thread Creation.

3.1.5 PRIME NO. GENERATION USING MPI

(THREAD CREATION)
We design this algorithm for thread creation

 Algorithm

1] Start.

2] Input no. of tasks.

3] Calculate Rank of each Task.

4] i) calculate Stride distance using ,

 stride= 2 * tasks;

 ii) Fork the tasks & assign start to each Task using,

 start = rank * 2 + 1;

5]for each task,

 i] calculate largest prime no.

 ii] store it in slarge, & increment prime count;

https://computing.llnl.gov/tutorials/pthreads/man/pthread_create.txt
https://computing.llnl.gov/tutorials/pthreads/man/pthread_exit.txt
https://computing.llnl.gov/tutorials/pthreads/man/pthread_cancel.txt
https://computing.llnl.gov/tutorials/pthreads/man/pthread_attr_init.txt
https://computing.llnl.gov/tutorials/pthreads/man/pthread_attr_destroy.txt
http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://en.wikipedia.org/wiki/Runtime_environment
http://en.wikipedia.org/wiki/Runtime_environment
http://en.wikipedia.org/wiki/Runtime_environment

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

4

6]synchronize outputs of all task & calculate largest prime no.

7]finalize output & display time as,

 i) Total time.

 ii) Communication time.

 I] On board communication time.

 II] Between board communication time.

 iii) Execution time.

8] Stop.

3.1.6 PROCESS MIGRATION
If we transfer the state of a process from one machine to

another, we have to migrated the process. Process migration is

most interesting in systems where the involved processors do

not share main memory, as otherwise the state transfer is trivial.

A typical environment where process migration is interesting is

autonomous computers connected by a network. some

consideration of process migration are Who initiates the

migration, What portion of the process is migrated, State

Migration, Address Space Migration ,Considering queue length

etc.

Regarding process migration we used PID of that respective

process.

Syntax:-“migrate {pid} {hostname or IP-address or node-

number}”

Syntax : migrate {{pid}|-j{jobID}} {node-number|IP-

address|host}

Migration of threads to node:

 n1=node1 threshold

 n2=node2 threshold

 if (n1<n2)

 Migrate process to n1

 else

 Migrate process to n2

3.1.7 PROCESS EXECUTION
By default, each thread executes the parallelized section of code

independently. "Work-sharing constructs" can be used to divide

a task among the threads so that each thread executes its

allocated part of the code. Both task parallelism and data

parallelism can be achieved using OpenMP +MPI.

After process migration in other processor or buddy processor

that time we need to consider the scheduling mechanism

whether that processor are allowing are not to execute

respective thread.

Algorithms used

Algorithm schedule process

Input: none

Output: none

{

while (no process picked to execute)

 {

for (every process on run queue) pick highest priority

process that is loaded in memory;

 if (no process eligible to execute)

 idle the machine;

/* interrupt takes machine out of idle state */

 }

remove chosen process from run queue;

switch context to that of chosen process, resume its execution;

}

Fig-Execution Sinario.

3.1.8 COLLECTING BACK & MERGE
After execution of thread on different processor we need to

merge together so data divided part will combine in one

uniform set. we can manually migrate the processes (using PID)

of all users send them on other nodes and bring them back at

home. Like move them to other nodes freeze or unfreeze

(continue) them, overriding the MOSIX[7][8] system decisions

as well as the placement preferences of users. Even though as

the Super-User you can technically do so, you should never kill

(signal) guest processes. Instead, if you find guest processes

that you don’t want running on one of your nodes, you can use

”migrate” to send them away (to their home-node or to any

other node).

Fig-Combination of Thread

3.1.9 ANALYSIS
For Demonstration purposed we select on task that is finding

largest prime no. up to 25000000 as well as total number of

prime numbers

http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Data_parallelism

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

5

Time taken by Standalone Computer for above problem =

750.87 sec we want to reduce this huge execution time by using

our approached

Between board communication time is nearly constant for any

number of tasks. Because system bus speed between board is

nearly constant at any time. On-board communication time

varies with the no. of tasks.

consider

 obt α n

Where,

 obt = onboard communication time.

 n = number of tasks

. Total communication time (tcm) varies with no. of

tasks.

tcm = obt + bbt

Total Execution time is calculated as :

Total time = communication time + Execution time

 = (Onboard time + Between Board time) +

Execution time

Consider,

Tob=On Board time

N=no. of tasks

Texe= execution time

Tob α N

Texe α 1/N

Our simple model contains the basic architecture of the project

that indicate how the flow of project goes. We conclude that

implementation of task scheduling which lead to fair share

process allocation and load balancing as well as the total

execution time. We have been able to collect the information of

all nodes in Cluster environment. We have been able to perform

load balancing by considering available resources such as free

memory and CPU utilization for migratable processes. This

increases the performance of the Cluster by decreasing the

execution time for the processes. For testing purpose we have

select Prime number generation program using MPI

programming its. good enough to success this approached.

Deployment of our approached on kernel code so that we will in

the position to developed one component module that will

beneficial to someone.

3.1.10 DEPLOYMENT ON KERNEL CODE
In this step we decided two possible method Daemon tool

which is a system that load at start time of system and another

one is direct deployment of code on kernel. Deployment

purposes their so many methods are available. Regarding

compilation of kernel code cross tools are available in market.

We need not to compile entire kernel code, only the component

that we want to merge that need to compile or rebuilt. Advance

Packet Tool (APT) is also available to code deployment.

1. Daemon tool

2. Kernel Module

The kernel modules can use two different methods of automatic

loading. The first method (modules.conf) is our preferred

method.

 modules.conf - This method load the modules before

the rest of the services.

 rc.local - Using this method loads the modules after

all other services are started

Cofiguration steps

modules.conf - configuration file for loading kernel modules

Create a module alias parport_lowlevel to parport_pc

alias parport_lowlevel parport_pc

Alias eth0 to my eepro100 (Intel Pro 100)

alias eth0 eepro100

Execute /sbin/modprobe ip_conntrack_ftp after loading

ip_tables

post-install ip_tables /sbin/modprobe ip_conntrack_ftp

Execute /sbin/modprobe ip_nat_ftp after loading ip_tables

post-install ip_tables /sbin/modprobe ip_nat_ftp

There are a few commands that allow you to manipulate the

kernel. Each is quickly described below.

depmod - handle dependency descriptions for loadable kernel

modules.

insmod - install loadable kernel module.

lsmod - list loaded modules.

modinfo - display information about a kernel module.

modprobe - high level handling of loadable modules.

rmmod - unload loadable modules.

4 ACKNOWLEDGMENTS
Success is the manifestation of diligence, inspiration,

motivation and innovation. I attribute my success in this venture

to my seminar guide Prof. M. B. Chandak, (HOD) who showed

the guiding light at every stage of my seminar preparation.

I indebted to Dr .N. V Thakur, M-Tech Coordinate of the

Department Computer Science & Engineering, who has

provided facilities and the infrastructure to work at an extended

ends.

Last but not the least I am also thankful to all the faculty

members for helping directly or indirectly to accomplish the

seminar work. I would like to thank My Mind for not letting me

down at the time of crisis and showing me the silver lining in

the dark clouds.

5 REFERNCES
[1] M. Willekk-Lemair and A.P. Reeves, Strategies for

dynamic load-balancing on highly parallel computers,

IEEE Transaction on Parallel and Distributed Systems,

(4)9, September 1993, Pages 979-993.

[2] M. Wu and W. Sbu, A load balancing algorithm for n-

cube, Proceedings of rhe 1996 Inremarwnal Conference

on Parallel Processing, IEEE Computer Society, 1996,

Pages 148-155.

[3] H. Shan, J.P. Singh, L. Oliker and R. Biswas, “Messge

passing and shared address space parallelism on an SMP

cluster,” Parallel Computing, vol 29, 2003, pp. 167-186.

[4] W. Pan, L. Chan, J. Zhang, Y. Li, L. Wan and F. Xia,

“Research on MPI+OpenMP hybrid programming

paradigm based on SMP cluster,” Application Research of

Computers, vol. 26, 2009, pp. 4492–4594.

[5] Calvin Lin, “Priciples of parallel programming,” China

machine press, Bejing, 2008.

[6] Oren LA’ADAN Amnon BARAK and Amnon

SHILOH.Scalable cluster computing with MOSIX for

LINUX .InProc.LinuxExpo’99, pages95–100,May1999.

[7] Barak, A., Shiloh, A., “ A Distributed Load-Balancing

Policy for a Multiwmputer” , Software-Practice and

Eqerience, vol. 5, no 9, September 1985, pp 901-913.

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

6

[8] Amith R. Mamidala Rahul Kumar Debraj De D. K. Panda

Department of Computer Science and Engineering” MPI

Collectives on Modern Multicore Clusters: Performance

Optimizationsand Communication Characteristics”, Eighth

IEEE International Symposium on Cluster Computing and

the Grid.

[9] Douglis, F., Ousterhout, J, “ Transparent Process

Migration: Design Alternatives and the Sprite

Implementation” , Soj ware-Practice and Experience,

vol. 2, no 8, August 1991, pp 757-785.

[10] Walker, B. J., Mathew, R. M., “ Process Migration in

AIX’ s Transparent Computing Facility” , IEEE TCOS

Newsletter, Winter 1989, vol. 3(l), pp 5-7.

[11] Theimer, M., Lantz, K., Cheriton, I)., “ Preemptable

Remote Execution Facilities for the V System” , Proc.

of the 10th ACM Symposium on OS Principles,

December 1985, pp 2- 12.

[12] Milojicic, D., Zint, W., Dangel, A., Giese, P., “ Task

Migration on the top of the Mach Microkernel” ,

Proceedings of the third USENIX Mach Symposium,

Santa Fe, New Mexico, April 1993, pp 273-290.

[13] Litzkow, M., Solomon, M., “ Supporting Checkpointing

and Process Migration outside the UNIX Kernel” ,

Proceedings of the USENIX Winter Conference, San

Francisco, January 1992, pp 283-290.

[14] Alonso, R., Kyrimis, K., “ A Process Migration

Implementation for a Unix System” , Proceedings of

the USENIX Winter Conference, February 1988, pp

365-372.

[15] L. Anand, D. Ghose, and V. Mani, “ELISA: An Estimated

Load Information Scheduling Algorithm for Distributed

Computing Systems,” Int’l J. Computers and Math. with

Applications, vol. 37, no. 8, pp. 57-85, Apr. 1999.

[16] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour, “On

the Design and Evaluation of Job Scheduling Algorithms,”

Proc. Fifth Workshop Job Scheduling Strategies for

Parallel Processing, pp. 17-42, 1999.

[17] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C.

Sevcik, and P. Wong, “Theory and Practice in Parallel Job

Scheduling,” Proc. ThirdWorkshop Job Scheduling

Strategies for Parallel Processing, pp. 1- 34, 1997.

[18] Nikolaos D. Doulamis, Member, IEEE, Anastasios D.

Doulamis, Member, IEEE, Emmanouel A. Varvarigos, and

Theodora A. Varvarigou, Member, IEEE ” Fair Scheduling

Algorithms in Grids”. IEEE transactions on parallel and

distributed systems, vol. 18, no. 11, november 2007

