
International Journal of Computer Applications (0975 – 8887)

Recent Advances in Information Technology, 2014

33

An Effective Data Warehouse Security Framework

Vishnu B

Department of Information
Science and Engineering

Acharya Institute of Technology
Bangalore, India

Manjunath T N
Department of Information
Science and Engineering

Acharya Institute of Technology
Bangalore, India

Hamsa C
Department of Information
Science and Engineering

Acharya Institute of Technology
Bangalore, India

ABSTRACT

In today’s electronic world, everyday data is being generated

every minute, for every online transaction, in all domains.

Since data being very important for any business domains,

masking data is a very important entity. Now in most of the

enterprises all of these data are stored in a Data warehouse.

Since Data warehouse stores the sensitive data to any business

enterprises, this is a common target for the hackers to leak the

data. Therefore providing security to these Data warehouses is

a challenging task. Now we propose a Data masking

technique that will protect these Data warehouses. Data

masking is a technique in which we replace the original set of

data with another set of data that is not real but realistic. The

numeric data is masked using a mathematical formula that

makes use of modulus operator. Here we also make use of

injecting false rows that increases the overall data security

strength by creating randomness in the data. Implementation

of this method is done on a real-world data warehouse and is

implemented on oracle 10g and the results show that the

method is a better onethan the existing solution.

Keywords

Data warehouse, Data masking, Encryption, Data Security.

1. INTRODUCTION
Data warehouses store huge amount of data which is highly

sensitive for the business evaluation. [7] Hackers try to leak

the sensitive information from the data warehouse. This

results in business impact in business market. Now efficiently

securing the Data Warehouse is very critical [6] with the

increase in its complexity and the number of attackers.

1.1 Existing methodology

For the protection of the Datawarehouses the common

methods used are Swapping, Substitution, Number and Date

variance, Encryption, Nulling out, etc. [2, 4, 10] but among

these the most common one used is Encryption. [2] But all the

above techniques have some key costs involved such as:

(a) Cleaning up Data: When there is a need to change the data we

need to first unmask the data to get back the original data.

This is a very tedious work. This condition arises when we

use substitution method.

(b) Extra Storage Space: Since Data Warehouse contains huge

sets of data even a small modification in the data may

introduce large amount of storage space.

(c) Field Overflow: On replacing the real data with false data

there is a possibility that the false data will overflow the

previously allocated storage capacity.
(d) Query Response Time Overheads: Since there are huge

amount of data the response time for processing the queries is

usually more in this case.

Since a Data Warehouse itself takes up a lot of storage space

using the current encrypting techniques, [8] this proves to be a

really costly affair to use it, as they increase the time

overheads as well as the storage space. [12] It is also known

that increase in the query response time overheads degrades

the database performance. Thus the current data masking and

encryption techniques are unsuitable for Data warehouses.

1.2 Proposed Method

We propose a solution that helps in minimizing the drawbacks

that occur in the existing techniques used to its maximum

extent. Unlike techniques where the security strength of the

data is more but decrease in the performance or increase in the

storage space we try to bring in a balance between the data

security strength as well as the database performance. In our

proposed method, we do not store the original data anywhere.

Initially the DBA enters the data onto the database and once

all the data entry is over the DBA specifies which all columns

has to be masked and they are masked instantly .Therefore at

any instance of time from then only the masked value is

stored in the database which wards off any attacks instantly.

So when a user requests a query it is first rewritten

automatically by a broker which is in between the user

application and the DBMS and sends it to the DBMS to

process it correctly. Now to mask the numeric data in the

database we make use of a mathematical formula that has

MOD (modulus) operator (which returns the remainder) and a

set of other basic arithmetic operators. Usually most of the

data in business enterprises are numeric data which are called

as facts. A Fact table having numeric data is used for business

evaluation purpose. We also inject false rows onto our

database which uses up extra space but helps in increasing the

randomness in the database that misleads the hackers.

2. RELATED WORK

An extensive survey on the different Data masking techniques

is done in [2]. There is also a Data masking pack that is

introduced by oracle [3, 19] which allows us to choose

between many of the different techniques that can mask data.

Another research work also talks about the various Data

masking techniques [4]. It also gives a detailed algorithm of

the random replacement technique and also preserving the

integrity of the masked data. A survey on the recent trends in

Data masking techniques was done in [5]. It gives a detailed

description of the Data masking architectures along with the

recent development in the field of Data masking.

3. FUNCTIONAL ARCHITECTURE
The Functional architecture has 4 components namely:

i) User/Client Applications

ii) E-MOBAT

iii) BlackBox

iv) Database and its DBMS.

International Journal of Computer Applications (0975 – 8887)

Recent Advances in Information Technology, 2014

34

Fig 1: Functional Architecture of Data warehouse security

framework

3.1 User/Client Applications
This is also called as the front end. This is usually a Graphical

User Interface (GUI) that displays various options for the user

to post their request. The requests are of two types- Request

by the Administrator (usually for managing the database) and

the Request by the user (usually request for some

transactions).These requests are sent to the E-MOBAT in the

form of queries.

3.2 E-MOBAT
It acts as an interface/broker between the User/Client

Application and the DBMS. Its main task is to rewrite the

queries sent by the User/Client application using the masking

formulae. All necessary masking keys needed are taken from

the Blackbox. The E-MOBAT also contains a history log that

stores the auditing and control actions. The User or the

Administrator performs actions in a particular pattern. The

patterns are also pre-stored in the history log. If there is any

access to the E-MOBAT in any other pattern, it automatically

sends an alert the administrator.

3.3 BlackBox
A BlackBox is a set of files that are created for each masked

database. The Blackbox can be accessed only by the E-

MOBAT. It stores the masking keys that we use in our

masking formulae and the data access policies of database. All

BlackBox contents are encrypted using AES standard

encrypting algorithms. The BlackBox once lost cannot be

restored. The masking keys need to be cracked.

Another feature of the BlackBox is that it automatically

shuffles the masking keys after certain duration of time. This

is decided by the administrator.

3.4 DBMS and the masked database
The DBMS is the system that manages the data transactions.

Masked database contains the data which is in its masked

form. The DBMS receives the modified queries from the E-

MOBAT, processes it and retrieves the required data and

sends it back to the E-MOBAT.

4. IMPLEMENTATION METHOD
A DBA will have the rights to mask data in the database. The

DBA enters the login ID and password and try to login to the

database. If it succeeds, it will create the BlackBox and stores

the data access policies for the users and the permissions. An

action log is also created for storing all the further user

actions. Now the E-MOBAT asks the DBA which all columns

need to be masked. All the necessary masking keys will be

generated, encrypted and stored in the BlackBox. Finally the

Data masking formula is applied onto the data that has to be

masked. Whenever we have to update any data it should be

done through the E-MOBAT. Now this will apply the formula

to demask the data and the updates can be done.

5. THE DATA MASKING TECHNIQUE
We are keen on masking the numeric data in the data

warehouse. This technique that we use has reduced the query

response time overhead as much as possible which in turn

improves the performance. To understand the technique in

more detail, consider a table ‘T’ with a set of ‘m’ rows and ‘n’

columns, where rows are given by (R1, R2,……,Rm) and

columns are given by (C1, C2,……,Cn). Let the value that has

to be masked be represented as a pair of (Ri, Cj) where ‘Ri’ is

the row and ‘Cj’ is the column in which the data that has to be

masked. In order to mask the data we must to have three

masking keys-

 K1, a 128-bit random number generated which

remains constant for the table T.

 K2, a 128-bit random number generated which

remains constant for a particular column Cj. It is

represented as K2,j.

 K3, a number between 1 and 2128 that remains

constant for a row. The value depends on the data of

that particular row. It is represented as K3,i.

Here K1and K2 (called as the private keys) are stored in the

BlackBox in their encrypted form. K3(called as the public

key)is stored in the masked table along with the other data. If

we store them in another table like a lookup table then we

need to make use of table joins which is a very time

consuming process, hence it is avoided. Every row of a table

will compulsorily have a public key K3. Consider a value to

be masked represented as (Ri,Cj). The new masked value

(Ri,Cj)` is given by the formula-

Now to retrieve the original value (during the updating of the

value by the DBA) the formula used is-

Now while inserting the public key K3,i we can do it in two

ways- Either by adding a new column to the existing table or

by recreating the table along with an extra column that stores

the value of K3,j. Though in the second option it has more

effort and time required for its implementation it is better to

go with it since the response time overheads in the case of

recreating the table along with the public key is better.

Another option is to take a long integer typed column from

the table which is already part of the original structure of the

table and insert the public key K3,j into that which reduces

storage space overheads. To increase the overall security

strength once the necessary data has been masked we inject

false rows onto the database. Now as we said before that

every row has a public key K3,we can use it to identify which

row in the database is a valid row and which one is not.

Instead of generating some random value for K3,I for a valid

row we have the value of K3,i equal to a multiple of the sum of

all values of that row. Then we proceed with the injection of

the false rows. Therefore any row with its value of K3,i equal

to a multiple of the sum of allvalues of that row is a valid row

International Journal of Computer Applications (0975 – 8887)

Recent Advances in Information Technology, 2014

35

else it is an invalid row. It is implemented using the formula-

Where, ‘i’ ranges from 1,2,….,n

‘k’ is a random integer constant that

 doesn’t overflow the 128-bits for K3,j

‘n’ is the number of masked columns in Table T in

 row ‘i’

To find out whether a row is valid or not we check the

condition using the formula-

If R=0 then the row is a true row else it is an invalid row.

Now more false rows we inject onto the table the table’s

security level increases. But it will require a little extra

storage space and also more the rows more number of rows

must be scanned and verified by the query which decreases

the performance. Therefore we must not inject more false

rows into the table.

6. QUERYING THE MASKED E-

MOBAT DATABASE
Consider the following table which shows the record of a

normal employee database-

Table 1. Original Dataset

ESSN ENAME ESAL EBONUS EDOJ

111 MARK 20000 8000 12-DEC-12

222 TOM 35000 12000 10-AUG-10

333 ZOYA 30000 10500 23-FEB-11

444 JANE 30000 10000 13-JUL-11

555 GARY 50000 16000 07-DEC-07

Now once the public key K3,i is inserted into the table it

transforms into-

Table 2. Original Dataset along with the public key

ESSN ENAME ESAL EBONUS EDOJ K3

111 MARK 20000 8000 12-DEC-12 84333

222 TOM 35000 12000 10-AUG-10 141666

333 ZOYA 30000 10500 23-FEB-11 122499

444 JANE 30000 10000 13-JUL-11 121332

555 GARY 50000 16000 07-DEC-07 199665

The public key K3is equal to three times the sum of all the

integer type data in that row. For example, K3 for ‘row 1’ is

calculated as

 Let the column that has to be masked be ESSN, ESAL and

EBONUS.

 The value of K1= 3, K2,ESSN = 300, K2,ESAL = 32000,

K2,EBONUS = 12000. Now after applying the masking formula

(1), the table transforms itself into-

Table 3. Masked Dataset

ESSN ENAME ESAL EBONUS EDOJ K3

189 MARK 12000 4000 12-DEC-12 84333

88 TOM 3000 1200 10-AUG-10 141666

33 ZOYA 2000 1500 23-FEB-11 122499

134 JANE 1600 2000 13-JUL-11 121332

255 GARY 18000 4000 07-DEC-07 199665

Consider a Query that requests the employeeID(ESSN) and

employee name (ENAME)of the employees whose date of

joining (EDOJ) is after 10th January 2011 and salary (ESAL)

is greater than 9500.

The query that the user writes is-

SQL>SELECT ESSN,ENAME

 FROM EMP_DETAILS

 WHERE EDOJ >= ’10-JAN-11’ AND

ESAL > 9500;

Now the E-MOBAT rewrites it as-

SQL>SELECT (ESSN-MOD(MOD(K3,i ,3),300) +

300),ENAME FROM EMP_DETAILS

 WHERE EDOJ >= ’10-JAN-11’ AND ESAL >

 (ESAL-MOD(MOD(K3,j,3),32000) + 32000);

As shown in the above example the E-MOBAT solely re-

writes the queries using the reverse formula(2). These

modified queries are not shown to the user. The user only gets

the result of the query.

7. SECURITYAND PERFORMANCE

IMPROVISATION

7.1 No Access to the Modified Queries for

the User
E-MOBAT receives the user queries, modifies it using the

keys from the Blackbox, sends the modified query to the

DBMS and retrieves the intended results. The modified

queries are never visible to the user and for better security

purpose the E-MOBAT shuts down all the database historical

logs on the DBMS before the execution of the modified

instruction because it will disclose the masking keys. The

communication between the User Applications, E-MOBAT

and the DBMS are encrypted. All these help in increasing the

security.

7.2 Non-injective Data Set
Whenever there are two similar values in the database

sinceonce we mask the data they turn out to be two different

values as the value of K3 differs for every row. There is

another possibility that two different data in the original

database can lead to same values after masking since the

MOD operator is non-injective. This helps in creating an

apparent randomness in the database.

International Journal of Computer Applications (0975 – 8887)

Recent Advances in Information Technology, 2014

36

To demonstrate this, consider a table T with two masked

columns. Let K1 = 9264 and K2,1 = 12 & K2,2 = 78254 for

each of the columns. Now when we compare between the

original dataset and the masked dataset we can notice the

above two conditions. It is demonstrated in Table 4 and Table

5.

Table 4. Different Values in the Original Dataset can give

same value in the Masked Dataset

Original Dataset Masked Dataset

Col-1 Col-2 K3,i Col-1 Col-2 K3,i

11 81873 7550 22 1625 7550

20 54129 1898 26 4786 1898

09 71624 5536 15 1198 5536

15 64894 4697 22 4657 4697

12 46926 6177 17 4777 6177

Table 5. Same values in the Original Dataset can

give different value in the Masked Dataset

Original Dataset Masked Dataset

Col-1 Col-2 K3,i Col-1 Col-2 K3,i

10 81873 7550 21 4698 7550

21 54129 1898 28 6547 1898

19 71624 5536 26 4235 5536

13 64894 4697 16 4488 4697

19 46926 6177 23 4135 6177

7.3 Efficiency of the Masking Keys
The Data masking keys play a very important role in our

security mechanism. Since K3 is a public key, only K1 & K2

has to be cracked. K1is a 16-byte integer and K2 has a value

varying from 1 to 16-bytes depending on the maximum value

of the column. Therefore A minimum of 2129 key

combinations are required for K1 & K2 together thus roughly

needs an average number of 2128 number of tests for each

masked column. If a table has say ‘i’ number of columns then

‘i * 2128’number of tests are needed to crack the masking key

K2 completely. Now this is a very difficult and time

consuming effort. And also we have a mechanism of

automatic swapping of K2 in which the hacker will have to

restart his algorithm that was used to crack the key.

7.4 Bandwidth Consumption

Usually in most of the middleware broker data privacy

systems the user himself will have to write the queries

involving masking and de-masking the data. This results in

increased bandwidth consumption. In our solution the E-

MOBAT itself rewrites the queries and sends it to the DBMS

directly without any involvement of the user. Therefore the

bandwidth consumption is reduced.

8. Results& Discussion
In a detailed survey of various databases it has shown that our

technique provides a very high security with the balance in the

performance. We took a sample Data Warehouse of 100GB in

which 80GB was numeric data. We tested the AES128 and

3DES168 algorithms with our technique. We tested it on

DBMS Oracle 10g. We compared both the storage and the

loading time overheads of both the algorithms with our E-

MOBAT using all of the three methods of insertion of the

public key, which are-

i) E-MOBAT AddCol: Adding the public key K3,i column in the

existing table.

ii) E-MOBAT CreateCol: Recreating the whole fact

table along with the public key K3,i.

iii) E-MOBAT ExistingCol: Using an existing numeric

column to store the public key K3,i.

On masking the 80GB numeric data, the following result was

obtained

8.1 Storage Space Overheads
In AES128 algorithm the storage space overheads went up

to153.9% (123.12GB) and in 3DES168 algorithm it went up

to103.6%(82.88GB). When the same was masked using E-

MOBAT, while using method (i) the storage space overheads

was 5.7% (4.6GB), using method (ii) it was 4.1% (3.28GB)

and using method (iii) it was 3.9% (3.12GB). Table 6 depicts

the above results.

8.2 Loading Time Overheads
In AES128 algorithm the loading time overheads went up to

189.7% (6337 seconds) and in 3DES168 algorithm it went up

to 191.6% (6401 seconds). When the same was masked using

E-MOBAT, while using method (i) the loading time

overheads was 7.7% (257 seconds), using method (ii) it was

3.5% (116 seconds) and using method (iii) was 3.2% (106

seconds). Table 7 depicts the above results.

8.3 Response Time Overheads

In AES128 algorithm the response time overheads went up to

187%and in 3DES168 algorithm it went up to 203%. When

the same was masked using E-MOBAT, while using method

(i) the loading time overheads was 35.3% (257 seconds),

using method (ii) it was 29.4% and using method (iii) was

22%. Table 8 depicts the above results.

From the above three conditions E-MOBAT gives the best

results. Though adding the public key K3,i onto an existing

column gives the best result we preferably use the E-MOBAT

technique in which the public key K3,i adding is done by

recreating the whole table is used.

Table 6. Storage Space Overheads

AES128 3DES168 E-MOBAT

(i)

E-MOBAT

(ii)

E-MOBAT

(iii)

123.12GB

(153.9%)

82.88GB

(103.6%)

4.6GB

(5.7%)

3.28GB

(4.1%)

3.12GB

(3.9%)

Table 7. Loading Time Overheads

AES128 3DES168 E-MOBAT

(i)

E-MOBAT

(ii)

E-MOBAT

(iii)

6337s

(189.7%)

6401s

(191.6%)

257s

(7.7%)

116s

(3.5%)

106s

(3.2%)

Table 8. Response Time Overheads

AES128 3DES168 E-MOBAT

(i)

E-MOBAT

(ii)

E-MOBAT

(iii)

+187% +203% +35.3% 29.4% 22%

International Journal of Computer Applications (0975 – 8887)

Recent Advances in Information Technology, 2014

37

Fig 2: Overheads Comparision

9. CONCLUSION

We propose a Data masking technique that concentrates on

enhancement of the security in a Data Warehouse without

bringing down its performance or efficiency. To increase the

security strength the injection of false rows are also proposed.

The Data masking formula used makes use of simple

mathematical operators and can be implemented easily on any

DBMS. The automatic modification of the query minimizes

the efforts of the user and also minimizes the bandwidth

consumption. The history log in the E-MOBAT also helps in

detecting any intrusions using the pattern stored in it.

We also compared it with the existing technologies like

AES128 and 3DES168 algorithms which clearly showed that

our security mechanism is much better than them.

10. FUTURE WORK
Future work will focus on designing a SQL query segregation.

We can design a masking technique for respective data

domain.

11. REFERENCES
[1] Ricardo Jorge Santos, Jorge Bernardino, Marco Vieira

“Balancing Security and Performance for

Enhancing Data Privacy in Data warehouses”, CISUC –

DEI – FCTUC, 2012.

[2] A Net 2000 Ltd. White Paper “Data masking: What You

Need to Know Before You Begin”.

[3] Tanya Baccam “SANS Institute Product Review: Oracle

Data masking”, a SANS Whitepaper, January 2012.

[4] Ravi Kumar G K, Dr. B. Justus Rabi, Dr.Ravindra S.

Hegadi, Archana R A “Experimental Study of Various

Data masking Techniques with Random Replacement

using data volume”, International Journal of Computer

Science and Information Security, Vol. 9, No. 8, August

2011.

[5] Ravi Kumar G K, Manjunath T N, Ravindra S Hegadi,

Umesh I M “A Survey on Recent Trends, Process and

Development in Data masking for Testing”, IJCSI

International Journal of Computer Science Issues, Vol. 8,

Issue 2, March 2011.

[6] Adam N. R., and Wortmann, J. C. 1989.“Security-

Control Methods for Statistical Databases:A

Comparative study,” ACM Computing Surveys (21:4),

pp. 515 –556.

[7] Manjunath T.N, Ravindra S Hegadi, Ravikumar G K."A

Survey on Multimedia Data Mining and Its Relevance

Today" IJCSNS. Vol. 10 No. 11 pp. 165-170.

[8] Manjunath T.N, Ravindra S Hegadi, Ravikumar G

K."Analysis of Data Quality Aspects in Datawarehouse

Systems", (IJCSIT)

 [9] International Journal of Computer Science and

Information Technologies, Vol. 2 (1), 2010, 477-485

[10] Dalenius, T., and Reiss, S. P. 1982. “Data Swa`pping: A

Technique for Disclosure Control,” Journal of Statistical

Planning and Inference (6:1),pp. 73-85.

[11] Domingo-Ferrer J., and Mateo-Sanz, J. M. 2002.

“Practical Data- Oriented Microaggregation for

Statistical Disclosure Control,” IEEE Transactions on

Knowledge and Data Engineering (14:1), pp. 189- 201.

[12] Epstein, R. A. 2002. “HIPAA on Privacy: Its Unintended

and Intended Consequences,” Cato Journal (22:1),

Spring/Summer, pp. 13-19.

[13] Greengard, S.1996. “Privacy: Entitlement or

Illusion?” Personnel Journal (75:5), pp. 74-88.

[14] Kaelber, D., and Jha, A. 2008. “A Research Agenda

for Personal Health Records (PHRs),”

[15] Journal of the American Medical Informatics Association

(15:6), November / December.

[16] KDnuggets, “Google Subpoena: Child Protection vs.

Privacy,” Accessed July 2006, from

Http://www.kdnuggets.com/polls/2006/google_subpoena

.htm.

[17] Liew, C. K., Choi, U. J., and Liew, C. J. 1985.“A Data

Distortion by Probability Distribution,”ACM

Transactions on Database Systems (10:3), pp.395-411.

[18] Xiao-Bai Li, Luvai Motiwalla BY “Protecting Patient

Privacy with Data Masking” WISP 2009

[19] Oracle White Paper—Data Masking Best Practices

JULY 2010

[20] Sachin Lodha BY Data Privacy – TRDDC Silver Jubilee

Commemoration Publication – SL Comments.doc

153.9

103.6

5.7 4.1 3.9

189.7 191.6

7.7 3.5 3.2

187

203

35.3 29.4 22

0

50

100

150

200

P
er

ce
n

ta
ge

 (
%

)

Comparision

Storage Space Overheads Loading Time Overheads

Response Time Overheads

IJCATM : www.ijcaonline.org

