
International Journal of Computer Applications (0975 – 8887)

National Conference on Networking, Cloud Computing, Analytics and Computing Technology

29

Regression Testing: Advanced Tool for Testing the
Software’s Bugs

Ritu
Teacher-IT/ITeS,
GGSSS, NIT-5

Faridabad

Anuradha Pillai
Asisstant Professor,

YMCAUST

Charu Virmani
Associate Professor

MRIIRS

Deepika Punj
Vocational

Asisstant Professor
YMCAUST

ABSTRACT
In present scenario, advancement in the area of information

technology results high demand for new software or

modifications in the existing software. Software testing is the

process of testing the quality and reliability of the software

through execution of the program and eliminates the bugs or

errors, which are present in Software. For achieving

correctness, reliability, good quality of software and its

usability, it is essential that the software measure according to

capability, maintainability, reusability and testability.

Keywords
Testing, Software, Bugg, Regression.

1. INTRODUCTION
With the rapid development of modern information

technology, software products find their ways into all areas of

society. The quality of software products naturally become the

focus of common concern as well as the key problem in

software engineering. Researchers in the field of software

testing pay more attention to testing the software and

increasing its reliability. There still exist many difficulties and

challenges to test the software more accurately. Almost in all

the software, the testing task becomes a challenging task. Its

purpose is to evaluate the software to demonstrate that it

meets the requirements.

Regression testing is commonly used to verify the quality of

software in the process of software development. It’s quite

important and expensive but, still providing a powerful

mechanism to maintain and manage the test cases and test

process to reduce the cost of regression testing, and to

improve the efficiency of regression testing are the emphases

and difficulties in the whole software testing. The genetic

algorithm is a search algorithm based on the mechanics of

natural selection and natural genetics. [6] Genetic algorithms

are the heuristic search algorithms that are used to solve a

variety of optimization problems. Genetic algorithms mimic

the process of natural biological evolution and the Darwin’s

principal of the survival of the fittest. The genetic algorithms

cause a population of individuals to evolve from one

generation to another, each time allowing the best

characteristics of one generation to pass to the next

generation.

Fig. 1 Block Diagram of Genetic Algorithm [13]

2. LITERATURE REVIEW
Software testing is an important aspect in software

development process. The goal and need of software testing is

"affirm the quality of software systems by systematically

exercising the software in carefully controlled circumstances".

Testing of software is an important and critical part of the

software development process, on which the quality and

reliability of the delivered software strictly depend. [4] The

empirical research on test case prioritization technique reveals

that there were three steps considered as most important for

software testing i.e. a) Test case selection, b) Test case

prioritization, and c) Test suite minimization. [14] The test

case prioritization is very important task while testing the

software quality. Earlier, tree model was proposed for the

prioritization purpose as well as for test suite minimization.

The prioritization of test cases has been done accordingly to

the number of call-tree paths covered by each test case. [15] In

the past two decades, the various methods for prioritization

was proposed and developed that are a) Based on integrates

coverage [10], b) The greedy-based prioritization approach

[8], c) Greedy-based prioritization approach with regression

test selection [16], Meta-heuristics for test case prioritization

[9], Code-coverage TCP techniques [7], Regression test suite

prioritization algorithm [11], Component Based Software

Development (CBSD) [1] etc. There are several aspects of the

test case prioritization problem as follows[5]:

 To increase the rate of fault detection of a test suite

that is, the likelihood of revealing faults earlier in a

run of regression tests using that test suite.

 To increase the coverage of coverable code in the

system under test at a faster rate, thus allowing a

International Journal of Computer Applications (0975 – 8887)

National Conference on Networking, Cloud Computing, Analytics and Computing Technology

30

code coverage criterion to be met earlier in the test

process.

 To increase their confidence in the reliability of the

system under test at a faster rate.

 To increase the rate at which high-risk faults are

detected by a test suite, thus locating such faults

earlier in the testing process.

 To increase the likelihood of revealing faults related

to specific code changes earlier in the regression

testing process.

Genetic Algorithm approach is very useful to prioritize the

test suite with the aim of maximizing the number of detected

faults. The algorithm calculates average faults found per

minute. The results are illustrated to determine the

effectiveness of prioritized and non-prioritized case with the

help of APFD metric. [3] GA considers an optimization

problem as the environment where feasible solutions are the

individuals living in that environment. The degree of

adaptation of an individual to its environment is the

counterpart of the fitness function evaluated on a solution.

Similarly, a set of feasible solutions takes the place of a

population of organisms. An individual is a string of binary

digits or some other set of symbols drawn from a finite set.

Each encoded individual in the population may be viewed as a

representation of a particular solution to a problem. [17]

While prioritizing the test cases the two factors are considered

for system level prioritization. The first factor is the rate of

fault detection, which is the average number of faults per

minute by a test case. The second factor is the fault impact:

Testing efficiency can be improved by focusing on the test

case that is likely to contain high number of severe faults. So,

for each fault severity value was assigned based on the impact

of the fault on the product. [12] The 21 different techniques

for code based test case prioritization and classified into three

different groups i.e. comparator group, statement level group

and function level group were explained earlier by

researchers. [2,5]

Steps in Genetic algorithm:

 Population Generation

 Selection

a) Elitist Selection

b) Roulette Wheel Selection

c) Tournament Selection

 Reproduction Operators

 Crossover

a. One point crossover

b. Two point Crossover

c. Uniform Crossover

d. Cut and Splice Crossover

 Mutation

 Termination Condition

 Fitness Function Construction

3. DESIGN

3.1 Problem Formulation
In present era, software testing is essential to verify and

confirm the availability of good quality software programmes

due to high demand. A good testing process is one that has a

high probability of finding an as-yet undiscovered error. The

software testing should aim to suggest changes or

modifications if required, thus adding value to the entire

process. The objective of this paper is to design tests that

systematically uncover different classes of errors and do so

with a minimum amount of time and effort. Performance

requirements are required as it specified in specification

document to ensure the software quality and reliability based

on the data collected during testing.

4. METHODOLOGY

In regression testing, the software testing is done when

changes are made in the software. It may be noted that not all

the changes are of equal importance. The changes in the

conditional statements or decision nodes are more important

as compared to the other changes. The number of nodes

changed may determine the fitness in this case. It may also be

noted that in case of insertion or deletion of nodes the change

is considered more important as compared to other cases. The

work dwells upon these changes to calculate the fitness value

of the mapped chromosomes. The following steps depict the

technique:

1. Calculate coverage as decision node. T is the

coverage may remain same or its cost in terms of

number of nodes may increase or decrease; where

Ti is the test case and T is the test case suite.

2. Calculate the change in coverage for test case in test

case suite. More the number of changes or more is

the number of effected variable more is the value

of deltas, the parameter which will determine the

fitness value.

3. The change in coverage fitness value α, as in

regression testing changes are more important and

those which are affected by changes are to be

considered first.

4. All the test cases will be represented by binary

chromosomes. A chromosome will give the set of

test cases which will determine the set of test cases

which forms a test suite.

5. The fitness of those chromosomes evaluated by Step

3. More the number of changes in conditional

statements, more is the value of deltas and hence

less is e∆, and hence more is 1/(1+e∆).

6. New chromosome will be generated by crossover

and mutation operations.

7. Reproduction is done by rollet wheel selection.

8. The Test case suites are selected by applying GA.

5. RESULT AND CONCLUSION
The basic premise of this proposed work was that the

conditional changes were more important. From the literature

study, it was found the gap in existing technique because a

little work has been done on conditional nodes. So-as to fill

the gap, a novel technique is proposed, and establishing the

fact that the fault finding capability improved by applying the

proposed technique in the previous section. The verification of

proposed technique was done on a benchmark program and

International Journal of Computer Applications (0975 – 8887)

National Conference on Networking, Cloud Computing, Analytics and Computing Technology

31

test data was taken from a professional thereby instilling the

confidence in the technique. Finally, it is concluded that the

new techniques always need the improvements and their

constraints validation.

6. REFRENCES
[1] A. Acharya, D. P. Mohapatra and N. Panda, “Model

based test case prioritization for testing component

dependency in CBSD using UML sequence diagram”,

IJACSA, Vol. 1 (3), pp. 108-113, December, 2010.

[2] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg

Rothermel, Sebastian Elbaum. “Cost cognizant Test Case

Prioritization”, published in the proceedings of the IEEE

International Conference on Software Maintenance,

2006.

[3] Arvinder Kaur and Shubhra Goyal. "A Genetic

Algorithm For Regression Test Case Prioritization Using

Code Coverage", International Journal of Advanced

Science and Technology, Vol. 29, April 2011.

[4] E. F. Miller, “Introduction to software testing

technology”, Software Testing & Validation Techniques,

pp. 4 – 16, 1981.

[5] G. Rothermel, R. H. Untch, C. Chu, and M.J. Harrold,

“Test Case Prioritization: An Empirical Study”,

published in the proceedings of the Software

Maintenance, Oxford, UK, pp. 179-188, Sept. 1999.

[6] Goldberg, D. E. “Genetic Algorithms in Search,

Optimization, and Machine Learning”, Boston: Addison-

Wesley.

[7] H. Srikanth, L. Williams and J. Osborne. “System Test

Case Prioritization of New and Regression Test Cases”,

IEEE, 2005, pp.64-73.

[8] Jones J.A. and Harrold M.J. “Test-suite reduction and

prioritization for modified condition/decision coverage”,

published in the proceedings of International Conference

on Software Maintenance (ICSM 2001), IEEE Computer

Society Press, pp. 92–101, 2001.

[9] Li Z., Harman M. and Hierons R.M. “Search Algorithms

for Regression Test Case Prioritization”, IEEE

Transactions on Software Engineering, Vol. 33(4), pp.

225–237, 2007.

[10] Leon D. and Podgurski A. “A comparison of coverage-

based and distribution-based techniques for filtering and

prioritizing test cases”, published in the proceedings of

the IEEE International Symposium on Software

Reliability Engineering (ISSRE 2003), IEEE Computer

Society Press, pp. 442–456, 2003.

[11] Praveen Ranjan Srivastava. “Test Case Prioritization”,

Journal of Theoretical and Applied Information

Technology, pp. 178-181, 2008.

[12] R. Kavitha, Dr. N. Sureshkumar. “Test Case

Prioritization for Regression Testing based on Severity of

Fault”, International Journal on Computer Science and

Engineering, 2010.

[13] Ruchika Malhotra and Mohit Garg. “An Adequacy Based

Test Data Generation Technique Using Genetic

Algorithms”, Journal of Information Processing Systems,

Vol.7, No.2, pp. 363-384, June 2011

[14] S. K. Swain. “Test Case Prioritization Based on UML

Sequence and Activity Diagrams”, PhD thesis submitted

at KIIT University, 2010.

[15] Siavash Mirarab and Ladan Tahvildari. “An empirical

study on bayesian network-based approach for test case

prioritization”, published in the proceedings of the

International Conference on Software Testing,

Verification, and Validation, IEEE Computer Society,

pp. 278–287, Washington, DC, USA, 2008.

[16] Smith A., Geiger J., Kapfhammer G.M. and Soffa M.L.

“Test suite reduction and prioritization with call trees”,

published in the proceedings of the IEEE/ACM

International Conference on Automated Software

Engineering (ASE), ACM Press, 2007.

[17] Tomassini, M. “Parallel and Distributed Evolutionary

Algorithms: A Review”, Evolutionary Algorithms in

Engineering and Computer Science (pp. 113 - 133).

Chichester: J. Wiley and Sons.

