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ABSTRACT  
Seepage is one of the most serious forms of water loss in an 

irrigation channel network. This paper summarizes a 

literature review of research on determination of seepage 

losses in unlined channels. An analytical solution is obtained 

for estimation of seepage from a channel under different 

conditions with uniform infiltration from free surface zone. 

The solutions include relations for variation in seepage 

velocity along the channel perimeter and a set of parametric 

equations for the location of phreatic line. These solutions 

are useful in quantifying seepage losses through channels. 
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1. INTRODUCTION  
In irrigation canals a substantial part of usable water goes in 

head of losses due to seepage. Due seepage losses, fresh 

water resources depleted with causing water logging, 

salinization, groundwater contamination and health hazards. 

Simple method is adopted to check seepage is lining but due 

to various reasons cracks develops in lining and found that 

seepage from a canal with cracked lining is likely to 

approach the magnitude of seepage from unlined canal so, 

optimization of geometric elements of channels to minimize 

seepage loss is gaining importance (13). Optimization of 

losses is required in present scenario because water 

resources are limited & conservation of water is important. 

During transportation of water through unlined channel, 

huge quantity lost by seepage. The need to line a canal is 

decided based on the extent of seepage losses. According to 

Wilkinson (1986), a canal having seepage less than .031 

m3/day/m2 of wetted area of considered tight while a canal 

exhibiting losses more than this limit is considered good for 

lining(2). 

The seepage from a channel is governed by the same 

principle of flow through porous media and controlled by 

hydraulic conductivity of the subsoil and Soil 

characteristics, depth of water in the canal, geometry of 

section, hydraulic gradient between the channel and depth to 

ground water, amount of sediment in water, velocity in the 

channel and length of time canal has been operation (5). 

2. PREVIOUS STUDIES  
A method for the solution of problems involving unconfined 

seepage by using a special function, now known as 

Zhukovsky's function (14). Vedernikov (1934) and 

Pavlovsky (1935) independently proposed a method based 

on conformal mapping of the region of the complex seepage 

potential on to the region of the Zhukovsky function for the 

solution of seepage problems with free surface zone. 

Vedemikov (1934) investigated the influence of the depth of 

horizontal permeable layers upon the quantity of seepage 

from ditches (1). 

 

 
 Vedemikov (1939) solved the problem of seepage from a canal 

to the symmetrically placed collector drainages, neglecting the 

effect of the canal water depth and side slopes. Vedernikov 

(1939) also solved the problem of seepage from a canal with 

collector on one side (8). 

A closed-form solution of seepage from a trapezoidal canal to 

symmetrically placed drainages in homogenous and isotropic 

material that is extending up to the infinite depth obtained. 

Sharma and Chawla (1979) presented a solution of the problem 

of seepage from a canal to vertical and horizontal drainages 

symmetrically located at finite distances from the canal in a 

homogenous medium extending up to a finite depth. The water 

depth in the canal was assumed negligible in comparison to the 

width (2). 

Wolde-Kirkos (1993) has obtained solutions for seepage from a 

trapezoidal canal in a homogenous medium extending to infinite 

depth with asymmetrically placed drainages on either side of the 

canal. Wolde-Kirkos also obtained solutions for seepage to the 

drainage on one side of the canal only. Wolde-Kirkos and 

Chawla (1994) presented the results of the problem of seepage 

from a canal with negligible water depth to asymmetrical 

drainages (3). 

Numerov (1948) examined the problem of the flow of ground 

water to a system of a large number of rectilinear horizontal 

drainages, infinitely thin silts, at unit depth, equidistant and in a 

previous layer of infinite depth. Numerov considered the effect 

of infiltration due to rain, irrigation, snowmelt, etc., using a 

special function. Aravin (1936) had earlier examined the same 

case with zero infiltration rates. Polubarinova-Kochina (1962) 

also examined the case of drainage with a rectangular cross 

section (3). 

Unconfined, steady-state seepage from a triangular and a 

trapezoidal channel in a homogeneous, isotropic, porous 

medium of large depth using inversion of hodograph and 

conformal mapping techniques. The solution of a rectangular 

channel was given by Morel-Seytoux (1964) using conformal 

mapping and Green- Neumann functions (1). Chahar analyzed 

seepage from slit and strip channels as special cases of a 

polygon channel and also presented results for trapezoidal, 

triangular, and rectangular channels in graphical form (11). An 

approximate solution using Zhukovsky functions and conformal 

mapping techniques for a trapezoidal channel in a porous 

medium of finite depth underlain by a drainage layer suggested 

by Muskat (8). An analytical solution for seepage from a 

rectangular channel in a soil layer of finite depth overlying a 

drainage layer using  conformal mapping techniques obtained 

(7),(8). Bruch and Street (1967a, b) used the same method in 

computing seepage from a triangular channel underlain by a 

drainage layer at shallow depth. Seepage from polygon channels 

has also been estimated by several investigators for different 

boundary conditions using analytical methods (1). 
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Approximate solutions by numerical methods have gained 

importance due to easy availability of high speed digital 

computers along with specialized software. However, 

generalized solutions in the functional form are not possible 

through numerical methods; instead they result only in a 

numerical value as a problem specific particular solution. 

The pioneer in solving the problem of optimization of an 

earth channel was Preissmann (1957), who took the quantity 

of seepage loss per unit length of channel Q as an objective 

function, and the area of flow cross section S as an 

isoperimetric restriction. For trapezoidal channels, Morel-

Seytoux (1964) proposed a solution of the seepage problem 

in the form of a dimensionless characteristic that made it 

possible to define a channel shape that is optimal in terms of 

parameters Q and S. The solution suggested by them is 

complete in the mathematical sense. Namely, the necessary 

and sufficient conditions of a global extremum are proved, 

the unique extremum is obtained in the analytical form, and 

closeness of optimal channels in the value of Q is shown. In 

addition to the channel capacity S, the important integral 

characteristic within the scope of problems of surface flow 

are considered to be the hydraulic radius R and the discharge 

m of the water transported through the channel. As for the 

class of arbitrary channels profiles, attempts to seek an 

analytical solution for the problem of defining a channel 

shape with a minimum Q at the specified R or m have not 

succeeded. The present paper considers this type of 

optimization for trapezoidal channels. The optimal design of 

these may be used as a first approximation in iterative 

algorithms (Cabuk and Modi 1990) for optimization given 

channel shapes. A dimensionless depth can be determined 

for a rectangular channel with lined banks, reasoning along 

similar lines. The channel with a minimum cost takes 

account of the lost-water and lining costs. It is shown in the 

following that a unique and stable solution exists for each 

optimization problem (6). 

Further, available analytical solutions for triangular, 

rectangular, and trapezoidal channels were obtained by 

different investigators using different methods or different 

point of openings in the mapping planes, so these solutions 

differ from expressions obtained as limiting or particular 

cases of the solution for the most general problem. In the 

present study, an exact analytical solution for the quantity of 

seepage from a trapezoidal channel underlain by a drainage 

layer at a shallow depth has been obtained using an inverse 

hodograph and Schwarz-Christoffel transformations for one 

half of the seepage domain 

3. SEEPAGE THEOREY  
The seepage loss from a channel in a homogeneous and 

isotropic porous medium, free surface flow in porous media 

is governed by partial differential equation (navier-stokes 

equations) and the boundary conditions. A simplification is 

made that viscosity assumed zero, the differential equations 

remains nonlinear. The experimental result formulated by 

Henry Darcy (1856), Darcy’s law, expresses a 

proportionality relationship between the filtration velocity 

v(also called specific discharge q) and the change in head 
𝜕ℎ

𝜕𝑥
 

in the direction of velocity component. H is defined by 

h=(P/γ) + z where  γ  is specific weight of water and z is the 

vertical distance from some datum to the required point thus  

v = K( 
𝜕ℎ

𝜕𝑥
)  where K is constant of proportionality, called the 

hydraulic conductivity. 

The seepage loss from a canal in a homogeneous and 

isotropic porous medium, when the water table is at a very 

large depth (10), can be expressed as      qs = KyF    where 

qs = seepage discharge per unit length of canal (m2/s); 

K = hydraulic conductivity of the porous medium (m/s); y = 

depth of water in the canal (m); F = function of channel 

geometry (dimensionless); and yF = width of seepage flow at 

the infinity. Hereafter, F will be referred to as the seepage 

function. 

4. METHODS OF DETERMINATION  
Three methods of seepage measurement are in common use at 

the present, namely: ponding; inflow/outflow; seepage meter. 

Other methods of seepage detection are also used, such as for 

example, chemical tracers, radioactive tracers, piezometric 

surveys, electrical borehole logging, surface resistivity 

measurements, and remote sensing. These methods suffer from 

the disadvantage that they are either more difficult to use or 

interpret. These are the experimental methods but we need 

when we designing the system so we required analytical 

solutions which gives optimum mathematical results. 

The flow-net can be used to obtain the amount of seepage 

through a structure, and the pore pressure and the gradient at 

any point in the flow net. For two dimensional steady state flow 

solution involved the Laplace’s equations and following 

methods may be used to obtain seepage problems with the help 

of flow net. (a) Flow net sketching- flow net for a given cross 

section is obtained by first transforming the cross section, 

noting the boundary conditions, and then sketching the net by 

trial and error. The flow lines and the equipotential lines must 

intersect one another at right angles and the various rules 

concerning boundary conditions and interfaces between zones 

of different permeability must be observed. Flow net sketching 

was first suggested by Forchheimer and further developed by 

A.Casagrande(1937). This method has the desirable feature of 

helping the sketcher develop a feel for the problem. The 

sketcher can readily see how various alterations in the design 

affect the solution to the problem. (b) Analytical Methods- the 

best known theoretical solution is one for flow through an earth 

dam, upstream equipotential is a parabola and the toe drain is a 

horizontal one, the flow net consists of a system of confocal 

parabolas. This solution was made by Kozeny in 1933. A. 

Casagrande has developed approximations to the Kozeny 

parabola to account for the upstream face of the structure being 

a straight line rather than a parabola. He also worked out 

modifications to the Kozeny equations to account for flow that 

does not end in a horizontal drain. (c) Models- solved by 

constructing a scaled model and analyzing flow in the model. 

Practically constructing and placing of required sand particles is 

difficult so not used. (d) Analogy Methods- Laplace’s equation 

for fluid flow also holds for electrical and heat flow. Although 

practical difficulties are encountered with trying to use heat 

flow models to solve fluid flow problems, considerable use has 

been made of electrical models. In the electrical models voltage 

corresponds to total head, conductivity to permeability and 

current to velocity. These models are valuable for instructional 

purposes, and since they are easier to construct than soil models 

and can be adapted to a wide variety of boundary conditions and 

complex problems. (e) Numerical Analysis-can obtain by a 

series of approximations the total heads at various points in a 

network. With the computer it will be possible to solve and plot 

up the results for seepage analysis. The engineer can then get an 

approximate solution to practical problems by comparing his 

particular problem with one for which a solution has been 

obtained. 

Numerous analytical solutions are available in the literature for 

the problem of seepage from canals with different boundary 

conditions. Researchers have considered problems with 

different shapes of the canal and symmetrically/asymmetrically 

placed drainages with finite/infinitely extending soil media. 

However, to make the problem amenable to analytical solution, 

researchers have normally made assumptions such as 

homogenous, isotropic soil media and considering no 

infiltration/ evaporation from the free surface zone. 
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From study the material mathematical solutions based on 

method of images, Green’s function, Dirac’s Delta function 

and conformal mapping are available from which a sample 

study of conformal mapping is presented here for 

understanding the boundary limitations surrounding the 

channels. Seepage flow may be vertical and may be 

horizontal and may be both directions depends on the 

vertical and horizontal strata in vicinity of channel 

Consider a trapezoidal channel of bed width b (m), depth of 

water y(m), and side slope m(1 Vertical: m Horizontal) 

passing through a homogeneous isotropic porous medium of 

hydraulic conductivity k (m/s) underlain by a horizontal 

drainage layer at a depth d (m) below the water surface as 

shown in Fig. 1(a). The steady seepage discharge per unit 

length of channel qs (m
2/s) complying with Darcy’s law can 

be expressed in the following simplest form(Chahar 2000; 

Swamee et al. 2000) 

qs = kyFs               (1) 

where Fs (dimensionless seepage function)function of 

channe geometry and boundary conditions. The pattern of 

seepage from the channel is shown in Fig. 1(a). The effects 

of capillarity, infiltration, and evaporation are ignored. In 

view of the significant length of the channel, the seepage 

flow can be considered two dimensional in the vertical 

plane. It is assumed that the water table is below the top of 

the drainage layer and hence atmospheric pressure prevails 

at the bottom of the seepage layer. The seepage domain has 

symmetry about vertical axis Y so half of the domain 

(a’b’c’g’h’a’) has been used in the analysis. Defining 

complex potential W=φ+iψ  (Fig. 1(d)) where φ-velocity 

potential (m2/s) which is equal to k times the head h (m) and 

ψ-stream function (m2/s) which is constant along 

streamlines. If the physical plane is defined as Z=X+iY then 

Darcy’s law yields u=
𝜕𝜑

𝜕𝑋
=−k 

𝜕ℎ

𝜕𝑋
 and v =

𝜕𝜑

𝜕𝑌
=−k 

𝜕ℎ

𝜕𝑌
 

where u and v=velocity or specific discharge vectors (m/s) in 

X and Y directions, respectively. The hodograph 

dW/dZ=u−iv (Fig. 1b) and the inverse hodograph dZ/dW 

(Fig. 1c) for half of the seepage flow domain (a’b’c’g’h’a’) 
have been drawn following the standard steps (see Harr 

1962). The dZ/dW plane and W plane have been mapped on 

the lower half (ζ≤0) of an auxiliary ζ plane (Fig.1e) using 

the Schwarz-Christoffel conformal transformation. 

Solutions of such problems have given valuable insight into 

the knowledge about seepage from canals, the effect of 

various parameters on the seepage discharge, and the profile 

of the free surface. However, not all the types of boundary 

conditions normally encountered in the field have been 

considered. In most of the seepage problems solved by the 

analytical methods, an assumption has been made that there 

is no infiltration or evaporation along the free surface. In 

most natural conditions, however, there is either 

infiltration/recharge due to irrigation, rain, snowmelt, etc., or 

there is net evaporation or evapotranspiration from the zone 

of free surface. Analysis of the problem with such a 

boundary condition will provide an insight to the effect of 

infiltration/evaporation on the seepage from the canal and 

free surface profile.  

From different planes seepage quantity is computed as well 

as variation in seepage velocity computed depends on shape 

of channel, width and depth of water in channel. Fs has two 

transformation variables β & γ. For given set of shape factor, 

b/y and d/y first determined β and γ and from those Fs and 

drainage layer width B computed and finally qs computed.  
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5. CONCLUSIONS 
From various methods, an exact analytical solution for the 

quantity of seepage from a unlined channel underlain by a 

drainage layer at a shallow depth can be obtained using an 

inverse hodograph and Schwarz- Christoffel transformation 

for one half of the seepage domain have contains many 

variables. From this general solution, other special cases like 

a trapezoidal channel without a drainage layer, a rectangular 

channel underlain by a drainage layer at a shallow depth, a 

triangular channel underlain by a drainage layer at a shallow 

depth, a rectangular channel without a drainage layer, and a 

triangular channel without a drainage layer can be deduced. 

The analysis can also include solutions for the variation in 

the seepage velocity along the channel perimeter and the 

quantity of seepage channels. Therefore the solution is exact, 

complete, consistent, and general. However, the solutions for 

the quantity of seepage, location of the phreatic line, and 

width of seepage at the drainage layer contain improper 

integrals which can only be evaluated by numerical 

integration. 
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