
National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

25

Efficient Approximate Query Processing in P2P Network

Amol P. Bhagat
Department of Computer Science

and Engg, Prof. Ram Meghe
College of Engineering and

Magmt, Badnera, 444701 India

P. P. Pawade
Department of Computer Science

and Engg, Sipna College of
Engineering and Technology,

 Amravati, 444601 India

V. T. Gaikwad
Department of Computer Science

and Engg, Sipna College of
Engineering and Technology,

 Amravati, 444601 India

ABSTRACT

Peer-to-peer (P2P) databases are becoming prevalent on the

Internet for distribution and sharing of documents,

applications, and other digital media. The problem of

answering large-scale ad hoc analysis queries, for example,

aggregation queries, on these databases poses unique

challenges. Exact solutions can be time consuming and

difficult to implement, given the distributed and dynamic

nature of P2P databases. In this paper, we presented novel

sampling-based techniques for approximate answering of ad

hoc aggregation queries in such databases. Computing a high-

quality random sample of the database efficiently in the P2P

environment is complicated due to several factors: the data is

distributed (usually in uneven quantities) across many peers,

within each peer, the data is often highly correlated, and,

moreover, even collecting a random sample of the peers is

difficult to accomplish. To counter these problems, proposed

approach will uses approach based on random walks of the

P2P graph, as well as block-level sampling techniques.

General Terms

Databases, Query Processing.

Keywords

Peer-to-peer Network, Query Processing, Distributed

Databases.

1. INTRODUCTION
Peer-to-peer (P2P) network is increasingly becoming popular

because it offer opportunities for real-time communication,

ad-hoc collaboration [1] and information sharing [2] in a

large-scale distributed environment. Peer-to-peer computing is

defined as the sharing of computer resources and information

through direct exchange. The most distinct characteristic of

P2P computing is that there is symmetric communication

between the peers; each peer has both a client and a server

role. The advantages of the P2P systems are multi-

dimensional; they improve scalability by enabling direct and

real-time sharing of services and information; enable

knowledge sharing by aggregating information and resources

from nodes that are located on geographically distributed and

potentially heterogeneous platforms; and, provide high

availability by eliminating the need for a single centralized

component. The most compelling applications on P2P systems

are file sharing & retrieval. For example, P2P systems such as

Napster [3], Gnutella [4], KaZaA [5], and Freenet [6] are

popular for their file sharing capabilities, for example sharing

of songs, music & so on.

1.1 Structured P2P
Structured P2P network (such as Pastry [3] and Chord [4]) is

organized in such a way that data items are located at specific

nodes in the network, and nodes maintain some state

information to enable efficient retrieval of the data. This

organization maps data items to particular nodes and assumes

that all nodes are equal in terms of resources, which can lead

to bottlenecks and hot spots.

Structured P2P networks employ a globally consistent

protocol to ensure that any node can efficiently route a search

to some peer that has the desired file, even if the file is

extremely rare. Such a guarantee necessitates a more

structured pattern of overlay links. By far the most common

type of structured P2P network is the distributed hash table

(DHT), in which a variant of consistent hashing is used to

assign ownership of each file to a particular peer, in a way

analogous to a traditional hash table's assignment of each key

to a particular array slot.

1.2 Unstructured P2P
The paper focuses on unstructured P2P network, which

makes no assumption about the location of the data items in

the node, and nodes are able to join the system at random

times and depart without a priori notification. Several recent

efforts have demonstrated that unstructured P2P network can

be used efficiently for multicast distributed object location

and information retrieval [5].

An unstructured P2P network is formed when the overlay

links are established arbitrarily. Such networks can be easily

constructed as a new peer that wants to join the network can

copy existing links of another node and then form its own

links over time.

In particular, three models of unstructured architecture can be

distinguished:

a) In pure peer-to-peer network peers act as equals, merging

the roles of clients and server. In such networks, there is

no central server managing the network, neither is there a

central router. Some examples of pure P2P Application

Layer networks designed for peer-to-peer file sharing are

gnutella (pre v0.4) and Freenet.

b) Hybrid peer-to-peer systems which distribute their clients

into two groups client nodes and overlay nodes.

Typically, each client is able to act according to the

momentary need of the network and can become part of

the respective overlay network used to coordinate the

P2P structure. As examples for such networks can be

named modern implementations of gnutella (after v0.4)

and Gnutella2.

c) In centralized peer-to-peer systems are networks using

on the one hand central server(s) or bootstrapping

mechanisms, on the other hand P2P for their data

transfers. These networks are in general called

http://en.wikipedia.org/wiki/Application_Layer
http://en.wikipedia.org/wiki/Application_Layer
http://en.wikipedia.org/wiki/Application_Layer
http://en.wikipedia.org/wiki/Peer-to-peer_file_sharing
http://en.wikipedia.org/wiki/Overlay_network
http://en.wikipedia.org/wiki/Gnutella2

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

26

'centralized networks' because of their lack of ability to

work without their central server(s). An example for such

a network is the eDonkey network (often also called

eD2k).

It has been observed that in most typical data analysis and

data mining applications, timeliness and interactivity are more

important considerations than accuracy. Thus, data analysts

are often willing to overlook small inaccuracies in the answer,

provided that the answer can be obtained fast enough. This

observation has been the primary driving force behind the

recent development of AQP techniques for aggregation

queries in traditional databases and decision support systems.

2. AVAILABLE SYSTEMS
P2P systems are becoming very popular because they provide

an efficient mechanism for building large scalable systems

[6]. Most recent work has focused on Distributed Hash Tables

(DHTs). Such techniques provide scalability advantages over

unstructured systems (such as Gnutella); however, they are

not flexible enough for some applications, especially when

nodes join or leave the network frequently or change their

connections.

Swarup Acharya, Phillip and Viswanath Poosala developed a

system called Approximate QUary Answering (AQUA) [1]

providing fast, approximate answers to aggregate queries,

which are very common in OLAP applications. It has been

designed to run on top of any commercial relational DBMS.

Aqua precomputes synopses (special statistical summaries) of

the original data and stores them in the DBMS. It provides

approximate answers by rewriting the queries to run on these

synopses. Finally, Aqua also incrementally keeps the

synopses up-to-date as the database changes.

PIER and Piazza are two well-known data management

systems running on top of peer-to-peer architectures. PIER is

a general-purpose relational query processor designed to scale

to millions of participating nodes on the Internet [7]. Piazza

addresses many of the challenges associated with data sharing

among many peering data providers [8]. Neither PIER nor

Piazza describes explicit support for top-k query processing.

Methods to sample random peers in P2P network have been

proposed in [8]. These techniques use Markov-chain random

walks [7, 9] to select random peers from the network. Their

results show that when certain structural properties of the

graph are known or can be estimated (such as the second

eigenvalue of the graph), the parameters of the walk can be set

so that a representative sample of the stationary distribution

can be collected with high probability. There are known

techniques for computing approximate aggregates [8] in

distributed settings (most notably, the Gossip protocol [5],

[6]). The technique works generally as a preprocessing step

where all peers in a network attempt to mix data among

adjacent peers, eventually converging upon a single value.

The inability to contact all nodes in the network makes it

exceedingly difficult to Gossip in the traditional sense.

Nowadays, the two main approaches have emerged for

constructing P2P networks: structured and unstructured.

Several recent efforts have demonstrated that unstructured

P2P networks can be used efficiently for multicast distributed

object location and information retrieval [10], [11], [12]. For

AQP in unstructured P2P systems, attempting to adapt the

approach of precomputed samples is impractical for several

reasons:

a) It involves scanning the entire P2P repository, which is

difficult,

b) Since no centralized storage exists, it is not clear where

the precomputed sample should reside, and

c) The very dynamic nature of P2P systems indicates that

precomputed samples will quickly become stale, unless

they are frequently refreshed.

Thus, the approach here is to investigate the feasibility of

online sampling techniques for AQP on P2P databases.

However, online sampling approaches in P2P databases pose

their own set of challenges. To illustrate these challenges,

consider the problem of attempting to draw a uniform random

sample of n tuples from such a P2P database containing a total

of N tuples. To ensure a true uniform random sample,

sampling procedure should be such that each subset of n

tuples out of N should be equally likely to be drawn.

However, this is an extremely challenging problem due to two

reasons:

a) Picking even a set of uniform random peers is a difficult

problem, as the query node does not have the Internet

Protocol (IP) addresses of all peers in the network. This

is a well-known problem that other researchers have

tackled (in different contexts) by using random-walk

techniques on the P2P graph [13], [14], [15]. That is,

where a Markovian random walk is initiated from the

query node that picks adjacent peers to visit, with equal

probability and under certain connectivity properties, the

random walk is expected to rapidly reach a stationary

distribution. If the graph is badly clustered with small

cuts, then this affects the speed at which the walk

converges. Moreover, even after convergence, the

stationary distribution is not uniform; in fact, it is skewed

toward giving higher probabilities to nodes with larger

degrees in the P2P graph.

b) Even if we could select a peer (or a set of peers)

uniformly at random, it does not make the problem of

selecting a uniform random set of tuples much easier.

This is because visiting a peer at random has an

associated overhead; thus, it makes sense to select

multiple tuples at random from this peer during the same

visit. However, this may compromise the quality of the

final set of tuples retrieved, as the tuples within the same

peer are likely to be correlated. For example, if the P2P

database contained listings of, say, movies, then the

movies stored on a specific peer are likely to be of the

same genre. This correlation can be reduced if we select

just one tuple at random from a randomly selected peer;

however, the overheads associated with such a scheme

will be intolerable.

.

3. OUR APPROACH
Each peer is connected to a set of other peers in the network

via uni-directional links, that is, each peer can locally select

the other peers it wishes to link to. The distinguish between

two types of links:

• Neighbor links connect a peer p to a set of other peers (p’s

neighbors) chosen at random, as in typical Gnutella-like

networks.

• Acquaintance links connect a peer p to a set of other peers

(p’s acquaintances) chosen based on common interests.

Each peer has a bounded number of neighbor and

acquaintance links. It can be called as p’s friends the set of

peers that have p among their acquaintances. The number of

friends of a peer is its in-degree (which is unbounded, let

alone by the size of the network).

A peer can make some of its local files accessible to other

peers. Peers that do not share any file are called free riders.

Non-free-riders or serving peers are those peers that

contribute files to the community. A successful request yields

a list of peers that have a file matching the original query.

http://en.wikipedia.org/wiki/EDonkey_network

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

27

Assume that, when several peers have the desired file, the

peer that is closest to the requester (in number of hops) is

chosen. I call that peer the answerer. Note that answering a

query typically implies sending a file to the requester.

Some of the mechanisms can be introduced for shortly require

peers to maintain state information about their friends. The

state of a peer consists of the list of the names of its shared

files. For load-balancing purposes, peers also need to know

the in-degree of their friends.

To illustrate these definitions, consider the sample network

depicted in Fig. 1, in which each peer has a single neighbor

and acquaintance link. Peer p1 shares 99 files and its state

consists of the names of all these files. It has p9 as random

neighbor; p4 as acquaintance; and p2, p3, p4, p6, and p8 as

friends, which corresponds to an in-degree of 5. Peers p7 and

p9 are free-riders and have no friends. As it is seen here, a

high in-degree generally indicates that a peer shares many

files, or is well-connected to peers that share many files; in

contrast, free-riders typically have a null in-degree. Pair-wise

acquaintance relationships between serving peers that have

similar interests (e.g., between p1 and p4) are also common in

practice, and effectively yield bi-directional links.

Fig 1: Sample minimal network, with a single neighbor &

acquaintance link per peer

Essentially, here trying to pick true uniform random samples

of the tuples, as such samples are likely to be extremely

impractical to obtain. In the first phase, initiate a fixed-length

random walk from the query node. This random walk should

be long enough to ensure that the visited peers represent a

close sample from the underlying stationary distribution. Then

retrieve certain information from the visited peers, such as the

number of tuples, the aggregate of tuples (for example, SUM,

COUNT, AVG, and so forth) that satisfy the selection

condition, and send this information back to the query node.

This information is then analyzed at the query node to

determine the skewed nature of the data that is distributed

across the network, such as the variance of the aggregates of

the data at peers, the amount of correlation between tuples

that exists within the same peers, the variance in the degrees

of individual nodes in the P2P graph and so on. Once this data

has been analyzed at the query node, an estimation is made on

how much more samples are required so that the original

query can be optimally answered within the desired accuracy,

with high probability. The second phase is then

straightforward: A random walk is reinitiated, and tuples are

collected according to the recommendations made by the first

phase. Effectively, the first phase is used to “sniff” the

network and determine an optimal-cost “query plan,” which is

then implemented in the second phase.

3.1 Peer-to-Peer Model
Here, it is assumed that an unstructured P2P network

represented as a graph G = (P, E) , with a vertex set P = { p1,

p2……, pM} and an edge set E. The vertices in P represent the

peers in the network, and the edges in E represent the

connections between the vertices in P. Each peer p is

identified by the processor’s IP address and a port number

(IPp and portp). The peer p is also characterized by the

capabilities of the processor on which it is located, including

its CPU speed pcpu, memory bandwidth pmem, and disk space

pdisk. The node also has a limited amount of bandwidth to the

network, noted by pband. In unstructured P2P networks, a node

becomes a member of the network by establishing a

connection with at least one peer currently in the network.

Each node maintains a small number of connections with its

peers: The number of connections is typically limited by the

resources at the peer. We denote the number of connections

that a peer is maintaining by pconn.

3.2 Random Walks
The simulation of a random walk. or more generally a Markov

chain is a fundamental algorithmic paradigm with highly

sophisticated and profound impact in algorithms and

complexity theory. Furthermore. it has found a wide range of

applications in such diverse fields as statistics, physics,

artificial intelligence, vision, population dynamics,

bioinformatics, among others.

 A Markov-chain random walk is a procedure that is initiated

at the query node, and for each visited peer, the next peer to

visit is selected with equal probability from among its

neighbors (and itself and, thus, self loops are allowed). It is

well known that if this walk is carried out long enough, then

the eventual probability of reaching any peer p will reach a

stationary distribution. To make this more precise, let P = {p1,

p2…… pM}be the entire set of peers, let E be the entire set of

edges, and let the degree of a peer p be deg(p). Then, the

probability of any peer p in the stationary distribution is

prob(p) =deg(p) / 2|E|

It is important to note that the above distribution is not

uniform. The probability of each peer is proportional to its

degree. Thus, even if it can be achieved this distribution

efficiently, it will have to compensate for the fact that the

distribution is skewed as above if used samples have to

drawn from it for answering aggregation queries.

3.3 Gossip based protocols
Gossip-based (or epidemic) protocols are emerging as an

important communication paradigm. In gossip-based

protocols, each node contacts one or a few nodes in each

round (usually chosen at random), and exchanges information

with these nodes. The dynamics of information spread bear a

resemblance to the spread of an epidemic [16, 17], and lead to

high fault tolerance and “self-stabilization” [18, 17, 19].

Gossip-based protocols usually do not require error recovery

mechanisms, and thus enjoy a large advantage in simplicity,

while often incurring only moderate overhead compared to

optimal deterministic protocols, such as the construction of

data dissemination trees. The guarantees obtained from gossip

are usually probabilistic in nature; they achieve high stability

under stress and disruptions, and scale gracefully to a huge

number of nodes. In comparison, traditional techniques have

absolute guarantees, but are unstable or fail to make progress

during periods of even modest disruption.

3.4 Aggregation Queries
Aggregation queries have the potential of finding applications

in decision support, data analysis, and data mining. Decision

support applications such as On Line Analytical Processing

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

28

(OLAP) and data mining tools for analyzing large databases

are gaining popularity. Executing such applications on large

volumes of data can be resource intensive. Fortunately, small

samples of the data can be used by data mining and statistical

techniques effectively without significantly compromising the

accuracy of their analysis. Likewise, OLAP servers that

answer queries involving aggregation can potentially benefit

from the ability to use sampling.

Aggregation query :

SELECT Agg-Op(Col) FROM T WHERE selection-condition

In the above query, the Agg-Op may be any aggregation

operator such as SUM, COUNT, AVG, and so on, Col may be

any numeric measure column of T or even an expression

involving multiple columns, and the selection condition

decides which tuples should be involved in the aggregation.

COUNT:

Here, the first phase is broken up into the following main

components. First, a random walk is performed on the P2P

network, attempting to avoid skewing due to graph clustering

and vertices of high degree. The walk skips j nodes between

each selection to reduce the dependency between consecutive

selected peers. As the jump size increases, our method

increases overall bandwidth requirements within the database,

but for most cases, small jump sizes suffice for obtaining

random samples.

Second, aggregates of the data is computed at the peers and

send these back to the query node. Here somewhat a simpler

approach is taken in which take fix a constant t such that if a

peer has at most t tuples, then its database is aggregated in its

entirety, whereas if the peer has more than t tuples, then t

tuples are randomly selected and aggregated. Subsampling

can be more efficient than scanning the entire local database,

for example, by block-level sampling, in which only a small

number of disk blocks are retrieved. If the data in the disk

blocks are highly correlated, then it will simply mean that the

number of peers to be visited will increase, as determined by

our cross validation approach at query time.

Third, the CVError of the collected sample is estimated and

use that to estimate the additional number of peers that need

to be visited in the second phase.

SUM and AVERAGE:

Although the algorithm has been presented for COUNT

queries, it can be easily extended to other aggregates such as

the SUM and AVERAGE by modifying the y(Curr) value

specified on line 8, phase 1 of the algorithm. For the SUM, no

changes are required, and for the AVERAGE,

(#tuples/#processTuples) is removed from y(Curr), since no

scaling is required.

MEDIAN:

For more complex aggregates such as estimation of medians,

quantiles, and distinct values, more sophisticated algorithms

are required. In addition to computing COUNT, SUM, and

AVERAGE aggregates, I can also efficiently estimate more

difficult aggregates such as the MEDIAN. I propose an

algorithm for computing the MEDIAN in a distributed fashion

based upon comparing the rank distances of medians of

individual peers. Our algorithm for computing the MEDIAN

is given as follows:

1. Select m peers at random by using random walk.

2. Each peer sj computes its median medj and sends it to

the query node, along with prob (sj).

3. The query node randomly partitions the m medians into

two groups of m=2 medians: Group1 and Group2.

4. Let medg1 be the weighted median of Group1, that is,

such that the following is minimized:

5. Find the error between the median of Group2 (say,

medg2) and the weighted rank of medg1 in Group2. That

is, let

6. Select additional c2/∆2

req peers by using random walk.

7. Find and return the weighted median of the medians of

the additional peers.

3.5 Hybrid Algorithm
In order to further improve the quality of our random

sampling process, we have employed a hybrid sampling

technique by allowing individually selected peers to perform

additional sampling in parallel with the random sampling

phase.

Since each peer is limited to knowledge of adjacent peers,

computing aggregates based upon a single start location

(query node) limits the total number of peers available for

processing. Each peer accessed is aware of the peers that

make up the path from the query node to itself. Most queries

are unable to reach all peers in a network either due to high

per-message cost or query execution time requirements.

Techniques exist for generating expander P2P topologies [20]:

A fully decentralized approach for computing random

samples is impractical. We address the possibility of highly

connected networks by randomly selecting adjacent peers as

opposed to flooding. Since we cannot fully exploit a

decentralized approach for query processing, we propose a

hybrid solution for random sampling, focusing on extending

our technique with a hybrid in-network decentralized

approach.

Upon selection of a peer pi by the random-walk phase, pi

contains a period pi where further processing may be

performed to improve the quality of a peer’s local data. The

period pi is defined as the number of hops remaining in the

random-walk phase before the final peer pm is selected for

sampling. In order to exploit these periods, we propose an

incremental decentralized sampling technique building upon

the Gossip protocol [21]. The number of messages sent over

the network due to gossiping may be varied based upon the

user-defined parameters ra & rr. Parameter ra is the number of

edges that a peer may randomly select for gossiping, and rr is

the maximum number of hops from pi that gossiping is

permitted. Regardless of the value of ra or rr, the number of

messages sent to the query node remains constant. These two

parameters combined allow the user to leverage in-network

computation, without affecting the number of messages sent

back to the query node, avoiding possible bottlenecks.

Mixing between peers increases the diffusion of values

through the network. For our purpose, there is no specific

constraint on the number of iterations required before exiting.

Under our hybrid approach, the algorithm attempts to

maximize the amount of mixing per peer pi by exploiting the

period before a peer must send a sample back to the query

node. As stated in [21], the diffusion speed of the network can

be represented as T(n,ε) = O (log n + log 1/ε) for expander-

type networks. In addition, for very long walks, convergence

may occur before the final peer has been selected, but we can

continue to perform gossiping, without loss of benefit, since

P2P networks such as Gnutella [22] are, by nature, transient.

Where peers are continually entering and leaving the network,

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

29

gossiping can continue to diffuse new values as peers enter

the network.

Simply, since we know how many peers remain to be selected

by the random-walk phase, the lower bound for the period

pi_period is the remaining number of hops required to obtain the

required sample, given the specified jump size and sample

size. For example, suppose a query is executed with the

following parameters: jump size of 10, tuples per peer 100,

and a sample size of 400. After selection of the first peer, at

least 30 hops are required by the random walk before

completion. For the first peer selected p1, the period p1 period

is equal to 30 hops. This determines that for the next 30 hops,

further processing can be utilized to improve the sample

quality for the selected peer p1. Thus, for each consecutive

peer selected, the period pi period is bounded as the (jump size

_ the number of remaining peers to be selected).

Fig 2: Each ring represents the increase in gossiping per

period for each peer.

As shown in Fig. 1, the earlier that a peer is selected for

sampling, the larger is the period available for gossiping. As

additional hops are taken to reach the next peer for sampling,

already selected peers can continue to gossip (this is

represented by the rings around peers for each period). By

combining our knowledge of Gossip and the pi_period for

selected peers, we can maximize the quality of the sample

obtained from individual peers. Our hybrid sampling

algorithm executes as follows:

1. Given a random start-location peer p0, the local

group is { p0}.

2. Initialize a group for each selected peer pi : groupi ϵ

{ pi}.

3. For each peer in groupi, randomly select ra adjacent

peers.

4. Extend the local group to include adjacent peers if

and only if (path from pi ≤rr groupi ϵ groupi, ᶸ { for

each peer in groupi add pi1 …..ra}.

5. Perform Gossip on current groupi.

6. Continue steps 2-5 for each peer in groupi until

pi_period has been reached.

7. All peers selected by the random sampling phase,

excluding peers selected by the local groups, send

their current mixed values back to the query node.

8. Compute remaining algorithm normally.

Peers near the beginning of the random walk have a longer

period to gossip, whereas peers closer to the end of the walk

contain an incrementally smaller period for gossiping. This

creates an uneven level of mixing among the local groups of

peers, but since all peers obey mass conservation as

previously defined, the number of rounds performed by each

group does not affect the overall results between the different

gossiping groups.

4. CONCLUSIONS
In this paper, adaptive sampling-based techniques are

presented for the approximate answering of ad hoc

aggregation queries in P2P databases. This approach requires

a minimal number of messages sent over the network and

provides tunable parameters to maximize performance for

various network topologies. The used approach provides a

powerful technique for approximating aggregates of various

topologies and data clustering but comes with limitations

based upon given topologies structure and connectivity. For

topologies with very distinct clusters of peers (small cut size),

it becomes increasingly difficult to accurately obtain random

samples due to the inability of random-walk process to

quickly reach all clusters. This can be resolved by increasing

the jump size, allowing a larger number of peers to be

considered and increasing the allowed mixing by hybrid

approach. By varying a few parameters, the given algorithm

successfully computes aggregates within a given required

accuracy.

5. REFERENCES
[1] S.Acharya, P.B.Gibbons, and V.Poosala, “Aqua: A Fast

Decision Support System Using Approximate Query

Answers,” Proc. 25th Int’l Conf. Very Large Data Bases

(VLDB ’99), 1999.

[2] Adamic, R. Lukose, A. Puniyani, and B. Huberman,

“Search in Power-Law Networks,” Physical Rev. E,

2001.

[3] B. Babcock, S. Chaudhuri, and G. Das, “Dynamic

Sample Selection for Approximate Query Processing,”

Proc. 22nd ACM SIGMOD Int’l Conf. Management of

Data (SIGMOD ’03), pp. 539-550, 2003.

[4] A.R. Bharambe, M. Agrawal, and S. Seshan, “Mercury:

Supporting Scalable Multi-Attribute Range Queries,”

Proc. ACM Ann. Conf. Applications, Technologies,

Architectures, and Protocols for Computer Comm.

(SIGCOMM ’04), 2004.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah,

“Analysis and Optimization of Randomized Gossip

Algorithms,” Proc. 43rd IEEE Conf. Decision and

Control (CDC ’04), 2004.

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip

and Mixing Times of Random Walks on Random

Graphs,” Proc. IEEE INFOCOM ’05, 2005.

[7] M. Charikar, S. Chaudhuri, R. Motwani, and V.

Narasayya, “Towards Estimation Error Guarantees for

Distinct Values,” Proc. 19th ACM Symp. Principles of

Database Systems (PODS ’00), 2000.

[8] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V.

Narasayya,“Overcoming Limitations of Sampling for

Aggregation Queries,” Proc. 17th IEEE Int’l Conf. Data

Eng. (ICDE ’01), pp. 534-542, 2001.

[9] S. Chaudhuri, R. Motwani, and V. Narasayya, “Random

Sampling for Histogram Construction: How Much Is

Enough,” Proc. ACM SIGMOD Int’l Conf. Management

of Data (SIGMOD ’98), pp. 436-447, 1998.

[10] Y. Chu, S. Rao, and H. Zhang, “A Case for End System

Multicast,” Proc. ACM Int’l Conf. Measurement and

Modeling of Computer Systems (SIGMETRICS ’00),

2000.

[11] X. Li, Y.J. Kim, R. Govindan, and W. Hong, “Multi-

Dimensional Range Queries in Sensor Networks,” Proc.

First ACM Int’l Conf. Embedded Networked Sensor

Systems (SENSYS ’03), 2003

[12] D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos,

“Exploiting Locality for Scalable Information Retrieval

in Peer-to-Peer Networks,” Information System, vol. 30,

no. 4, pp. 277-298, 2005.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

30

[13] Gkantsidis, M. Mihail, and A. Saberi, “Random Walks in

Peerto- Peer Networks,” Proc. IEEE INFOCOM ’04,

2004.

[14] V. King and J. Saia, “Choosing a Random Peer,” Proc.

23rd Ann. ACM Symp. Principles of Distributed

Computing (PODC ’04), 2004.

[15] C. Faloutsos, P. Faloutsos, and M. Faloutsos, “On

Power-Law Relationships of the Internet Topology,”

Proc. ACM Ann. Conf. Applications, Technologies,

Architectures, and Protocols for Computer Comm.

(SIGCOMM ’99), 1999.

[16]

