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ABSTRACT 

Peer-to-peer (P2P) databases are becoming prevalent on the 

Internet for distribution and sharing of documents, 

applications, and other digital media. The problem of 

answering large-scale ad hoc analysis queries, for example, 

aggregation queries, on these databases poses unique 

challenges. Exact solutions can be time consuming and 

difficult to implement, given the distributed and dynamic 

nature of P2P databases. In this paper, we presented novel 

sampling-based techniques for approximate answering of ad 

hoc aggregation queries in such databases. Computing a high-

quality random sample of the database efficiently in the P2P 

environment is complicated due to several factors: the data is 

distributed (usually in uneven quantities) across many peers, 

within each peer, the data is often highly correlated, and, 

moreover, even collecting a random sample of the peers is 

difficult to accomplish. To counter these problems, proposed 

approach will uses approach based on random walks of the 

P2P graph, as well as block-level sampling techniques.   
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1. INTRODUCTION 
Peer-to-peer (P2P) network is increasingly becoming popular 

because it offer opportunities for real-time communication, 

ad-hoc collaboration [1] and information sharing [2] in a 

large-scale distributed environment. Peer-to-peer computing is 

defined as the sharing of computer resources and information 

through direct exchange. The most distinct characteristic of 

P2P computing is that there is symmetric communication 

between the peers; each peer has both a client and a server 

role. The advantages of the P2P systems are multi-

dimensional; they improve scalability by enabling direct and 

real-time sharing of services and information; enable 

knowledge sharing by aggregating information and resources 

from nodes that are located on geographically distributed and 

potentially heterogeneous platforms; and, provide high 

availability by eliminating the need for a single centralized 

component. The most compelling applications on P2P systems 

are file sharing & retrieval. For example, P2P systems such as 

Napster [3], Gnutella [4], KaZaA [5], and Freenet [6] are 

popular for their file sharing capabilities, for example sharing 

of songs, music & so on. 

 

1.1 Structured P2P  
Structured P2P network (such as Pastry [3] and Chord [4]) is 

organized in such a way that data items are located at specific 

nodes in the network, and nodes maintain some state 

information to enable efficient retrieval of the data. This 

organization maps data items to particular nodes and assumes 

that all nodes are equal in terms of resources, which can lead 

to bottlenecks and hot spots.  

Structured P2P networks employ a globally consistent 

protocol to ensure that any node can efficiently route a search 

to some peer that has the desired file, even if the file is 

extremely rare. Such a guarantee necessitates a more 

structured pattern of overlay links. By far the most common 

type of structured P2P network is the distributed hash table 

(DHT), in which a variant of consistent hashing is used to 

assign ownership of each file to a particular peer, in a way 

analogous to a traditional hash table's assignment of each key 

to a particular array slot. 

1.2 Unstructured P2P 
The paper focuses on unstructured P2P network, which 

makes no assumption about the location of the data items in 

the node, and nodes are able to join the system at random 

times and depart without a priori notification. Several recent 

efforts have demonstrated that unstructured P2P network can 

be used efficiently for multicast distributed object location 

and information retrieval [5].  

An unstructured P2P network is formed when the overlay 

links are established arbitrarily. Such networks can be easily 

constructed as a new peer that wants to join the network can 

copy existing links of another node and then form its own 

links over time. 

In particular, three models of unstructured architecture can be 

distinguished: 

a) In pure peer-to-peer network peers act as equals, merging 

the roles of clients and server. In such networks, there is 

no central server managing the network, neither is there a 

central router. Some examples of pure P2P Application 

Layer networks designed for peer-to-peer file sharing are 

gnutella (pre v0.4) and Freenet. 

b) Hybrid peer-to-peer systems which distribute their clients 

into two groups client nodes and overlay nodes. 

Typically, each client is able to act according to the 

momentary need of the network and can become part of 

the respective overlay network used to coordinate the 

P2P structure. As examples for such networks can be 

named modern implementations of gnutella (after v0.4) 

and Gnutella2. 

c) In centralized peer-to-peer systems are networks using 

on the one hand central server(s) or bootstrapping 

mechanisms, on the other hand P2P for their data 

transfers. These networks are in general called 

http://en.wikipedia.org/wiki/Application_Layer
http://en.wikipedia.org/wiki/Application_Layer
http://en.wikipedia.org/wiki/Application_Layer
http://en.wikipedia.org/wiki/Peer-to-peer_file_sharing
http://en.wikipedia.org/wiki/Overlay_network
http://en.wikipedia.org/wiki/Gnutella2
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'centralized networks' because of their lack of ability to 

work without their central server(s). An example for such 

a network is the eDonkey network (often also called 

eD2k). 

It has been observed that in most typical data analysis and 

data mining applications, timeliness and interactivity are more 

important considerations than accuracy. Thus, data analysts 

are often willing to overlook small inaccuracies in the answer, 

provided that the answer can be obtained fast enough.  This 

observation has been the primary driving force behind the 

recent development of AQP techniques for aggregation 

queries in traditional databases and decision support systems. 

2. AVAILABLE SYSTEMS 
P2P systems are becoming very popular because they provide 

an efficient mechanism for building large scalable systems 

[6]. Most recent work has focused on Distributed Hash Tables 

(DHTs). Such techniques provide scalability advantages over 

unstructured systems (such as Gnutella); however, they are 

not flexible enough for some applications, especially when 

nodes join or leave the network frequently or change their 

connections. 

Swarup Acharya, Phillip and Viswanath Poosala developed a 

system called Approximate QUary Answering (AQUA) [1] 

providing fast, approximate answers to aggregate queries, 

which are very common in OLAP applications. It has been 

designed to run on top of any commercial relational DBMS. 

Aqua precomputes synopses (special statistical summaries) of 

the original data and stores them in the DBMS. It provides 

approximate answers by rewriting the queries to run on these 

synopses. Finally, Aqua also incrementally keeps the 

synopses up-to-date as the database changes. 

PIER and Piazza are two well-known data management 

systems running on top of peer-to-peer architectures. PIER is 

a general-purpose relational query processor designed to scale 

to millions of participating nodes on the Internet [7]. Piazza 

addresses many of the challenges associated with data sharing 

among many peering data providers [8]. Neither PIER nor 

Piazza describes explicit support for top-k query processing.  

Methods to sample random peers in P2P network have been 

proposed in [8]. These techniques use Markov-chain random 

walks [7, 9] to select random peers from the network. Their 

results show that when certain structural properties of the 

graph are known or can be estimated (such as the second 

eigenvalue of the graph), the parameters of the walk can be set 

so that a representative sample of the stationary distribution 

can be collected with high probability. There are known 

techniques for computing approximate aggregates [8] in 

distributed settings (most notably, the Gossip protocol [5], 

[6]). The technique works generally as a preprocessing step 

where all peers in a network attempt to mix data among 

adjacent peers, eventually converging upon a single value. 

The inability to contact all nodes in the network makes it 

exceedingly difficult to Gossip in the traditional sense. 

Nowadays, the two main approaches have emerged for 

constructing P2P networks: structured and unstructured. 

Several recent efforts have demonstrated that unstructured 

P2P networks can be used efficiently for multicast distributed 

object location and information retrieval [10], [11], [12]. For 

AQP in unstructured P2P systems, attempting to adapt the 

approach of precomputed samples is impractical for several 

reasons:  

a) It involves scanning the entire P2P repository, which is 

difficult,  

b) Since no centralized storage exists, it is not clear where 

the precomputed sample should reside, and  

c) The very dynamic nature of P2P systems indicates that 

precomputed samples will quickly become stale, unless 

they are frequently refreshed. 

Thus, the approach here is to investigate the feasibility of 

online sampling techniques for AQP on P2P databases. 

However, online sampling approaches in P2P databases pose 

their own set of challenges. To illustrate these challenges, 

consider the problem of attempting to draw a uniform random 

sample of n tuples from such a P2P database containing a total 

of N tuples. To ensure a true uniform random sample, 

sampling procedure should be such that each subset of n 

tuples out of N should be equally likely to be drawn. 

However, this is an extremely challenging problem due to two 

reasons: 

a) Picking even a set of uniform random peers is a difficult 

problem, as the query node does not have the Internet 

Protocol (IP) addresses of all peers in the network. This 

is a well-known problem that other researchers have 

tackled (in different contexts) by using random-walk 

techniques on the P2P graph [13], [14], [15]. That is, 

where a Markovian random walk is initiated from the 

query node that picks adjacent peers to visit, with equal 

probability and under certain connectivity properties, the 

random walk is expected to rapidly reach a stationary 

distribution. If the graph is badly clustered with small 

cuts, then this affects the speed at which the walk 

converges. Moreover, even after convergence, the 

stationary distribution is not uniform; in fact, it is skewed 

toward giving higher probabilities to nodes with larger 

degrees in the P2P graph. 

b) Even if we could select a peer (or a set of peers) 

uniformly at random, it does not make the problem of 

selecting a uniform random set of tuples much easier. 

This is because visiting a peer at random has an 

associated overhead; thus, it makes sense to select 

multiple tuples at random from this peer during the same 

visit. However, this may compromise the quality of the 

final set of tuples retrieved, as the tuples within the same 

peer are likely to be correlated. For example, if the P2P 

database contained listings of, say, movies, then the 

movies stored on a specific peer are likely to be of the 

same genre. This correlation can be reduced if we select 

just one tuple at random from a randomly selected peer; 

however, the overheads associated with such a scheme 

will be intolerable.  

. 

3. OUR APPROACH 
Each peer is connected to a set of other peers in the network 

via uni-directional links, that is, each peer can locally select 

the other peers it wishes to link to. The distinguish between 

two types of links: 

• Neighbor links connect a peer p to a set of other peers (p’s 

neighbors) chosen at random, as in typical Gnutella-like 

networks. 

• Acquaintance links connect a peer p to a set of other peers 

(p’s acquaintances) chosen based on common interests.  

Each peer has a bounded number of neighbor and 

acquaintance links. It can be called as p’s friends the set of 

peers that have p among their acquaintances. The number of 

friends of a peer is its in-degree (which is unbounded, let 

alone by the size of the network). 

A peer can make some of its local files accessible to other 

peers. Peers that do not share any file are called free riders. 

Non-free-riders or serving peers are those peers that 

contribute files to the community. A successful request yields 

a list of peers that have a file matching the original query. 

http://en.wikipedia.org/wiki/EDonkey_network
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Assume that, when several peers have the desired file, the 

peer that is closest to the requester (in number of hops) is 

chosen. I call that peer the answerer. Note that answering a 

query typically implies sending a file to the requester. 

Some of the mechanisms can be introduced for shortly require 

peers to maintain state information about their friends. The 

state of a peer consists of the list of the names of its shared 

files. For load-balancing purposes, peers also need to know 

the in-degree of their friends. 

To illustrate these definitions, consider the sample network 

depicted in Fig. 1, in which each peer has a single neighbor 

and acquaintance link. Peer p1 shares 99 files and its state 

consists of the names of all these files. It has p9 as random 

neighbor; p4 as acquaintance; and p2, p3, p4, p6, and p8 as 

friends, which corresponds to an in-degree of 5. Peers p7 and 

p9 are free-riders and have no friends. As it is seen here, a 

high in-degree generally indicates that a peer shares many 

files, or is well-connected to peers that share many files; in 

contrast, free-riders typically have a null in-degree. Pair-wise 

acquaintance relationships between serving peers that have 

similar interests (e.g., between p1 and p4) are also common in 

practice, and effectively yield bi-directional links. 

 

 
Fig 1: Sample minimal network, with a single neighbor & 

acquaintance link per peer 

Essentially, here trying to pick true uniform random samples 

of the tuples, as such samples are likely to be extremely 

impractical to obtain. In the first phase, initiate a fixed-length 

random walk from the query node. This random walk should 

be long enough to ensure that the visited peers represent a 

close sample from the underlying stationary distribution. Then 

retrieve certain information from the visited peers, such as the 

number of tuples, the aggregate of tuples (for example, SUM, 

COUNT, AVG, and so forth) that satisfy the selection 

condition, and send this information back to the query node. 

This information is then analyzed at the query node to 

determine the skewed nature of the data that is  distributed 

across the network, such as the variance of the aggregates of 

the data at peers, the amount of correlation between tuples 

that exists within the same peers, the variance in the degrees 

of individual nodes in the P2P graph and so on. Once this data 

has been analyzed at the query node, an estimation is made on 

how much more samples are required so that the original 

query can be optimally answered within the desired accuracy, 

with high probability. The second phase is then 

straightforward: A random walk is reinitiated, and tuples are 

collected according to the recommendations made by the first 

phase. Effectively, the first phase is used to “sniff” the 

network and determine an optimal-cost “query plan,” which is 

then implemented in the second phase.  

 

3.1 Peer-to-Peer Model 
Here, it is assumed that an unstructured P2P network 

represented as a graph G = (P, E)  , with a vertex set P = { p1, 

p2……, pM} and an edge set E. The vertices in P represent the 

peers in the network, and the edges in E represent the 

connections between the vertices in P. Each peer p is 

identified by the processor’s IP address and a port number 

(IPp and portp). The peer p is also characterized by the 

capabilities of the processor on which it is located, including 

its CPU speed pcpu, memory bandwidth pmem, and disk space 

pdisk. The node also has a limited amount of bandwidth to the 

network, noted by pband. In unstructured P2P networks, a node 

becomes a member of the network by establishing a 

connection with at least one peer currently in the network. 

Each node maintains a small number of connections with its 

peers: The number of connections is typically limited by the 

resources at the peer. We denote the number of connections 

that a peer is maintaining by pconn. 

3.2 Random Walks 
The simulation of a random walk. or more generally a Markov 

chain is a fundamental algorithmic paradigm with highly 

sophisticated and profound impact in algorithms and 

complexity theory. Furthermore. it has found a wide range of 

applications in such diverse fields as statistics, physics, 

artificial intelligence, vision, population dynamics, 

bioinformatics, among others. 

 A Markov-chain random walk is a procedure that is initiated 

at the query node, and for each visited peer, the next peer to 

visit is selected with equal probability from among its 

neighbors (and itself and, thus, self loops are allowed). It is 

well known that if this walk is carried out long enough, then 

the eventual probability of reaching any peer p will reach a 

stationary distribution. To make this more precise, let P = {p1, 

p2…… pM}be the entire set of peers, let E be the entire set of 

edges, and let the degree of a peer p be deg(p). Then, the 

probability of any peer p in the stationary distribution is  

prob(p) =deg(p) / 2|E| 

It is important to note that the above distribution is not 

uniform. The probability of each peer is proportional to its 

degree. Thus, even if it can be achieved this distribution 

efficiently, it will have to compensate for the fact that the 

distribution is skewed as above if  used samples have to 

drawn from it for answering aggregation queries. 

3.3 Gossip based protocols 
Gossip-based (or epidemic) protocols are emerging as an 

important communication paradigm. In gossip-based 

protocols, each node contacts one or a few nodes in each 

round (usually chosen at random), and exchanges information 

with these nodes. The dynamics of information spread bear a 

resemblance to the spread of an epidemic [16, 17], and lead to 

high fault tolerance and “self-stabilization” [18, 17, 19]. 

Gossip-based protocols usually do not require error recovery 

mechanisms, and thus enjoy a large advantage in simplicity, 

while often incurring only moderate overhead compared to 

optimal deterministic protocols, such as the construction of 

data dissemination trees. The guarantees obtained from gossip 

are usually probabilistic in nature; they achieve high stability 

under stress and disruptions, and scale gracefully to a huge 

number of nodes. In comparison, traditional techniques have 

absolute guarantees, but are unstable or fail to make progress 

during periods of even modest disruption. 

3.4 Aggregation Queries 
Aggregation queries have the potential of finding applications 

in decision support, data analysis, and data mining. Decision 

support applications such as On Line Analytical Processing 
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(OLAP) and data mining tools for analyzing large databases 

are gaining popularity. Executing such applications on large 

volumes of data can be resource intensive. Fortunately, small 

samples of the data can be used by data mining and statistical 

techniques effectively without significantly compromising the 

accuracy of their analysis. Likewise, OLAP servers that 

answer queries involving aggregation can potentially benefit 

from the ability to use sampling. 

Aggregation query : 

SELECT Agg-Op(Col) FROM T WHERE selection-condition 

In the above query, the Agg-Op may be any aggregation 

operator such as SUM, COUNT, AVG, and so on, Col may be 

any numeric measure column of T or even an expression 

involving multiple columns, and the selection condition 

decides which tuples should be involved in the aggregation. 

COUNT: 

Here, the first phase is broken up into the following main 

components. First, a random walk is performed on the P2P 

network, attempting to avoid skewing due to graph clustering 

and vertices of high degree. The walk skips j nodes between 

each selection to reduce the dependency between consecutive 

selected peers. As the jump size increases, our method 

increases overall bandwidth requirements within the database, 

but for most cases, small jump sizes suffice for obtaining 

random samples. 

Second, aggregates of the data is computed at the peers and 

send these back to the query node. Here somewhat a simpler 

approach is taken in which take  fix a constant t such that if a 

peer has at most t tuples, then its database is aggregated in its 

entirety, whereas if the peer has more than t tuples, then t 

tuples are randomly selected and aggregated. Subsampling 

can be more efficient than scanning the entire local database, 

for example, by block-level sampling, in which only a small 

number of disk blocks are retrieved. If the data in the disk 

blocks are highly correlated, then it will simply mean that the 

number of peers to be visited will increase, as determined by 

our cross validation approach at query time. 

Third, the CVError of the collected sample is estimated and 

use that to estimate the additional number of peers that need 

to be visited in the second phase. 

SUM and AVERAGE: 

Although the algorithm has been presented for COUNT 

queries, it can be easily extended to other aggregates such as 

the SUM and AVERAGE by modifying the y(Curr) value 

specified on line 8, phase 1 of the algorithm. For the SUM, no 

changes are required, and for the AVERAGE, 

(#tuples/#processTuples) is removed from y(Curr), since no 

scaling is required. 

MEDIAN: 

For more complex aggregates such as estimation of medians, 

quantiles, and distinct values, more sophisticated algorithms 

are required. In addition to computing COUNT, SUM, and 

AVERAGE aggregates, I can also efficiently estimate more 

difficult aggregates such as the MEDIAN. I propose an 

algorithm for computing the MEDIAN in a distributed fashion 

based upon comparing the rank distances of medians of 

individual peers. Our algorithm for computing the MEDIAN 

is given as follows: 

1. Select m peers at random by using random walk. 

2. Each peer sj computes its median medj and sends it to 

the query node, along with prob (sj). 

3. The query node randomly partitions the m medians into 

two groups of m=2 medians: Group1 and Group2. 

4. Let medg1 be the weighted median of Group1, that is, 

such that the following is minimized: 

 
5. Find the error between the median of Group2 (say, 

medg2) and the weighted rank of medg1 in Group2. That 

is, let 

 
6. Select additional c2/∆2

req peers by using random walk. 

7. Find and return the weighted median of the medians of 

the additional peers. 

3.5 Hybrid Algorithm 
In order to further improve the quality of our random 

sampling process, we have employed a hybrid sampling 

technique by allowing individually selected peers to perform 

additional sampling in parallel with the random sampling 

phase. 

Since each peer is limited to knowledge of adjacent peers, 

computing aggregates based upon a single start location 

(query node) limits the total number of peers available for 

processing. Each peer accessed is aware of the peers that 

make up the path from the query node to itself. Most queries 

are unable to reach all peers in a network either due to high 

per-message cost or query execution time requirements. 

Techniques exist for generating expander P2P topologies [20]: 

A fully decentralized approach for computing random 

samples is impractical. We address the possibility of highly 

connected networks by randomly selecting adjacent peers as 

opposed to flooding. Since we cannot fully exploit a 

decentralized approach for query processing, we propose a 

hybrid solution for random sampling, focusing on extending 

our technique with a hybrid in-network decentralized 

approach. 

Upon selection of a peer pi  by the random-walk phase, pi 

contains a period  pi where further processing may be 

performed to improve the quality of a peer’s local data. The 

period  pi is defined as the number of hops remaining in the 

random-walk phase before the final peer pm is selected for 

sampling. In order to exploit these periods, we propose an 

incremental decentralized sampling technique building upon 

the Gossip protocol [21]. The number of messages sent over 

the network due to gossiping may be varied based upon the 

user-defined parameters ra & rr. Parameter ra is the number of 

edges that a peer may randomly select for gossiping, and rr is 

the maximum number of hops from pi that gossiping is 

permitted. Regardless of the value of ra or rr, the number of 

messages sent to the query node remains constant. These two 

parameters combined allow the user to leverage in-network 

computation, without affecting the number of messages sent 

back to the query node, avoiding possible bottlenecks. 

Mixing between peers increases the diffusion of values 

through the network. For our purpose, there is no specific 

constraint on the number of iterations required before exiting. 

Under our hybrid approach, the algorithm attempts to 

maximize the amount of mixing per peer pi by exploiting the 

period before a peer must send a sample back to the query 

node. As stated in [21], the diffusion speed of the network can 

be represented as T(n,ε) = O (log n + log 1/ε) for expander-

type networks. In addition, for very long walks, convergence 

may occur before the final peer has been selected, but we can 

continue to perform gossiping, without loss of benefit, since 

P2P networks such as Gnutella [22] are, by nature, transient. 

Where peers are continually entering and leaving the network, 
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gossiping can continue to diffuse new values as peers enter 

the network. 

Simply, since we know how many peers remain to be selected 

by the random-walk phase, the lower bound for the period 

pi_period is the remaining number of hops required to obtain the 

required sample, given the specified jump size and sample 

size. For example, suppose a query is executed with the 

following parameters: jump size of 10, tuples per peer 100, 

and a sample size of 400. After selection of the first peer, at 

least 30 hops are required by the random walk before 

completion. For the first peer selected p1, the period p1 period 

is equal to 30 hops. This determines that for the next 30 hops, 

further processing can be utilized to improve the sample 

quality for the selected peer p1. Thus, for each consecutive 

peer selected, the period pi period is bounded as the (jump size 

_ the number of remaining peers to be selected). 

 

 
Fig 2: Each ring represents the increase in gossiping per 

period for each peer. 

As shown in Fig. 1, the earlier that a peer is selected for 

sampling, the larger is the period available for gossiping. As 

additional hops are taken to reach the next peer for sampling, 

already selected peers can continue to gossip (this is 

represented by the rings around peers for each period). By 

combining our knowledge of Gossip and the pi_period for 

selected peers, we can maximize the quality of the sample 

obtained from individual peers. Our hybrid sampling 

algorithm executes as follows: 

1. Given a random start-location peer p0, the local 

group is { p0}. 

2. Initialize a group for each selected peer pi : groupi ϵ 

{ pi}. 

3. For each peer in groupi, randomly select ra adjacent 

peers. 

4. Extend the local group to include adjacent peers if 

and only if (path from pi ≤rr groupi ϵ groupi, ᶸ { for 

each peer in groupi add pi1 …..ra}. 

5. Perform Gossip on current groupi. 

6. Continue steps 2-5 for each peer in groupi  until  

pi_period has been reached. 

7. All peers selected by the random sampling phase, 

excluding peers selected by the local groups, send 

their current mixed values back to the query node. 

8. Compute remaining algorithm normally. 

Peers near the beginning of the random walk have a longer 

period to gossip, whereas peers closer to the end of the walk 

contain an incrementally smaller period for gossiping. This 

creates an uneven level of mixing among the local groups of 

peers, but since all peers obey mass conservation as 

previously defined, the number of rounds performed by each 

group does not affect the overall results between the different 

gossiping groups. 

4. CONCLUSIONS 
In this paper, adaptive sampling-based techniques are 

presented for the approximate answering of ad hoc 

aggregation queries in P2P databases. This  approach requires 

a minimal number of messages sent over the network and 

provides tunable parameters to maximize performance for 

various network topologies. The used approach provides a 

powerful technique for approximating aggregates of various 

topologies and data clustering but comes with limitations 

based upon  given topologies structure and connectivity. For 

topologies with very distinct clusters of peers (small cut size), 

it becomes increasingly difficult to accurately obtain random 

samples due to the inability of random-walk process to 

quickly reach all clusters. This can be resolved by increasing 

the jump size, allowing a larger number of peers to be 

considered and increasing the allowed mixing by hybrid 

approach. By varying a few parameters, the given algorithm 

successfully computes aggregates within a given required 

accuracy. 
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