
National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)
Proceedings published by International Journal of Computer Applications® (IJCA)

21

Estimation of Resource usage in Peer to Peer Network

Amol P. Bhagat
Department of Computer

Science and Engg, Prof. Ram
Meghe College of Engineering
and Management, Badnera,

India

Pravin Malve
Department of Computer

Science and Engg,
Governmentant Polytechnic

Murtizapur, Amravati

Jayant Mehare
Department of Information

Technology, Sipna College of
Engineering, Amravati

ABSTRACT

Grid systems allow us to take advantage of available

resources lying over a network. However, these systems

impose several difficulties to their usage (e.g. heavy

authentication and configuration management); in order to

overcome them, Peer-to-Peer systems provide open access

making the resources available to any user. A device in a P2P

network can provide access to any type of resource that it has

at its disposal, whether documents, storage capacity,

computing power, or even its own human operator. This paper

demonstrates the concept of resource scheduling and request

forwarding in peer to peer network.

General Terms

Networking, Scheduling.

Keywords

Network Protocols, Resource Scheduling, Peer to Peer

Network, Network Simulation, Network Animator.

1. INTRODUCTION
Peer-to-Peer [1] systems are characterized by their ability to

function, scale, and self-organize in the presence of highly

transient population of failure-prone nodes. The great

advantage of this approach over other models is the no

dependence on centralized servers, which suffer from

problems such as bottlenecks, single points of failure, among

other.

Peer-to-Peer (P2P) technology enables any network-

connected device to provide services to another network-

connected device. A device in a P2P network can provide

access to any type of resource that it has at its disposal,

whether documents, storage capacity, computing power, or

even its own human operator. The device in a P2P network

could be anything ranging from a super computer to simple

PDA. P2P technology is a robust and impressive extension of

the Internet’s philosophy of robustness through

decentralization.

The main advantage of P2P networks is that it distributes the

responsibility of providing services among all peers on the

network; this eliminates service outages due to a single point

of failure and provides a more scalable solution for offering

services.

1.1 Resource Management Model
Client/server solutions rely on the addition of costly

bandwidth, equipment, and co-location facilities to maintain a

robust solution. P2P can offer a similar level of robustness by

spreading network and resource demands across the P2P

network. Several different P2P architectures have been

proposed so far, a comprehensive survey is provided in [1].

The job distribution and management in network is carried out

as shown in Figure 1 where a machine, acting as a resource

consumer, distributes tasks among available machines,

resource providers, in order to perform a CPU-intensive job

demanded by a user.

Fig 1. Resource Management Model

Resource providers receive the tasks, compute them, and send

the results back to the consumer node (the job holder). All

machines are connected through an overlay network, which is

built on top of another network (i.e. Internet) and provides

services of routing and lookup.

.

2. LITERATURE REVIEW
Peer-to-Peer has been gaining a huge success across the

Internet. Such architectures are designed for the direct sharing

of computer resources (CPU cycles, storage, and content)

rather than requiring the intermediation of a centralized server

or authority [2].

Deeds [3, 11] is a history-based access control system whose

policies must be written in Java. It is useful to provide

security in P2P network. For resource discovery Iamnitchi et

al [4] have compared different searching methods. Cheema et

al [5] proposed a solution for exploiting the single keyword

lookup for CPU cycle sharing systems. Globus [6] is an

enabling technology for grid deployment. It provides

mechanisms for communication, authentication, network

information, data access, amongst other.

Condor [7] allows the integration and use of remote

workstations. It maximizes the utilization of workstations and

expands the resources available to users, by functioning well

in an environment of distributed ownership. BOINC [8] is a

platform for volunteer distributed cycle sharing based on the

client-server model. It relies on an asymmetric relationship

where users, acting as clients, may donate their idle CPU

cycles to a server, but cannot use spare cycles, from other

clients, for themselves.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)
Proceedings published by International Journal of Computer Applications® (IJCA)

22

CCOF [9] is an open peer-to-peer system seeking to harvest

idle CPU cycles from its connected users. OurGrid [10] is a

peer-to-peer network of sites which tries to facilitate the inter-

domain access to resources in a equitably manner.

Although the applications of P2P technologies are fascinating

and still much more is left to be discovered but there are some

challenges that are to be faced. Unfortunately, the current

applications of P2P tend to use protocols that are incompatible

in nature, reducing the advantage offered by gathering devices

into P2P networks. Each network forms a closed community,

completely isolated from the other networks and incapable of

using their services. So, the requirement of a common

platform which can bind all the peers and facilitates free

communication between them is pre-requisite for P2P to

realize its full potential.

2.1 Implementation
There are various tools available for simulating different

network models. Ns2/ns3, OPNET and NetSim are some of

the tools that can be used for the simulation of the various

network architectures and models. The ns-2 simulator is a

discrete-event network simulator targeted primarily for

research and educational use. The ns-2 is written in C++. ns-2

is open-source, and the project strives to maintain an open

environment for researchers to contribute and share their

software.

Ns-2 is scripted in OTcl and results of simulations can be

visualized using the Network Animator nam. It is not possible

to run a simulation in ns-2 purely from C++ (i.e., as a main()

program without any OTcl). Moreover, some components of

ns-2 are written in C++ and others in OTcl. Considering these

features of ns-2 ns-allinone-2.34 is used for the

implementation of the proposed dissertation work. Initially

ns-allinone-2.34 is downloaded from [15]. NS-2 is designed

to run from on most UNIX based operating systems. It is

possible to run NS-2 on Windows machines using Cygwin. If

you don't have a UNIX install, you can also use a virtual linux

machine and run that under Windows. In the dissertation work

the Fedora core 13 operating system is used for installation

and configuration of the ns-2.34. The ns-2.34 is configured on

the path /home/project/Desktop/project/. For configuring the

ns the following commands are executed in the terminal.

Before configuration we should make sure that we have

standard development packages like 'make' and 'gcc'.

tar -xzf ns-allinone-2.34.tar.gz

cd ns-allinone-2.34

./install

After the execution of the above commands on terminal if

everything is fine without any errors then we will get

following messages on the terminal.
Ns-allinone package has been installed

successfully.

Here are the installation places:

tcl8.4.11:/home/amol/Desktop/project/ns-

allinone-2.34/{bin,include ,lib}

tk8.4.11:/home/amol/Desktop/project/ns-

allinone-2.34/{bin, include, lib}

otcl: /home/amol/Desktop/project/ns-

allinone-2.34/otcl-1.11

tclcl: /home/amol/Desktop/project/ns-

allinone-2.34/tclcl-1.17

ns: /home/amol/Desktop/project/ns-

allinone-2.34/ns-2.29/ns

nam: /home/amol/Desktop/project/ns-

allinone-2.34/nam-1.11/nam

xgraph: /home/amol/Desktop/project /ns-

allinone-2.34/xgraph-12.1

gt-itm: /home/amol/Desktop/project/ns-

allinone-2.34/itm, edriver, sgb2alt,

sgb2ns, sgb2comns, sgb2hierns

Please put /home/amol/Desktop/project/ns-

allinone-

2.34/bin:/home/amol/Desktop/project/ns-

allinone-2.34/tcl8.4.18 /unix:/home/

amol/Desktop/project/ns-allinone-

2.34/tk8.4.18/unix

into your PATH environment; so that

you'll be able to run

itm/tclsh/wish/xgraph.

IMPORTANT NOTICES:

(1) You MUST put

/home/amol/Desktop/project/ns-allinone-

2.34/otcl-

1.13:/home/amol/Desktop/project/ns-

allinone-2.34/lib,

 into your LD_LIBRARY_PATH environment

variable.

 If it complains about X libraries,

add path to your X libraries

 into LD_LIBRARY_PATH.

 If you are using csh, you can set it

like:

 setenv LD_LIBRARY_PATH

<paths>

 If you are using sh, you can set it

like:

 export

LD_LIBRARY_PATH=<paths>

(2) You MUST put

/home/amol/Desktop/project/ns-allinone-

2.34/tcl8.4.18/library into your

TCL_LIBRARY environmental

 variable. Otherwise ns/nam will

complain during startup.

(3) [OPTIONAL] To save disk space, you

can now delete directories tcl8.4.11

 and tk8.4.11. They are now installed

under /home/amol/Desktop/project/ns-

allinone-2.34/{bin,include,lib}

After these steps, you can now run the ns

validation suite with

cd ns-2.34; ./validate

For trouble shooting, please first read

ns problems page

http://www.isi.edu/nsnam/ns/ns-

problems.html. Also search the ns mailing

list archive

for related posts.

For the validation of the installation we can run the next

command on terminal as

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)
Proceedings published by International Journal of Computer Applications® (IJCA)

23

cd ns-2.34

./validate

After successful installation we need to modify some of the

environment variables namely PATH, LD_LIBRARY_PATH

and TCL_LIBRARY. To accomplish this the following

commands are executed on the terminal.
export set

PATH=$PATH:/home/amol/Desktop/project/ns-

allinone-

2.34/bin:/home/amol/Desktop/project/ns-

allinone-2.34/tcl8.4.18/unix

:/home/amol/Desktop/project/ns-allinone-

2.34/tk8.4.18/unix

export set

LD_LIBRARY_PATH=/home/amol/Desktop/projec

t/ns-allinone-2.34/otcl-

1.13:/home/amol/Desktop/project/ns-

allinone-2.34/lib
export set

TCL_LIBRARY=/home/amol/Desktop/project/ns

-allinone-2.34/tcl8.4.18/library
After the successful configuration of ns environment for the

implementation of the proposed dissertation work initially we

have created rc (resource consumer) package inside ns-2.34

which defines various properties of the data in terms of packet

which are transferred to and from various node which can be

identified as packets which are using implemented resource

consumer protocol for intrusion detection in the network. The

implemented algorithm which is written inside rc.cc is

situated inside the router through which packets are

transferred and filtered. It also includes different parameters

which are defined for the implementation of the resource

scheduling system which includes different types of packet

which is transferred between different nodes. There may be

number of resources which are present inside the network

providing different services. Scheduling of various requests

on the particular resource service provider is handled through

this code. Inside rc we have defined four files rc.cc,

rcPacket.cc, rc.h and rcPacket.h. After adding rc into ns-

2.34 we need to modify some of the files of ns environment

which are ns-2.34/common/packet.h, ns-2.34/tcl/lib/ns-

packet.tcl and ns-2.34/Makefile. After these changes we

need to again execute make command on the terminal to

reflect the changes in the ns environment. We have

demonstrated the result of implemented work through various

simulations implemented in terms of tcl script simgrid.tcl

demonstrates resource scheduling in the network with single

resource consumer and three resource provider. In

simgridfinal.tcl we have demonstrated the resource

scheduling and utilization in the network with three resource

consumer and three resource providers. The network with

multiple resource consumers and resource providers is

demonstrated in simgridmax.tcl.

3. EXPERIMENTATION AND RESULTS
The results are carried out by different simulations which are

implemented to demonstrate the different ways of resource

scheduling and utilization in peer to peer network in different

types of network architecture. Initially simgrid.tcl is

implemented to demonstrate resource utilization in network

where there are three types of resource nodes and one

resource consumer node. For the execution of this tcl script

initially all the environment variables are set and the

following command is executed on the terminal.
ns simnidsnewmorenodes.tcl

Sending request:1

Node 2: Request received... Now

forwarding to grid node 3 for execution

Node 2: Request received... Now

forwarding to grid node 3 for execution

Node 3: Serving request of type 1

It took 0.223400 seconds to service

request.

Average time taken 0.127412.

Sending request:1

Node 2: Request received... Now

forwarding to grid node 3 for execution

Node 2: Request received... Now

forwarding to grid node 3 for execution

Node 3: Serving request of type 1

It took 0.346800 seconds to service

request.

Average time taken 0.127412.

Sending request:5

Node 2: Grid serving request of type 5

It took 0.470200 seconds to service

request.

Average time taken 0.123400.

Sending request:2

Sending request:3

Node 2: Request received... Now

forwarding to grid node 4 for execution

Node 2: Grid serving request of type 3

It took 0.593600 seconds to service

request.

Average time taken 0.123400.

Node 4: Serving request of type 2

It took 0.717000 seconds to service

request.

Average time taken 0.124610.

Sending request:2

Node 2: Request received... Now

forwarding to grid node 4 for execution

Node 4: Serving request of type 2

It took 0.840400 seconds to service

request.

Average time taken 0.124610.

Sending request:3

Node 2: Grid serving request of type 3

It took 0.963800 seconds to service

request.

Average time taken 0.123400.

Sending request:2

Node 2: Request received... Now

forwarding to grid node 4 for execution

Node 4: Serving request of type 2

It took 1.087200 seconds to service

request.

Average time taken 0.124610.

Sending request:4

Node 2: Grid serving request of type 4

It took 1.210600 seconds to service

request.

Average time taken 0.123400.

Sending request:4

Sending request:3

Node 2: Grid serving request of type 4

It took 1.334000 seconds to service

request.

Average time taken 0.123400.

Node 2: Grid serving request of type 3

It took 1.457400 seconds to service

request.

Average time taken 0.123400.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)
Proceedings published by International Journal of Computer Applications® (IJCA)

24

Sending request:1

Node 2: Request received... Now

forwarding to grid node 3 for execution

Node 2: Request received... Now

forwarding to grid node 3 for execution

Node 3: Serving request of type 1

It took 1.580800 seconds to service

request.

Average time taken 0.127412.

Sending request:2

Node 2: Request received... Now

forwarding to grid node 4 for execution

Node 4: Serving request of type 2

It took 1.704200 seconds to service

request.

Average time taken 0.124610.

Sending request:3

Node 2: Grid serving request of type 3

It took 1.827600 seconds to service

request.

Average time taken 0.123400.

Sending request:3

Node 2: Grid serving request of type 3

It took 1.951000 seconds to service

request.

Average time taken 0.123400.

Fig 2: Request forwarded to by resource provider

The following table shows the comparison of the various

requests that are received and serviced by the different nodes.

Table 1. Request received and serviced by the available

nodes
Nodes Number

of

Requests

Received

Number of

Requests

Serviced

Total time

on the

node

(Seconds)

Actual

Resource

Utilization

(Seconds)

Node 2 14 6 1.580800 0.49844

Node 3 2 2 1.087200 0.254824

Node 4 4 4 1.580800 0.7404

As it can be observed from the table the node 4 is utilized

more than the remaining two nodes. It also shows the total

time for which the resource was in the active state in the

network and its actual utilization in the network. So here the

total resource usage is estimated in the network.

4. CONCLUSIONS
The resource scheduling in the peer to peer network is

demonstrated in this paper. The algorithm is implemented for

request forwarding when a particular type of resource is not

available on the requested node. The nodes actually process

less number of requests as compared to the number of request

received. The work can be further extended to dynamically

scheduling the request on the various types of resources. The

implemented work also exploits the parallel execution of

multiple requests in the network.

5. REFERENCES
[1] Pourebrahimi B., Bertels K., Vassiliadis S. A Survey of

Peer-to-Peer Networks. Technical Report, Computer

Engineering Laboratory, ITS, TU Delft, The Netherlands.

2004.

[2] S. Androutsellis-Theotokis and D. Spinellis. A survey of

peer-to-peer content distribution technologies. ACM

Computing Surveys (CSUR), 36(4):335–371, December

2004.

[3] G. Edjlali, A. Acharya, and V. Chaudhary. History-based

access control for mobile code. In CCS ’98: Proceedings

of the 5th ACM conference on Computer and

communications security, pages 38–48, New York, NY,

USA, 1998. ACM.

[4] A. Iamnitchi and I. Foster. A peer-to-peer approach to

resource location in grid environments. In Grid resource

management: state of the art and future trends, pages

413–429, Norwell, MA, USA, 2004. Kluwer Academic

Publishers.

[5] A. S. Cheema, M. Muhammad, and I. Gupta. Peer-to-

peer discovery of computational resources for grid

applications. In GRID ’05: Proceedings of the 6th

IEEE/ACM International Workshop on Grid Computing,

pages 179–185, Washington, DC, USA, 2005. IEEE

Computer Society.

[6] I. Foster and C. Kesselman. Globus: A metacomputing

infrastructure toolkit. International Journal of

Supercomputer Applications, 11:115–128, 1997.

[7] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter

of idle workstations. In Proceedings of the 8th

International Conference of Distributed Computing

Systems, June 1988.

[8] D. P. Anderson. Boinc: A system for public-resource

computing and storage. In GRID ’04: Proceedings of the

5th IEEE/ACM International Workshop on Grid

Computing, pages 4–10, Washington, DC, USA, 2004.

IEEE Computer Society.

[9] V. Lo, D. Zhou, Y. Liu, and S. Zhao. Cluster computing

on the fly: P2p scheduling of idle cycles in the internet.

In the internet, 3rd International Workshop on Peer-to-

Peer Systems (IPTPS 2004), pages 227–236, 2004.

[10] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg.

Ourgrid: An approach to easily assemble grids with

equitable resource sharing. In Proceedings of the 9th

Workshop on Job Scheduling Strategies for Parallel

Processing, Seattle, WA, USA, June 2003.

[11] S´ergio Esteves, Lu´ıs Veiga and Paulo Ferreira

GridP2P: Resource Usage in Grids and peer-to-Peer

Systems. INESC-ID/IST, Distributed Systems Group,

Rua Alves Redol, 9, 1000-029 Lisboa, Portugal 2010

IEEE.

