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ABSTRACT 
In the present study, a thick walled cylinder with a semi 

elliptical crack located at the inner surface is considered. 

Weight functions for the surface and the deepest point of an 

internal semi elliptical crack in a thick-wall cylinder were 

derived from a general weight function and two reference 

The weight functions were validated against finite element data 

given by Mettu and hybrid weight the paper are valid for 

cylinders with an inner radius to wall thickness ratio, Ri/t = 4. 

 complex stress fields. All stress intensity factor expressions 

given in several linear and nonlinear  
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1. INTRODUCTION 

The theory of thick cylinders (Lame’s Theory) shows that 

longitudinal cracks located on the internal face of the cylinder 

are most dangerous. Semi elliptical surface cracks are 

occasionally developed in pressure vessels and pipes during 

service or production. Subsequent fracture and fatigue analysis 

of such cracks is of great practical interest, and requires the 

determination of stress intensity factors. Although several 

stress intensity factor handbooks have been published, the 

available solutions of stress intensity factors for pressure 

vessels are not always adequate for particular engineering 

applications. This is especially true for cracks subjected to non-

uniform stress fields such as residual or thermal stresses. In 

such cases the weight function approach is the most useful tool. 

The unique feature of the weight function method is that once 

the weight function for a particular cracked body has been 

determined, the stress intensity factor for any loading system 

applied to that body can be calculated by simple integration. 

Since the stress intensity factor is linearly dependent on the 

applied load, the contributions from multiple splitting forces S 

applied over the crack surface can be superposed and the 

resultant stress intensity factor can be calculated as the sum of 

all individual load contributions. In order to calculate stress 

intensity factors using the weight function technique the 

following tasks need to be carried out:  

 Determine stress distribution  x  in the prospective crack 

plane using the linear elastic  

 analysis of uncracked body, i.e., perform the stress 

analysis ignoring the crack and determine the stress 

distribution ),()( 0 xafx    

 Apply the ‘‘uncracked’’ stress distribution,  x , 

to the crack surfaces (fig 1c) as traction.   

 Choose an appropriate generic weight function. 

 Integrate the product of the stress function  x  

and the weight function m(x,a) over  the entire crack 

length or crack surface. 

2. REVIEW OF LITERATURE WORK 

Jian- Feng Wen, Shan-Tung Tu, Jian- Ming Gong  in 2011 has 

considered a semi-elliptical crack located at the inner surface of 

pressurized cylinder. C*- integrals for this semi-elliptical crack 

has been calculated by finite element (FE) method.  A total of 

96 cases for widw practical ranges of geometry and material 

parameters are performed to obtain FE results of C*- integral.  

Brahim El Khalil Hachi, Said Rechak, Yacien Belkacemi and 

Genard Maurice in 2005 has done the modeling of elliptical 

cracks in an infinite body and in a pressurized cylinder by a 

hybrid weight function approach. The idea of hybridization 

consists of dividing the ellipse in to two zones, and then to use 

each weight function in the area where it is more efficient. A, 

Kiciak, G. Glinka and D. J. Burns in 2003 proposed a paper for 

calculating the stress intensity factors and crack opening 

displacements for cracks subjected to complex stresses. A 

method based on generalized weight function of calculating 

stress intensity factors for cracks subjected to complex stresses 

fields have been discussed in this paper. M. Perl, C. levy and J. 

Pierola in 1996 has presented a paper in which for internal 

surface crack both in the radial and longitudinal direction are 

considered for pressurized thick-walled cylinders. The 3-D 

analysis is performed via the finite element with the sub 

modeling technique, employing singular element among the 

crack front. SIFs are evaluated for arrays up to n=180 cracks; 

for a wide range of crack depth to wall thickness ratios, a/t, 

from 0.05 to 0.6; and, for various ellipticities of the crack, i.e., 

the ratio of crack depth to semi-crack length, a/c from 0.2 to 2. 

The formulas, which are function of a/t and a/c, are of very 

good engineering accuracy. The results clearly indicate that the 

SIFs are considerably affected by the interaction among the 

cracks in the arrays as well as the three-dimensionality of the 

problem.     

Zheng, X.J., Glinka G. in 1995 had suggested that weight 

functions for the surface and the deepest point of an internal 

longitudinal semi-elliptical crack in a thick walled cylinder 

(Ri/t =1) were derived from a general weight function and two 

reference stress intensity factors. For several linear and 

nonlinear crack face stress field, the weight functions were 

validated against finite element data. Stress intensity factors 

were also calculated for the Lame through the thickness stress 

distribution induced by internal pressure. The weight functions 

appear to be particularly suitable for fatigue and fracture 

analysis of surface semi-elliptical cracks in complex stress 

fields. All stress intensity factor expressions given in the paper 

are valid for cylinders with the inner radius to wall thickness 

ratio, Ri/t = 1. G. Shen and G. Glinka in 1992 has proposed a 

paper on determination of weight function from reference stress 

intensity factors. In this paper a method of deriving weight 

functions for cracks subjected to mode I loading is discussed. 

The method requires two reference stress intensity factors to be 
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known. The general weight function expression and its 

characteristic properties are used as the complementary 

information necessary for the determination of the unknown 

weight function parameters. In validation several weight 

functions derived by this method are compared to exact 

analytical weight function available in the literature. 

Differences are less than 2 %.  

3. MATHEMATICAL MODELING 

3.1 Weight function  

The mathematical forms of the weight functions depend on the 

particular geometry of a cracked body and the mathematical 

approach. Shen and Glinka [8] found that a variety of existing 

weight functions have the same singular term and they can be 

accurately approximated by a general expression:  

 
 

31
2 2

1 2 3

2
, , 1 1 1 1

2

x x xam x a M M M
t a a aa x

      
            

        

            

……… (3.1) 

Knowing the general weight function expression (3.1), the 

derivation of the weight function for a particular geometrical 

configuration of cracked body can be reduced to the 

determination of parameters 1M , 2M and 3M . 

Shen and Glinka [8] have given the general form of the weight 

function for the deepest point A and the surface point B of a 

semi elliptical crack shown in Fig. 1 and Fig. 2.  

For the deepest point A the weight function is given as:               

 
 

31
2 2

1 2 3

2
, 1 1 1 1A A A A

x x x
m x a M M M

a a aa x

      
            

        

          

…………..(3.2)                 

The weight function ( , )Bm x a  associated with the surface 

point B has been given as: 

 
31

2 2

1 2 3

2
, 1B B B B

x x x
m x a M M M

a a ax

      
         

       

              

………………………….(3.3) 

 

Fig. 1 Weight function notation for a semi-elliptical crack in 

a thick-walled cylinder 

 

Fig. 2. Weight function notation for internal axial semi 

elliptical surface crack in a cylinder. 

It should be noted that both weight functions have been derived 

for unit load P = 1 uniformly distributed along the line 

intersecting the crack front, as shown in Fig. 4. In the case of a 

continuously distributed stress field which is a function of 

coordinate x only, the stress intensity factors can be determined 

by the integration of the appropriate weight function multiplied 

by the stress function [10] : 

   
0

,

a

A AK m x a x dx    ……… (3.4)    

   
0

,

a

B BK m x a x dx   …… (3.5) 

The general weight functions (3.2) and (3.3) were successfully 

used earlier by Forman and Mettu [11] and coworkers to 

determine stress intensity factors for semi elliptical cracks in 

plates and thin-wall cylinders. However, in order to calculate 

stress intensity factors, it is necessary to determine parameters

iAM , and iBM , in weight functions Am  and Bm , 

respectively. In addition the stress distribution a(x) normal to 

the prospective crack plane must be known. Moreover, the 

stress distribution should be determined for the untracked body. 

It is also important to note that the weight functions (3.2) and 

(3.3) are valid for one-dimensional stress distributions which 

are functions of only one coordinate x. 

The parameters iAM and iBM  can be derived using two 

reference stress intensity factor solutions and some properties 

of the weight functions. The reference stress intensity factors 

for internal semi elliptical axial cracks in thick cylinders were 

taken from Mettu who obtained them for a variety of stress 

distributions applied to the crack face surface by using the 

finite element method. The stress intensity factors obtained for 

the uniform and linearly varying stress field (Fig 3) chosen as 

the reference. 

  0x   ……….Uniform stress field……….. (3.6)   

 
x

x
a

 
 

  
 

..Linearly increasing stress field (3.7) 
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The stress intensity factors obtained for stress distributions 

(3.6) and (3.7) were given in the form of the geometry 

correction factors iY . 

For the deepest point A: 

  
0 0 0

A a
K Y

Q


 …Uniform stress field          (3.8) 

1 0 1

A a
K Y

Q


 ..Linearly increasing stress field   (3.9) 

For the surface point B: 

0 0 0

B a
K F

Q


 ……Uniform stress field          (3.10)

1 0 1

B a
K F

Q


 ..Linearly increasing stress field   (3.11) 

Where  
1.65

1 1.464Q a c   

The geometry correction factors 0Y , 1Y , 0F  and 1F  were 

given in a tabular form for a verity of crack depth a/t and crack 

aspect ratio a/c. 

3.2 Derivation of stress intensity factors 

from weight function 
In order to check the accuracy of the derived weight function 

(3.2) and (3.3) the stress intensity factors are calculated for 

points A and B of an internal semi elliptical axial crack by 

using equations (3.4) and (3.5). The stress intensity factors are 

calculated for several stress distributions applied to the crack 

surfaces:  
0( )

n
x

x
a

 
 

  
 

 where 

n=0,1,2,3…………….(3.12) 

3.2.1 Stress intensity factor for the deepest point A 
The stress intensity factors are calculated from equation (3.4) 

by integration of the product of the weight function (3.2) and 

the stress distribution given by equation (3.22)  

(1) For uniform stress distribution, 0( )x  , n=0: 

3
1 2 0

0

2 2
2

3 2/

AA
A A

Q MK
M M Y

a Q  

 
     

 

 

(2) For linearly stress distribution, 0( )x  (x/a), n =1 

1 2 3

0

2 4 1 4 1

3 2 15 6/

A
A A A

QK
M M M

a Q  

 
    

 
=Y1 

(3) For quadratic stress distribution,    
2

0x x a  , n 

= 2: 

1 2 3

0

2 1 16 1 16

3 105 12 15/

A
A A A

QK
M M M

a Q  

 
    

 

(4) For cubic stress distribution,    
3

0x x a  , n =3 

1 2 3

0

2 1 32 1 32

4 315 20 35/
A

A A A

QK
M M M

a Q  

 
 
 

   

 

3.2.2 Stress intensity factor for the surface point B 

              (1) For uniform stress distribution, 0( )x  , n=0: 

1 2 3

0

2 2 1
2

3 2

B
B B B

QK
M M M

a Q  

 
    

 
 

(2) For linearly stress distribution, 0( )x  (x/a),    n =1 

1 2 3

0

4 4 2

3 5 3

B
B B B

QK
M M M

a Q  

 
    

 
 

(3) For quadratic stress distribution,    
2

0x x a  , n 

= 2: 

1 2 3

0

4 2 4 1

5 3 7 2

B
B B B

QK
M M M

a Q  

 
    

 
 

(4) For cubic stress distribution,    
3

0x x a  , n =3 

1 2 3

0

4 1 4 2

7 2 9 5

B
B B B

QK
M M M

a Q  

 
    

 
 

4. RESULTS AND DISCUSION 

4.1 Stress Intensity Factor of semielliptical 

cracks in thick walled cylinder for 

deepest point A  

(1) For uniform stress distribution, n=o 

 

 

13.15 31.17

1 2

2 4
3.859 1.334

0.0998 1.010 0.366 0.055
/

3.269 0.057 0.06 0.149

a a

c cA

a a

c c

K a
e e

ta Q

a a
e e

t t

 

   
      
   

   
     
   

        
           

       

         
           

         

For linearly stress distribution, n=1 

   

 

0.012 8.663

1 2

2 4
4.562 0.434

5.994 6.594 0.436 0.136
/

0.787 0.269 1.538 1.552

a a

c cA

a a

c c

K a
e e

ta Q

a a
e e

t t

 

   
      
   

   
     
   

        
            

       

         
            

         
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(2) For quadratic stress distribution, n=2 

 

 

2
13.15 31.17 3.859

1 2

4
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/
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             
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(4)   For cubic stress distribution, n=3 
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   Fig. (3) 

 

Fig (4) 

 

Fig. (5) 

4.2 Stress intensity factor for semielliptical cracks in thick 

walled cylinders for surface point B 

(1) For uniform stress distribution, n=0 
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(2) For linearly stress distribution, n=1 
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(3) For quadratic stress distribution, n=2 
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(4) For cubic stress distribution, n=3 
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Fig(6)  

 

   Fig(7) 

The Fig. 8 and Fig. 9 shows the comparison of stress intensity 

factor calculated by the weight function technique with the 

finite element method given by Mettu [12].Here there is good 

accuracy between both the results.  

The Fig. 10 and Fig.11  shows the comparison of stress 

intensity factor calculated by the weight function technique 

with the stress intensity factor calculated by hybrid weight 

function technique [7]. These results also show good accuracy 

between two techniques
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5. CONCLUSIONS 
Stress intensity factors for an internal semi elliptical crack 

in a thick cylinder with an inner radius to wall thickness ratio 

of R,/t = 4 have been derived using the weight function 

approach. The weight functions of the deepest and the surface 

point of the crack were derived using the general weight 

functions and two reference stress intensity factors supplied by 

Mettu [12]. Several stress intensity factors were subsequently 

calculated for a variety of crack face loadings, crack aspect 

ratios and crack depths. In the present study results from 

weight function technique has been compared with hybrid 

function technique and finite element method given by Mettu. 

The agreement with the available literature data was good over 

the entire range of crack aspect ratios 0.2 a/c 1 and crack 

depths 0.1 a/t 0.8. However, it should be noted that the use 

of the weight functions is justified for cases where the crack is 

fully open and the superposition principles apply. It has been 

shown that the simplified integration technique is very accurate 

and easy to perform. The weight functions and the stress 

intensity factors are particularly suitable for fatigue crack 

growth analysis. 

        Therefore, it is anticipated that equally good results will 

be obtained for any other stress distribution such as residual or 

thermal stresses     

   Scope of present work 

In recent years, considerable progress has been done 

in calculating the stress intensity factor for various types of 

Mode I cracks in finite thickness plate[8] and thin walled 

cylinder[9]. Also for thick walled cylinder stress intensity has 

been calculated by finite element method [1] and by hybrid 

weight function technique[7]. In present work weight function 

are used for calculating stress intensity factor for semielliptical 

cracks in thick walled cylinder which gives results with great 

accuracy in comparison with above methods. More work is 

expected in this field for external cracks also. Also in recent 

years C -Integral and J-integral approach are also used to do the 

surface crack growth analysis. 
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