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ABSTRACT 

Edge detection is an important pre-processing step for any 

image processing application, object recognition and object 

detection. Among different edge detectors that are available, 

the Canny edge detector has better edge detection 

performance because it satisfies three main criteria which are 

low error rate, good localization and minimal response. In this 

paper, a mechanism to implement the Canny algorithm at 

block level with enhanced edge detection performance is 

proposed. By directly applying the original frame-level Canny 

algorithm at block level leads to more number of edges in 

smooth regions and to loss of important edges in highly-

detailed regions since the original Canny algorithm computes 

the high and low thresholds based on the frame-level 

statistics. To solve this problem, a new method called 

Distributed Canny Edge Detection algorithm is proposed 

which adaptively calculates the high and low thresholds based 

on the block type and local distribution of the gradients in a 

block. In the proposed algorithm, instead of finding the 

direction of the gradient by calculating the arctangent vertical 

gradient to the horizontal gradient, the value and sign of the 

components of the gradient is analyzed to calculate the 

direction of the gradient. The proposed Distributed Canny 

edge detection algorithm is implemented in MATLAB. The 

resulting image shows that the proposed block-level algorithm 

detects more number of edges than the original frame-level 

Canny algorithm. 

Keywords 

Canny edge detector, Distributed Image Processing, 

MATLAB.  

1. INTRODUCTION 
Edge detection is an important pre-processing step for any 

image processing application, object recognition and object 

detection. Edge detection in noise free images is very simple. 

But it is difficult to detect edges in noisy images. Noisy 

images parameters are difficult to analyze and detect. Edge 

detection is a essential tool used in most image processing 

applications to obtain information from the frames as a 

precursor step to feature extraction and object segmentation. It 

detects object outlines and boundaries between objects and the 

background in the image. A filter can also be used to refine 

the appearance of blurred image. 

Edge detectors are broadly classified into first order edge 

detector/gradient operator and second order edge 

detector/laplacian based operator. Classical edge detectors are 

first order detectors where the input image is convolved by an 

adapted mask to generate a gradient image in which edges are 

detected by thresholding. Robert Cross, Sobel and Prewitt 

operators are different types of classical operators. There is a 

set of work in [2], [3] that deal with implementation of 

classical edge detectors. Robert Cross operator uses kernels 

which are designed to respond maximally to edges running at 

45° to the pixel grid, one kernel for each of the two 

perpendicular orientations. Although the size of the kernel is 

smaller as shown in [6] which leads to fast computation but 

this operator is very sensitive to noise. Both Prewitt and Sobel 

operator kernels respond maximally to edges running 

vertically and horizontally to the pixel grid, one kernel for 

each of the two perpendicular orientations. These operators 

are insensitive to noise but slow computation ability. The first 

derivative is positive at the points of transition into and out of 

the ramp; it is constant for points in the ramp; and is zero in 

areas of constant level. 

Another classification of edge detectors is and second order 

edge detector/laplacian based operator. It has been shown in 

[13], second derivative is positive at the conversion associated 

with the dark side of the edge, negative at the conversion 

associated with the light side and zero along the ramp and in 

areas of constant gray level. It also points out two additional 

properties of second derivative: It produces two values for 

every edge in an image which is an undesirable property and 

an imaginary straight line joining the extreme positive and 

negative values of the second derivative would cross zero near 

the midpoint of an edge. This zero-crossing property is used 

for detecting edges in an image. Marr-Hildreth edge detector 

is second order edge detector which uses zero-crossing 

property to detect edges. But the limitations of Marr-Hildreth 

edge detector are detection of false edges and localization 

error is severe at curved edges. 

It is concluded form the observations made in [6] and [13] 

that the magnitude of the first derivative can be used to find 

the presence of an edge at a point in an image. Likewise, the 

sign of the second derivative can be used to determine 

whether an edge pixel lies on the dark side or light side of an 

image. If an image is corrupted by noise, the usage of second 

derivative is not a wise choice because in the presence of 

noise the negative and positive components cannot be 

identified which is important in detecting the edges. 

The rest of the paper is organized as follows. Section 2 gives a 

brief overview of existing Canny algorithm. Section 3 deals 

with the steps included in the proposed algorithm and the 

modifications done. The pseudo code for various steps is also 

presented in this section. Performance analysis of proposed 

Canny algorithm is presented in Section 4. Comparison of 

Distributed Canny with the existing Canny and various other 

edge detectors are also shown in this section. Finally, 

conclusion is presented in Section 5. 
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2. CANNY EDGE DETECTION 

ALGORITHM 
Canny edge detector have advanced algorithm derived from 

the previous work of Marr and Hildreth. The Canny edge 

detection algorithm is known to many as the optimal edge 

detector. Canny proposed a list of criteria to improve existing 

methods of edge detection. Low error rate is the first criterion. 

It is important that true edges should not be missed and that 

there are no responses to non-edges. The second criterion is 

the localization of edge points. In other words, the distance 

between the edge pixels as found by the detector and the 

actual edge is to be at a minimum. A third criterion is to have 

only one response to a single edge. This third criterion was 

necessary because the first two criteria were not enough to 

completely eliminate the possibility of multiple responses to 

an edge. 

The original Canny algorithm [8] works on frame-level 

statistics and consists of the following steps: 1) The first step 

is to filter out any noise in the original image before trying to 

locate and detect any edges. 2) After smoothing the image and 

removing the noise, the next step is to find the strength if the 

edge by taking the gradient of the image. This involves the 

calculation of the horizontal gradient Gx and Gy at each pixel 

location by convolving with gradient masks.3) Computation 

of gradient magnitude G at each pixel location which tells 

how quickly the image changes and computation of gradient 

direction θG at each pixel location which gives the direction in 

which the image is changing. 4) Once the edge direction is 

known, the next step is to relate the edge direction to a 

direction that can be traced. So if the pixels of a image are 

aligned as follows. 

x  x  x  x  x 

x  x  x  x  x 

x  x  a  x  x 

x  x  x  x  x 

x  x  x  x  x 

It can be seen by looking at pixel “a”, there are only four 

possible directions when describing the surrounding pixels- 

0o, 45o, 90o or 135o. Therefore, any edge direction falling 

within the range (0o to 22.5o & 157.5o to 180o) is set to 0o. 

Any edge direction falling within the range (22.5o to 67.5o) is 

set to 45o. Any edge direction falling within the range (67.5o 

to 112.5o) is set to 90o. Any edge direction falling within the 

range (112.5o to 157.5o) is set to 135o. 5) Apply Non-Maximal 

Suppression (NMS) to thin edges. After converting the edge 

direction is one of 4 possible main directions (0o, 45o, 90o or 

135o), the gradient magnitude of this pixel is compared with 

two of its immediate neighbours along the gradient direction 

and the gradient magnitude is set to zero if it does not 

correspond to a local maximum. 6)  Calculation of high and 

low thresholds based on the gradient for the entire image. To 

select the threshold values some properties of gradient 

histogram are analyzed in [4]. The high threshold (thigh) is 

chosen from a flat part between the background peak and the 

edge peak in the histogram to reduce error detection.    

 

Figure 1. Block diagram of existing Canny algorithm 

The low threshold (tlow) is set as 40% of high threshold. 7) 

Performing hysteresis thresholding to determine edge map. 

Pixels with a gradient magnitude greater than high threshold 

are kept as an edge. Pixels with a gradient magnitude lesser 

than low threshold are discarded immediately. If a pixel 

gradient magnitude lies between high and low thresholds, that 

pixel will be considered as an edge only if its neighbors in a 3 

x 3 region around it have gradient magnitudes greater than 

high threshold. The block diagram of original Canny 

algorithm is shown in Figure 1. 

3. PROPOSED DISTRIBUTED CANNY 

ALGORITHM 
To enhance the edge detection performance of original frame-

level Canny algorithm, a new algorithm called Distributed 

Canny algorithm is proposed in this paper. As discussed in 

Section 2, the classical Canny algorithm computes high and 

low thresholds based on the gradient magnitude histogram of 

an entire image. By applying same high and low threshold 

values for each block in an image will lead to more number of 

edges in smooth regions and loss of important edges in highly 

detailed regions as shown in [1]. In order to overcome this 

problem the high and low threshold values are chosen 

according to block-level statistics instead of frame-level 

statistics. 

In the proposed method, first the input image is divided into m 

x m overlapping blocks. In order to do this, first the image 

should be divided into n x n non-overlapping blocks where 

n<m. For an L x L gradient mask, each block can be extended 

by (L+1)/2 along left, right, up and down. The non-

overlapping blocks need to be extended in order to prevent 

edge artifacts and loss of edges at lock boundaries while 

computing the gradients and due to the fact that NMS 

operation at boundary requires gradient values of the 

neighboring pixels. Figure 3, shows an example of non-

overlapping block and its extended overlapping block version 

in case when a 3x3 gradient mask. In order to perform NMS 

for the border pixel (i,j), the gradient information of the 

adjacent pixels (i-1, j-1), (i-1, j), (i-1, j+1) and    (i+1, j-1) are 

taken as in [1]. In order to compute the gradient of the 

adjacent pixels    (i-1, j-1), (i-1, j), (i-1, j+1) and (i+1, j-1) for 

the 3 x 3 gradient mask, the block has to be extended by 2 

(where (L-1)/+1 = 2) pixels on all sides in order to generate a 

block of size (n+4) x (n+4). Thus m=n+4 for this example. 

Steps 1, 2 and 4 to 7 are same as in original Canny algorithm 

except those steps are applied for each blocks in an image. 

 

Figure 2. Block diagram of proposed Canny algorithm 
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Figure 3. An example for m x m overlapping block 

 

 

 

 

 

 

 

 

 

 

Figure 4. Gradient orientation 

In this paper, another modification is carried out in 

computation of gradient direction step. Instead of finding the 

direction of the gradient by calculating the arctangent vertical 

gradient to the horizontal gradient θ = arctan(dy/dx), the value 

and sign of the components of the gradient is analyzed to 

calculate the direction of the gradient. If the current pixel is 

Px,y and the derivative values at that pixel are dx and dy, the 

gradient direction at P can be approximated to one of the 

sectors shown in Figure 4. Once the gradient direction is 

known, the values of the pixels found in the neighbourhood of 

the pixel under consideration are interpolated. The pixel 

which does not have local maximum gradient magnitude is 

removed. The comparison is made between the actual pixel 

and its neighbors, along the gradient direction. For example, if 

the approximate direction of the gradient is between 0o and 

45o, the magnitude of the gradient at Px,y. is compared with the 

magnitude of the gradient at adjacent points as shown in 

Figure 5, where Px,y = | dxx,y | + | dyx,y |. The values of the 

gradient at the point Pa and Pb are defined as follows: 

Pa = 
2

,11,1 yxyx PP  
,                                               (1) 

Where Px+1,y-1=| dxx+1,y-1 | + | dyx+1,y-1 | and 

          Px+1,y-1=| dxx+1,y-1 | + | dyx+1,y-1 |  

Pb=

2

1,11,1   yxyx PP
,                                              (2) 

Where Px-1,y+1=| dxx-1,y+1 | + | dyx-1,y+1 | and 

          Px+1,y-1=| dxx,y+1 | + | dyx,y+1 |  

 
The centre pixel Px.y is considered as an edge, if Px.y > Pa and 

Px.y > Pb. If both conditions are not satisfied then the centre 

pixel is removed. Block diagram of proposed algorithm is 

shown in Figure 2.  

After dividing the input image into n x n overlapping blocks, 

we classify each block into six types as, uniform, 

uniform/texture, texture, edge/texture, medium edge and 

strong edge block, by adopting the block classification 

method of [7]. In order to classify the blocks, first we have to 

identify each pixel in a block as uniform, texture and edge 

pixels. This pixel classification method [7] utilized the local 

variance of each pixel using a 3 x 3 window that is centered 

around the considered pixel in order to label them. Then 

blocks are classified according to the table followed in [7]. 

A practice database of 200 images is formed from the 

Berkeley Segmentation Image Database [10]. From the 

practice set images, for each block type, the appropriate 

percentage value P1 that would result in high and low 

threshold values similar to the ones that are obtained for entire 

image is determined. By following the adaptive selection 

scheme described in [1], appropriate P1 values are selected. 

 

 

 

 

 

 

 

 

 

Figure 5. Pixel interpolation 

 

 

Table 1. P1 values for each block type with different block 

sizes 

Block 

Size 

Block Type 

Uniform 
Uniform/ 

Texture 
Texture 

Edge/ 

Texture 

Medium 

Edge 

Strong 

Edge 

8x8 0 0 0.0312 0.1022 0.2183 0.4820 

16x16 0 0 0.0307 0.1016 0.2616 0.4830 

32x32 0 0 0.0305 0.1117 0.2079 0.4852 

64x64 0 0 0.0318 0.1060 0.2218 0.4670 

128x128 0 0 0.0302 0.0933 0.2375 0.4842 

256x256 0 0 0.0299 0.0911 0.2304 0.4893 
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   PixelTotal _*3.0&0 
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edgeNPixelTotal  _65.0

 

   PixelTotal _*3.0&0 

 

Strong 

edge 
PixelTotal _*7.0  PixelTotal _*3.0  

 

 
(b) 

Figure 6. Pseudo-code for the proposed (a) block 

classification and (b) adaptive threshold selection scheme. 

 

First, the high threshold of the entire image is calculated, for 

each image in the practice database. Then, the image is 

divided into blocks and the blocks are classified into six block 

types as discussed previously. Then, for each block type, the 

gradient magnitude CDF is measured and the corresponding 

CDF used to measure the P1 value such that the local high 

threshold of the blocks in this class is the same as the one for 

the whole image. The resulting P1 value for a considered 

block type is measured as the average value of its 

corresponding set over all images and over all block sizes. 

The 512×512 images are divided into fixed-size blocks, with 

the block size varying from 8 × 8 to 256×256, to evaluate the 

robustness of the obtained P1 values with respect to the block 

size. Table I shows the P1 values that are obtained for each 

block type and for each block size. It should be noted that the 

P1 values for uniform and uniform/texture blocks are equal to 

0 for all block sizes. This illustrates that the uniform and 

uniform/texture blocks can be united into one block type, 

which we refer to as smooth block type. Moreover, this 

signifies that there are no pixels that should be classified as 

edges in a smooth block. 

High thresholds and low thresholds are required for 

thresholding with hysteresis. The high threshold corresponds 

to the point at which the value of the gradient magnitude 

cumulative distribution function (CDF) equals to 1-P1. The 

low threshold is computed as a percentage P2 of the high 

threshold [1].Then hysteresis thresholding is applied to each 

block in an image to determine the edge image, instead of 

applying to the whole image as in original Canny algorithm. 

4. MATLAB RESULTS 

4.1 Performance Analysis 
The proposed Distributed Canny edge detection algorithm is 

implemented in MATLAB. All images taken are gray scale 

images. Gaussian filter is used to filter out any noises in the 

image and the size of the mask is chosen as 5 x 5.Sobel 

operators is used to find horizontal and vertical gradient 

images. Figure 7 shows a comparison made between proposed 

Canny with overlapping and non-overlapping blocks. Block 

size of 64 x 64 is taken for non-overlapping and since Sobel 

operator is used the overlapping block size will become 68 x 

68(since size of the gradient mask is 3 x3) Both the proposed 

methods have same edge detection performance. In Figure 8, 

Distributed Canny edge detection is implemented with the 

conventional gradient and proposed gradient direction step. 

The proposed step has better edge detection performance than 

the conventional one. Figure 9, 10 and 11 depict that the 

proposed Canny has better edge detection than the existing 

Canny and all other edge detectors. 

4.2 Computation Time Analysis 
The Table 2 shows that the Distributed Canny edge detection 

algorithm takes more time to compute than original existing 

Canny algorithm. It also shows that there is not much 

difference in computation time between overlapped and non-

overlapped Distributed Canny edge detectors. 

Table 2. Comparison of computation times 

 
Input Image 

Size 

Existing 

Canny 

Proposed Canny 

Non-overlapping 

Proposed Canny 

overlapping 

512 x 512 

(lena.jpg) 
1.230s 25.503s 26.772s 

256 x 256 

(rice.png) 
0.660s 6.6982s 7.091s 

 
(a)               (b)                    (c) 

Figure 7.  (a) 512 x 512 “Charlie Chaplin” image; final 

edge map of proposed distributed Canny with (b) non-

overlapping blocks (c) overlapping blocks 

Let P1 be the percentage of pixels, in a block, that would be classified as 
strong edges [1]. 

Step 1: If smooth block type 

 P1 = 0;   /*No edges*/ 
            else if texture block  

 P1 = 0.03;   /*Few edges*/ 

            else if texture/edge block type 
 P1 = 0.1;   /*Some edges*/ 

            else if medium edge block type 

 P1 = 0.2;   /*Medium 
edges*/ 

            else 

 P1 = 0.4;    /*Many edges*/ 

Step 2: Compute High_threshold = 1-P1 

Step 3: Compute Low_threshold = 0.4*High_threshold 

 

Step 1: Pixel Classification 

Pixel type = 
 

 

 













yxTedge

TyxTtexture

Tyxuniform

e

eu

u

,var,

,var,

,var,
 

Step 2: Block Classification 
var(x,y): the local (3x3) variance at pixel (x,y). 

uT  and 
eT : two thresholds as in [7]. 

Total_Pixel: the total number of pixels in the block. 

uniformN : the total number of uniform pixels in the block. 

edgeN : the total number of edge pixels in the block. 
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(a)               (b)                    (c) 

Figure 8.  (a) 512 x 512 “Lena” image; final edge map of 

proposed non-overlapping distributed Canny with (b) 

conventional gradient direction step (c) proposed gradient 

direction step 

 
(a)      (b)                              (c) 

Figure 9.  (a) 512 x 512 “Circles” image; final edge map of 

(b) original Canny (c) proposed Canny with  non-

overlapping block size of 64 

 
(a)      (b)                              (c) 

Figure 10.   (a) 256 x 256 “Rice” image; final edge map of 

(b) original Canny (c) proposed Canny with  non-

overlapping block size of 32 x 32 

 
(a)      (b)                              (c) 

 
(d)       (e)                              (f) 

Figure 11. (a) 512 x 512 “Charlie Chaplin” image; final 

edge map of (b) Sobel (c) Prewitt (d) Roberts (e) original 

Canny (f) proposed distributed non- overlapping Canny 

5. CONCLUSION 
In this paper, Canny edge detection algorithm is implemented 

at block level in MATLAB. In the proposed Distributed 

Canny edge detection algorithm, the high and low threshold 

values are calculated for each block in an image. To support 

this adaptive threshold selection scheme, Block Classification 

Scheme is proposed in order to classify type of each block in 

an input image as Smooth, Texture, Edge/texture, Medium 

edge and Strong edge blocks. For classifying the blocks, Pixel 

Classification Method is proposed. With these steps for 

selecting the high and low thresholds, the proposed method 

shows enhanced edge detection performance than original 

Canny algorithm. It also has been shown in this project that 

the proposed method has better edge detection performance 

than many existing algorithms. Also, by the replacement of 

conventional gradient direction computation step with the 

proposed step results in better edge detection. But the 

limitation with the proposed method is increased computation 

time. The proposed algorithm can be implemented in FPGA. 
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