
International Journal of Computer Applications (0975 – 8887)

National Conference on Information and Communication Technologies (NCICT 2015)

11

FPGA Implementation of Distributed Canny

Edge Detection Algorithm

C.S.Manju
PG Student

Department of ECE
Government College of Technology, Coimbatore,

Tamil Nadu, India

C.Vasanthanayaki, PhD
Associate Professor
Department of ECE

Government College of Technology, Coimbatore,
Tamil Nadu, India

ABSTRACT

Edge detection is an important pre-processing step for any

image processing application, object recognition and object

detection. Among different edge detectors that are available,

the Canny edge detector has better edge detection

performance because it satisfies three main criteria which are

low error rate, good localization and minimal response. In this

paper, a mechanism to implement the Canny algorithm at

block level with enhanced edge detection performance is

proposed. By directly applying the original frame-level Canny

algorithm at block level leads to more number of edges in

smooth regions and to loss of important edges in highly-

detailed regions since the original Canny algorithm computes

the high and low thresholds based on the frame-level

statistics. To solve this problem, a new method called

Distributed Canny Edge Detection algorithm is proposed

which adaptively calculates the high and low thresholds based

on the block type and local distribution of the gradients in a

block. In the proposed algorithm, instead of finding the

direction of the gradient by calculating the arctangent vertical

gradient to the horizontal gradient, the value and sign of the

components of the gradient is analyzed to calculate the

direction of the gradient. The proposed Distributed Canny

edge detection algorithm is implemented in MATLAB. The

resulting image shows that the proposed block-level algorithm

detects more number of edges than the original frame-level

Canny algorithm.

Keywords

Canny edge detector, Distributed Image Processing,

MATLAB.

1. INTRODUCTION
Edge detection is an important pre-processing step for any

image processing application, object recognition and object

detection. Edge detection in noise free images is very simple.

But it is difficult to detect edges in noisy images. Noisy

images parameters are difficult to analyze and detect. Edge

detection is a essential tool used in most image processing

applications to obtain information from the frames as a

precursor step to feature extraction and object segmentation. It

detects object outlines and boundaries between objects and the

background in the image. A filter can also be used to refine

the appearance of blurred image.

Edge detectors are broadly classified into first order edge

detector/gradient operator and second order edge

detector/laplacian based operator. Classical edge detectors are

first order detectors where the input image is convolved by an

adapted mask to generate a gradient image in which edges are

detected by thresholding. Robert Cross, Sobel and Prewitt

operators are different types of classical operators. There is a

set of work in [2], [3] that deal with implementation of

classical edge detectors. Robert Cross operator uses kernels

which are designed to respond maximally to edges running at

45° to the pixel grid, one kernel for each of the two

perpendicular orientations. Although the size of the kernel is

smaller as shown in [6] which leads to fast computation but

this operator is very sensitive to noise. Both Prewitt and Sobel

operator kernels respond maximally to edges running

vertically and horizontally to the pixel grid, one kernel for

each of the two perpendicular orientations. These operators

are insensitive to noise but slow computation ability. The first

derivative is positive at the points of transition into and out of

the ramp; it is constant for points in the ramp; and is zero in

areas of constant level.

Another classification of edge detectors is and second order

edge detector/laplacian based operator. It has been shown in

[13], second derivative is positive at the conversion associated

with the dark side of the edge, negative at the conversion

associated with the light side and zero along the ramp and in

areas of constant gray level. It also points out two additional

properties of second derivative: It produces two values for

every edge in an image which is an undesirable property and

an imaginary straight line joining the extreme positive and

negative values of the second derivative would cross zero near

the midpoint of an edge. This zero-crossing property is used

for detecting edges in an image. Marr-Hildreth edge detector

is second order edge detector which uses zero-crossing

property to detect edges. But the limitations of Marr-Hildreth

edge detector are detection of false edges and localization

error is severe at curved edges.

It is concluded form the observations made in [6] and [13]

that the magnitude of the first derivative can be used to find

the presence of an edge at a point in an image. Likewise, the

sign of the second derivative can be used to determine

whether an edge pixel lies on the dark side or light side of an

image. If an image is corrupted by noise, the usage of second

derivative is not a wise choice because in the presence of

noise the negative and positive components cannot be

identified which is important in detecting the edges.

The rest of the paper is organized as follows. Section 2 gives a

brief overview of existing Canny algorithm. Section 3 deals

with the steps included in the proposed algorithm and the

modifications done. The pseudo code for various steps is also

presented in this section. Performance analysis of proposed

Canny algorithm is presented in Section 4. Comparison of

Distributed Canny with the existing Canny and various other

edge detectors are also shown in this section. Finally,

conclusion is presented in Section 5.

International Journal of Computer Applications (0975 – 8887)

National Conference on Information and Communication Technologies (NCICT 2015)

12

2. CANNY EDGE DETECTION

ALGORITHM
Canny edge detector have advanced algorithm derived from

the previous work of Marr and Hildreth. The Canny edge

detection algorithm is known to many as the optimal edge

detector. Canny proposed a list of criteria to improve existing

methods of edge detection. Low error rate is the first criterion.

It is important that true edges should not be missed and that

there are no responses to non-edges. The second criterion is

the localization of edge points. In other words, the distance

between the edge pixels as found by the detector and the

actual edge is to be at a minimum. A third criterion is to have

only one response to a single edge. This third criterion was

necessary because the first two criteria were not enough to

completely eliminate the possibility of multiple responses to

an edge.

The original Canny algorithm [8] works on frame-level

statistics and consists of the following steps: 1) The first step

is to filter out any noise in the original image before trying to

locate and detect any edges. 2) After smoothing the image and

removing the noise, the next step is to find the strength if the

edge by taking the gradient of the image. This involves the

calculation of the horizontal gradient Gx and Gy at each pixel

location by convolving with gradient masks.3) Computation

of gradient magnitude G at each pixel location which tells

how quickly the image changes and computation of gradient

direction θG at each pixel location which gives the direction in

which the image is changing. 4) Once the edge direction is

known, the next step is to relate the edge direction to a

direction that can be traced. So if the pixels of a image are

aligned as follows.

x x x x x

x x x x x

x x a x x

x x x x x

x x x x x

It can be seen by looking at pixel “a”, there are only four

possible directions when describing the surrounding pixels-

0o, 45o, 90o or 135o. Therefore, any edge direction falling

within the range (0o to 22.5o & 157.5o to 180o) is set to 0o.

Any edge direction falling within the range (22.5o to 67.5o) is

set to 45o. Any edge direction falling within the range (67.5o

to 112.5o) is set to 90o. Any edge direction falling within the

range (112.5o to 157.5o) is set to 135o. 5) Apply Non-Maximal

Suppression (NMS) to thin edges. After converting the edge

direction is one of 4 possible main directions (0o, 45o, 90o or

135o), the gradient magnitude of this pixel is compared with

two of its immediate neighbours along the gradient direction

and the gradient magnitude is set to zero if it does not

correspond to a local maximum. 6) Calculation of high and

low thresholds based on the gradient for the entire image. To

select the threshold values some properties of gradient

histogram are analyzed in [4]. The high threshold (thigh) is

chosen from a flat part between the background peak and the

edge peak in the histogram to reduce error detection.

Figure 1. Block diagram of existing Canny algorithm

The low threshold (tlow) is set as 40% of high threshold. 7)

Performing hysteresis thresholding to determine edge map.

Pixels with a gradient magnitude greater than high threshold

are kept as an edge. Pixels with a gradient magnitude lesser

than low threshold are discarded immediately. If a pixel

gradient magnitude lies between high and low thresholds, that

pixel will be considered as an edge only if its neighbors in a 3

x 3 region around it have gradient magnitudes greater than

high threshold. The block diagram of original Canny

algorithm is shown in Figure 1.

3. PROPOSED DISTRIBUTED CANNY

ALGORITHM
To enhance the edge detection performance of original frame-

level Canny algorithm, a new algorithm called Distributed

Canny algorithm is proposed in this paper. As discussed in

Section 2, the classical Canny algorithm computes high and

low thresholds based on the gradient magnitude histogram of

an entire image. By applying same high and low threshold

values for each block in an image will lead to more number of

edges in smooth regions and loss of important edges in highly

detailed regions as shown in [1]. In order to overcome this

problem the high and low threshold values are chosen

according to block-level statistics instead of frame-level

statistics.

In the proposed method, first the input image is divided into m

x m overlapping blocks. In order to do this, first the image

should be divided into n x n non-overlapping blocks where

n<m. For an L x L gradient mask, each block can be extended

by (L+1)/2 along left, right, up and down. The non-

overlapping blocks need to be extended in order to prevent

edge artifacts and loss of edges at lock boundaries while

computing the gradients and due to the fact that NMS

operation at boundary requires gradient values of the

neighboring pixels. Figure 3, shows an example of non-

overlapping block and its extended overlapping block version

in case when a 3x3 gradient mask. In order to perform NMS

for the border pixel (i,j), the gradient information of the

adjacent pixels (i-1, j-1), (i-1, j), (i-1, j+1) and (i+1, j-1) are

taken as in [1]. In order to compute the gradient of the

adjacent pixels (i-1, j-1), (i-1, j), (i-1, j+1) and (i+1, j-1) for

the 3 x 3 gradient mask, the block has to be extended by 2

(where (L-1)/+1 = 2) pixels on all sides in order to generate a

block of size (n+4) x (n+4). Thus m=n+4 for this example.

Steps 1, 2 and 4 to 7 are same as in original Canny algorithm

except those steps are applied for each blocks in an image.

Figure 2. Block diagram of proposed Canny algorithm

Horizontal

gradient

Vertical

gradient

Gradient

Magnitude

and

Direction

Edge

thinning

Adaptive

threshold

calculation

Hysteresis

thresholding

m x m

overlapped

Image

n x n non-
Overlapped

Image

Block

Classification

Smooth

Texture

Hybrid

Strong Edge

Horizontal

gradient

Vertical

gradient

Gradient

Magnitude

and

Direction

Edge

thinning

High and

low

threshold

calculation

Hysteresis

thresholding
I/p

Image

Edge

Map

International Journal of Computer Applications (0975 – 8887)

National Conference on Information and Communication Technologies (NCICT 2015)

13

Figure 3. An example for m x m overlapping block

Figure 4. Gradient orientation

In this paper, another modification is carried out in

computation of gradient direction step. Instead of finding the

direction of the gradient by calculating the arctangent vertical

gradient to the horizontal gradient θ = arctan(dy/dx), the value

and sign of the components of the gradient is analyzed to

calculate the direction of the gradient. If the current pixel is

Px,y and the derivative values at that pixel are dx and dy, the

gradient direction at P can be approximated to one of the

sectors shown in Figure 4. Once the gradient direction is

known, the values of the pixels found in the neighbourhood of

the pixel under consideration are interpolated. The pixel

which does not have local maximum gradient magnitude is

removed. The comparison is made between the actual pixel

and its neighbors, along the gradient direction. For example, if

the approximate direction of the gradient is between 0o and

45o, the magnitude of the gradient at Px,y. is compared with the

magnitude of the gradient at adjacent points as shown in

Figure 5, where Px,y = | dxx,y | + | dyx,y |. The values of the

gradient at the point Pa and Pb are defined as follows:

Pa =
2

,11,1 yxyx PP
, (1)

Where Px+1,y-1=| dxx+1,y-1 | + | dyx+1,y-1 | and

 Px+1,y-1=| dxx+1,y-1 | + | dyx+1,y-1 |

Pb=

2

1,11,1 yxyx PP
, (2)

Where Px-1,y+1=| dxx-1,y+1 | + | dyx-1,y+1 | and

 Px+1,y-1=| dxx,y+1 | + | dyx,y+1 |

The centre pixel Px.y is considered as an edge, if Px.y > Pa and

Px.y > Pb. If both conditions are not satisfied then the centre

pixel is removed. Block diagram of proposed algorithm is

shown in Figure 2.

After dividing the input image into n x n overlapping blocks,

we classify each block into six types as, uniform,

uniform/texture, texture, edge/texture, medium edge and

strong edge block, by adopting the block classification

method of [7]. In order to classify the blocks, first we have to

identify each pixel in a block as uniform, texture and edge

pixels. This pixel classification method [7] utilized the local

variance of each pixel using a 3 x 3 window that is centered

around the considered pixel in order to label them. Then

blocks are classified according to the table followed in [7].

A practice database of 200 images is formed from the

Berkeley Segmentation Image Database [10]. From the

practice set images, for each block type, the appropriate

percentage value P1 that would result in high and low

threshold values similar to the ones that are obtained for entire

image is determined. By following the adaptive selection

scheme described in [1], appropriate P1 values are selected.

Figure 5. Pixel interpolation

Table 1. P1 values for each block type with different block

sizes

Block

Size

Block Type

Uniform
Uniform/

Texture
Texture

Edge/

Texture

Medium

Edge

Strong

Edge

8x8 0 0 0.0312 0.1022 0.2183 0.4820

16x16 0 0 0.0307 0.1016 0.2616 0.4830

32x32 0 0 0.0305 0.1117 0.2079 0.4852

64x64 0 0 0.0318 0.1060 0.2218 0.4670

128x128 0 0 0.0302 0.0933 0.2375 0.4842

256x256 0 0 0.0299 0.0911 0.2304 0.4893

(i-1, j-1)

(i-2, j-2)

(i, j)

n x n non-

overlapped

image

m x m

overlapped
image

|dy| > |dx|

dx<0
dy>0

|dy| > |dx|

dx>0

dy>0

|dy| > |dx|

dx<0
dy<0

|dy| > |dx|

dx>0
dy<0

|dx| > |dy|

dx<0
dy>0

|dx| > |dy|

dx>0

dy>0

|dx| > |dy|

dx<0

dy<0

|dx| > |dy|
dx>0

dy<0

0o

315o

270o

225o

180o

135o 45o

90o

Pb

Pa

Px-1, y

Px-1, y+1

Px, y

Px+1, y

Px+1, y+1

International Journal of Computer Applications (0975 – 8887)

National Conference on Information and Communication Technologies (NCICT 2015)

14

(a)

Block type

No. of pixels of pixel type

uniformN
edgeN

Smooth PixelTotal _*3.0 0

Texture PixelTotal _*3.0 0

Edge/textur

e

edgeNPixelTotal _65.0

 PixelTotal _*3.0&0

Medium

edge

edgeNPixelTotal _65.0

 PixelTotal _*3.0&0

Strong

edge
PixelTotal _*7.0 PixelTotal _*3.0

(b)

Figure 6. Pseudo-code for the proposed (a) block

classification and (b) adaptive threshold selection scheme.

First, the high threshold of the entire image is calculated, for

each image in the practice database. Then, the image is

divided into blocks and the blocks are classified into six block

types as discussed previously. Then, for each block type, the

gradient magnitude CDF is measured and the corresponding

CDF used to measure the P1 value such that the local high

threshold of the blocks in this class is the same as the one for

the whole image. The resulting P1 value for a considered

block type is measured as the average value of its

corresponding set over all images and over all block sizes.

The 512×512 images are divided into fixed-size blocks, with

the block size varying from 8 × 8 to 256×256, to evaluate the

robustness of the obtained P1 values with respect to the block

size. Table I shows the P1 values that are obtained for each

block type and for each block size. It should be noted that the

P1 values for uniform and uniform/texture blocks are equal to

0 for all block sizes. This illustrates that the uniform and

uniform/texture blocks can be united into one block type,

which we refer to as smooth block type. Moreover, this

signifies that there are no pixels that should be classified as

edges in a smooth block.

High thresholds and low thresholds are required for

thresholding with hysteresis. The high threshold corresponds

to the point at which the value of the gradient magnitude

cumulative distribution function (CDF) equals to 1-P1. The

low threshold is computed as a percentage P2 of the high

threshold [1].Then hysteresis thresholding is applied to each

block in an image to determine the edge image, instead of

applying to the whole image as in original Canny algorithm.

4. MATLAB RESULTS

4.1 Performance Analysis
The proposed Distributed Canny edge detection algorithm is

implemented in MATLAB. All images taken are gray scale

images. Gaussian filter is used to filter out any noises in the

image and the size of the mask is chosen as 5 x 5.Sobel

operators is used to find horizontal and vertical gradient

images. Figure 7 shows a comparison made between proposed

Canny with overlapping and non-overlapping blocks. Block

size of 64 x 64 is taken for non-overlapping and since Sobel

operator is used the overlapping block size will become 68 x

68(since size of the gradient mask is 3 x3) Both the proposed

methods have same edge detection performance. In Figure 8,

Distributed Canny edge detection is implemented with the

conventional gradient and proposed gradient direction step.

The proposed step has better edge detection performance than

the conventional one. Figure 9, 10 and 11 depict that the

proposed Canny has better edge detection than the existing

Canny and all other edge detectors.

4.2 Computation Time Analysis
The Table 2 shows that the Distributed Canny edge detection

algorithm takes more time to compute than original existing

Canny algorithm. It also shows that there is not much

difference in computation time between overlapped and non-

overlapped Distributed Canny edge detectors.

Table 2. Comparison of computation times

Input Image

Size

Existing

Canny

Proposed Canny

Non-overlapping

Proposed Canny

overlapping

512 x 512

(lena.jpg)
1.230s 25.503s 26.772s

256 x 256

(rice.png)
0.660s 6.6982s 7.091s

(a) (b) (c)

Figure 7. (a) 512 x 512 “Charlie Chaplin” image; final

edge map of proposed distributed Canny with (b) non-

overlapping blocks (c) overlapping blocks

Let P1 be the percentage of pixels, in a block, that would be classified as
strong edges [1].

Step 1: If smooth block type

 P1 = 0; /*No edges*/
 else if texture block

 P1 = 0.03; /*Few edges*/

 else if texture/edge block type
 P1 = 0.1; /*Some edges*/

 else if medium edge block type

 P1 = 0.2; /*Medium
edges*/

 else

 P1 = 0.4; /*Many edges*/

Step 2: Compute High_threshold = 1-P1

Step 3: Compute Low_threshold = 0.4*High_threshold

Step 1: Pixel Classification

Pixel type =

yxTedge

TyxTtexture

Tyxuniform

e

eu

u

,var,

,var,

,var,

Step 2: Block Classification
var(x,y): the local (3x3) variance at pixel (x,y).

uT and
eT : two thresholds as in [7].

Total_Pixel: the total number of pixels in the block.

uniformN : the total number of uniform pixels in the block.

edgeN : the total number of edge pixels in the block.

International Journal of Computer Applications (0975 – 8887)

National Conference on Information and Communication Technologies (NCICT 2015)

15

(a) (b) (c)

Figure 8. (a) 512 x 512 “Lena” image; final edge map of

proposed non-overlapping distributed Canny with (b)

conventional gradient direction step (c) proposed gradient

direction step

(a) (b) (c)

Figure 9. (a) 512 x 512 “Circles” image; final edge map of

(b) original Canny (c) proposed Canny with non-

overlapping block size of 64

(a) (b) (c)

Figure 10. (a) 256 x 256 “Rice” image; final edge map of

(b) original Canny (c) proposed Canny with non-

overlapping block size of 32 x 32

(a) (b) (c)

(d) (e) (f)

Figure 11. (a) 512 x 512 “Charlie Chaplin” image; final

edge map of (b) Sobel (c) Prewitt (d) Roberts (e) original

Canny (f) proposed distributed non- overlapping Canny

5. CONCLUSION
In this paper, Canny edge detection algorithm is implemented

at block level in MATLAB. In the proposed Distributed

Canny edge detection algorithm, the high and low threshold

values are calculated for each block in an image. To support

this adaptive threshold selection scheme, Block Classification

Scheme is proposed in order to classify type of each block in

an input image as Smooth, Texture, Edge/texture, Medium

edge and Strong edge blocks. For classifying the blocks, Pixel

Classification Method is proposed. With these steps for

selecting the high and low thresholds, the proposed method

shows enhanced edge detection performance than original

Canny algorithm. It also has been shown in this project that

the proposed method has better edge detection performance

than many existing algorithms. Also, by the replacement of

conventional gradient direction computation step with the

proposed step results in better edge detection. But the

limitation with the proposed method is increased computation

time. The proposed algorithm can be implemented in FPGA.

6. REFERENCES
[1] Qian Xu, Srenivas Varadarajan, Chaitali Ckakrabarti,

and Lina J. Karan, “A Distributed Canny Edge Detector:

Algorithm and FPGA Implementation”, IEEE Trans

Image Processing, Vol.23, No.7, July 2014, pp. 2944-

2960.Ding, W. and Marchionini, G. 1997 A Study on

Video Browsing Strategies. Technical Report. University

of Maryland at College Park.

[2] Indrajeet Kumar, Jyoti Rawat, Dr. H.S. Bhadauria, “A

conventional study of edge Detection technique in

Digital image processing”, International Journal of

Computer Science and Mobile Computing, Vol.3 Issue.4,

April 2014, pp. 328-334.Tavel, P. 2007 Modeling and

Simulation Design. AK Peters Ltd.

[3] Chinu and Amit Chhabra, “Overview and Comparative

Analysis of Edge Detection Techniques in Digital Image

Processing”, International Journal of Information &

Computation Technology. ISSN 0974-2239 Volume 4,

Number 10, 2014, pp. 973-980Forman, G. 2003. An

extensive empirical study of feature selection metrics for

text classification. J. Mach. Learn. Res. 3 (Mar. 2003),

1289-1305.

[4] Q. Xu, C. Chakrabarti, and L. J. Karam, “A distributed

Canny edge detector and its implementation on FPGA,”

in Proc. DSP/SPE), Jan. 2011, pp. 500–505.

[5] Daggu Venkateshwar Rao*, Shruti Patil, Naveen Anne

Babu and V Muthukumar, “Implementation and

Evaluation of Image Processing Algorithms on

Reconfigurable Architecture using C-based Hardware

Descriptive Languages”, International Journal of

Theoretical and Applied Computer Sciences, Volume 1

Number 1,2006, pp. 9–34.

[6] Mitra Basu, “Gaussian Based Edge-Detection Methods A

Survey”, IEEE Transactions on System, man, and

cybernetics part c: Application and Reviews, Vol. 32,

No. 3, August 2002, pp. 252-260.

[7] J. K. Su and R. M. Mersereau, “Post-processing for

artifact reduction in JPEG-compressed images,” in Proc.

IEEE ICASSP, vol. 3, May 1995, pp. 2363–2366.

[8] J. F. Canny , “A computational approach to edge

detection”, IEEE Trans. Pattern Anal. Machine Intell.

vol. PAMI-8, no. 6, 1986, pp. 679-697.

[9] W. E. Grimson and E. C. Hildreth , “Comments on

Digital step edges from zero crossings of second

Directional derivatives’’, IEEE Trans. Pattern Anal.

Machine Intell., vol. PAMI-7, no. 1, 1985, pp. 121-129.

[10] P. Arbelaez, C. Fowlkes, and D. Martin. 2013, The

Berkeley Segmentation Dataset and Benchmark [Online].

Available: http://www.eecs.berkeley.edu/Research/

Projects/CS/vision/bsds/.

IJCATM : www.ijcaonline.org

