
2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

10

Implementation of 4x4 Reconfigurable Crossbar

Switch for Network Processor

Prashant K. Wanjari
Student, Mtech
YCCE, Nagpur

Prof. Anagha Choudhari

Lecturer,
YCCE, Nagpur

Indrayani Patle

Student, Mtech
SRKNEC, Nagpur

ABSTRACT
This paper presents the proposal and implementation of a 4x4

reconfigurable crossbar switch (RCS) architecture for network

processors. Its main purpose is to increase the performance, and

flexibility for environments with multiprocessors and computer

clusters. In this paper we show the result of simple 4x4 crossbar

switch .The results include VHDL simulation of RCS on

Modelsim software and the use of it in a broadcast function

implementation, found in message passing support middleware.

This reconfigurable crossbar Switch used in Network Processor

to connect the various circuits which are used to perform the

various task.

Keywords

 Network Processor, FPGA, and Model sim

1. INTRODUCTION
At the end of nineties, network equipments normally used

general-purpose processors. However, the need of quality-of-

service and the high speed of data transmission demanded a

rapid evolution of network equipments. Thus, the Network

Processor (NP) was Created to increase the data transmission

speed & also used to perform the various operations. Network

processors are used in place of some GPPs (General-Purpose

Processors) and ASICs (Application Specific Integrated

Circuits) in network equipments, targeting two important issues:

flexibility and performance. As these features are essential to

process the packets, a network processor is the best choice to get

them. The main motivation is the necessity of increasing two

features cited before. With the use of a reconfigurable crossbar

switch in a network processor it could be achieved. Thus, using

network processor with a reconfigurable crossbar switch as

interconnection structures, it is possible to increase the

throughput and reduce the latency in communications with

shared memory and message transference.

 Therefore, the main objective of this paper is to present the

RCS-2, a reconfigurable crossbar switch architecture used to

connect different inputs and outputs in interconnection and

communication networks, The reconfigurable crossbar switch

was described in VHDL (VHSIC Hardware Description

Language) and we want to implemented it on FPGA (Field

Programmable Gate Array) .in this paper we got the result about

crossbar switch but it will not the reconfigurable.
Many chips are communications processors but not

network processors. Communications processors, such as Free

scale's Power QUICC chips, are closely related to network

processors but serve applications with lower data rates Data

rates for communications processors range from a few megabits

per second to 1Gbps (for instance a single gigabit Ethernet

channel). Their lower prices mean they have more integration

than most network processors. For example, communications

processors typically contain a RISC processor core that runs a

standard MIPS, PowerPC, or ARM instruction set. By contrast,

most NPUs don't include such a processor. In a communications

processor, it's common for Layer 3 processing and above to be

handled by this RISC processor, whereas NPUs commonly

handle Layers 3 and above with proprietary packet engines.

Many communications processors integrate Layer 1 and Layer 2

processing; most NPUs don't. These differences in price and

performance between communications processors and NPUs

mean systems designers typically specify them for widely

different application. .

Figure: 1 Generalised Block diagram for Network

Processor

The second interface is the fabric interface, which connects the

NPU to the external switch fabric or, in some cases, directly to

another NPU. This interface is important for building a line card

but might not be used in other designs. The fabric interface

should have at least as much bandwidth as the line interface,

because nearly all packets in a line card must move across both

interfaces. In fact, it should have enough extra bandwidth,

typically at least 25%, to support fabric headers, in-band

communication, and other fabric overhead. The memory

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

11

interface often consists of several separate physical connections.

One or more typically connect to packet memory, where packet

headers and payloads are stored during processing. Packet

memory also holds packets queued for speed-matching reasons

or, in quality of service applications, to support multiple priority

levels. As a rule of thumb, the packet memory should be 256MB

for OC-48, 1GB for OC-192 (or 10 GB Ethernet), and 4GB for

OC-768 data rates. For these large arrays, NPUs typically use

low-cost DRAM rather than fast but expensive SRAM.

Sustained bandwidth to this memory must be at least double the

line bandwidth, because each packet must be written to the

packet memory and later read back.

2. CHALLENGES FACED IN NPU DESIGN
2.1 Organization of computational power one challenge facing

NPU designers is how to organize all this compute power.

Although state-of-the-art silicon manufacturing can squeeze

dozens of small packet engines on a single chip, it's difficult to

connect more than 16 engines to a single memory using an on-

chip bus or crossbar. Adding too many engines to a bus can

cause contention, delays, and electrical problems, slowing down

the entire chip. One solution is to limit the number of packet

engines to 16 while increasing the performance of each engine.

Most early packet engines were simple scalar (one instruction at

a time) RISC processors. Some new designs have shifted to

VLIW (very long instruction word) packet engines to get more

performance per packet engine. The superscalar techniques you

see in PC and server processors like Opteron, Pentium 4, or

SPARC are less efficient than VLIW and aren't needed unless

software compatibility is important. Another approach is to

pipeline packet engines in such a way that each group of engines

performs a specialized task. EZchip's NP-1 and Agrees APP750,

to name two examples, have one group of engines that connect

to lookup-table memory, while another group connects to the

packet queues. The number of connections to any particular on-

chip resource is thus reduced. This approach however can limit

certain potential applications that use a well chosen pipeline

design. For example, these pipelined chips are well designed for

processing IP packets, but it's more difficult for them to perform

higher-layer functions such as ISCSI and TCP termination. Yet

another approach is to combine pipelining of VLIW packet

engines in a dataflow fashion that increases efficiency. For this,

a single instruction, multiple data (SIMD) technique can be used

in order to organize hundreds of stripped-down packet engines.

 2.2 Fixed or programmable:

Another factor you have to consider when choosing an NPU is

the use of fixed-function coprocessors to supplement the

performance of packet engines. AMCC, for example, uses only

six scalar packet engines in its simplex 10Gbps NPU, so there's

room for the company to add more engines in future chips.

AMCC can get away with so few programmable engines

because its fixed-function policy engines, search engines, and

traffic managers perform much of the packet-processing task.

Fixed-function logic is generally more efficient for any given

task than programmable packet engines, so using coprocessors

can increase performance. The obvious downside is reduced

flexibility; applications have to fit the capabilities of the fixed-

function blocks. A more subtle issue is relative design

difficulty. Fixed-function logic typically implements complex

state machines; this complexity balloons as the system designers

add more features and options. On the other hand, you can

replicate a single packet engine many times and can program it

for a variety of tasks. Fixed-function logic should however be

used judiciously. Finally, it must be considered that many

networking customers have unique needs that can be handled

only through programmability. A flexible, programmable device

can more easily support whatever algorithms, protocols, or

services a customer might want to implement. A highly

programmable NPU will serve the broadest possible market. On

the other hand, a well-designed NPU with appropriate use of

fixed-function blocks is likely to be more efficient for

mainstream applications.

3.3. Programmability spectrum

Because of these different design choices, network processors

offer various levels of programmability, as Figure 3 shows. At

one end of the spectrum is the entirely fixed-function logic of a

"net ASIC." As programmable processor elements are added, the

design moves to the right. A fully programmable NPU with few,

if any, fixed-function blocks sit at the far right. Intel's IXP

architecture is a good example of a fully programmable design,

using packet-engine software to do almost all the work. EZchip

has a highly programmable NPU chip, but its traffic-manager

chip is not programmable, so the total product is less

programmable than Intel's. AMCC's NP chips [8] also use a

fixed-function traffic manager, and even the NPU combine’s

limited packet-engine horsepower with plenty of coprocessors.

Net ASICs, such as Marvell's Prestera-MX, have no packet

engines at all; it's all hardwired. One limitation to

programmability is the amount of hardware and software

requirement. Intel's IXP family of chips requires eight to 10

times more software than AMCC's does to perform the same

tasks. Tasks that are done in AMCC's hardware must however

be written in software for the IXP In the extreme case, a

hardwired ASIC can be used. Owing to the efficiency of fixed-

Function logic, hardwired ASICs can also provide cost, power,

and integration advantages. For example, the Prestera-MX

delivers full-duplex 10Gbps throughput including media-access

controllers (MACs), search engines, and egress traffic

management in a single chip costing about $600 and consuming

only 7W. With the exception of Xelerated's unique PISC (Packet

Instruction Set Computer) architecture, all the available

programmable solutions require at least twice as many chips,

with more than twice the cost and twice the power.

Programmability enables easy differentiation between NPUs

with and without ASICs. Programmable NPUs also assure that

with the change in technology, new features can be easily added

to the existing NPUs. It comprises of three parts, with the first

being the Receive to Memory part (Rx2Mem) which is tasked

with counting the number of bytes in the frame being received

and determining its initial byte of data. The second part is the

Control part, which is tasked with forwarding frame data to the

Process module and storing both the received frames as well as

the processed ones. Finally, the Process module is the last part

of our architecture, which is responsible for processing all the

frame data by performing all the instructions supported by the

design.

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

12

Figure: 2 Basic operational diagram of Network Processor

A. Rx2Mem Module:

 This is the first module of our design, as shown in figure

2; it is responsible for three simple yet essential operations: first,

it keeps a count of all the frames we have received so far

through the network adapter; second, it calculates the length of

each frame it receives which is essential when processing frames

and altering their contents; finally, it is responsible for signalling

the beginning of each frame, once again a necessary operation,

since we need to be able to determine where the first byte of a

frame is stored in the design's data memory.

B. Control Module

 This module is the heart of our architecture (figure 2). As

we have already mentioned its purpose is to forward the proper

frame data to the Process module and to store received and

processed frame data in the data memories. It can be abstractly

divided in four parts, each on a different part of the

architecture's data path. The first part is called Received to

Memory (R2M), receiving data from the Rx2Mem module and

storing them in the memory, along with information about each

frame (its starting address in the data memory and its length in

bytes).The second is the Memory to Process part

(M2P),responsible of forwarding proper frame data to the

Process module in order for them to be processed; this module is

capable of sending the whole frame or a specific byte of the

frame to the Process module, thus optimizing the performance of

some of the instructions supported by the design. The third part

is called Process to Memory (P2M) and it is tasked with writing

processed frame data back to the design's data memory. It is also

responsible for calculating any changes in the frame's length,

since an Add or Remove instruction can alter a frame's length.

Finally, the Memory to Transmit (M2T) part, which is the final

part of the Control module, is responsible of transmitting

processed frames back to the client through the board's network

adapter.

C. Process Module

 This module is where all the frame processing takes

place (figure 2). Instructions are loaded from the instruction

memory and according to each instruction; different actions are

taken in order to accomplish the desired effect on the frame data.

The frame data that are to be processed are requested from the

Control module and after being processed according to the

loaded instruction, are forwarded back to the Control module for

storage on the on board memory.

3. RELATED WORKS
There are lots of commercial network processors of different

companies. Some companies and respective network processors

are: IBM (NP4GS3), Motorola/CPort (C-5 Family),

Lucent/Agree (FPP/RSP/ASI), and Sitera/Vitesse (IQ2000),

Chameleon (CS2000), EZChip (NP-1), Intel (IXP1200) and

others. None of them presents reconfigurability, except the

CS2000 of Chameleon However, it does not have reconfigurable

crossbar switch.NP architectures have dedicated blocks to

execute specific functions as an embedded ASIC (NPSoC –

Network Processor System-on-Chip). Some blocks are: PCI

units, memory units, packet classifiers, policy engines, metering

engines, and packet transform engines, pattern processing

engine, queue engine, QoS engines and other blocks.

4. RECONFIGURABLE CROSSBAR

 SWITCH ARCHITECTURE

Figure: 3 Reconfigured Crossbar switch

RCS-2, presented in figure, has three main blocks: (1)

connection matrix, where the topologies are implemented

;(2)decoder, that converts the reconfigurable bits for a matrix

bits set and (3) pre-header analyzer (PHA). NPs can add a pre-

header in the packet with the output destination. Reconfigurable

crossbar switch (RCS-2) uses reconfiguration bits to implement

the topology in the space. That topology actually maintains the

created connections as a circuit. The reconfiguration bits set are

capable of reconfiguring or implement a new topology in RCS-2

whenever necessary. RCS-2 architecture is based on two

reconfiguration levels. Using these two levels it is possible to

reconfigure and to readapt the crossbar switch to many network

topologies and different workload situations. The first level is

based on static reconfiguration using a reconfigurable device,

like FPGA, Programming this device, it is possible to implement

a RCS-2 with number of in and out ports (and consequently

rows and columns – circuit and logic gates) limited by the

device capacity. The second level of reconfiguration makes

possible the implementation of different network topologies. It

could be done by dynamically reconfiguration of the connection

matrix nodes. These nodes determine which connections will be

closed and consequently which paths exist through the crossbar

switch. RCS-2 has two bits of reconfiguration to each node,

which define the current topology. Only the Reconfiguration

Unit and the instruction set of the network processor are able to

change those bits in order to implement new topologies.

Although one instruction can modify a reconfigurable bit, it only

modifies the 01 and 10 formats the 00 and 11 formats are

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

13

restricted to Reconfiguration Unit. A. RCS-2 Implementation

to allow the first level of reconfiguration, defined in section III,

and to verify the proposal of reconfigurable crossbar switch, the

RCS-2 architecture was codified using VHDL. Beyond the

portage of code, it was necessary to build a parameterized code

to achieve the first level. To allow the second level of

reconfiguration, the decoder module was codified. This module

receives three sets of bits: configuration type, address, and data.

The configuration type determines which kind of configuration

must be made: node, line or column. When it is a node

configuration type bits, the decoder fills the configuration bits of

a connection matrix node indicated by address with the data bits.

When it is line or column configuration type bits, the entire line

or column (all nodes) indicated by address bits is filled by data

bits. In this way, these types of reconfiguration can be made in

one reconfiguration time, configuring in Parallel all nodes. This

time is defined by the technology of the target device. The code

and the architecture were verified through behavioural

simulation using the Model Sim XE II from Model Technology.

5. ADVANTAGES & DISADVANTAGES
The main competitors to NPUs are general-purpose

microprocessors and custom ASICs. In previous networking

systems, microprocessors were used to perform routing

functions in low-end devices because of their low cost,

general availability, and ease of programming.

Microprocessors don't have enough performance for high-

bandwidth devices, so these boxes used custom ASICs.

ASICs provide ultimate control over the design. Using ASICs, a

networking designer can create highly differentiated products.

On the other hand, ASICs have long design cycles(9 -18

months), long debug cycles, and high development costs

(millions of dollars). As a result, ASIC development is the

riskiest portion of system development. Like standard

microprocessors, network processors are programmable and

available off the shelf, yet they can match the performance of

ASICs in demanding networking applications. NPUs replace

fixed-function ASICs with a programmable design,

providing additional advantages. A programmable device

shortens the design cycle and is more easily modified to

support new or evolving standards. Programmability not

only accelerates time to market, it can even enable an

NPU-based router to be field-upgraded with a new protocol

something that can't be done with a hardwired solution.

6. RESULTS

Result (1) OBJECT WINDOW

Result (2) WAVE WINDOW

7. CONCLUSIONS
The developed reconfigurable crossbar switch architecture

presented advantages due to its flexibility and high performance.

This fact justifies its employment in a network processor. The

capability of adapting the topology implemented on crossbar

switch to the environment changes generates high performance

for data processing in several situations as multiprocessors and

computer clusters could be reached with modifications in The

contribution of this paper is the proposed RCS-2 architecture.

The first level of reconfiguration of the RCS-2 could be reached

through the codification of the architecture using a hardware

description language, allowing it to be implemented in several

devices with dimensions determined by device capacity. The

second level of reconfiguration the matrix of connections. These

modifications generate an overhead. However, through the

experiments, it was evidenced that the overhead time is less than

the speedup obtained through the topologies implementation in

RCS-2. Therefore, the RCS-2 has a better performance when

compared to a TCS.

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

14

8. REFERENCES
[1] D. E. Comer, “Network Systems Design using Network

Processors”, Prentice Hall, 2003

[2] D. Kim, K. Lee, S. Lee and H. Yoo, “A Reconfigurable

Crossbar Switch with Adaptive Bandwidth Control for

Networks-on-Chip”, IEEE International Symposium on

Circuits and Systems, 2005

[3] G. Lawton, “Will Network Processor Units Live up to

Their Promise?”, IEEE Computer, Volume 37, Number 4,

April, 2004,

 [4] I. A. Troxel, A. D. George and S. Oral, “Design and

Analysis of a Dynamically Reconfigurable Network

Processor”, IEEE Conference on Local Computer

Networks, November 6-8, 2002

[5] J. Chang, S. Ravi, and A. Raghunathan, “FLEXBAR: A

crossbar switching fabric with improved performance and

utilization”, IEEE Custom Integrated Circuits Conference,

May 2002,

 [6] L.E.S. Ramos and C.A.P.S. Martins, “A Proposal of

Reconfigurable MPI Collective Communication

Functions”. Third International Symposium on Parallel and

Distributed Processing and Applications, LNCS 3758,

Nanjing, China, November 2-5, 2005

[7] S. Young, et al., “A High I/O Reconfigurable Crossbar

Switch”, 11th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, Napa,

California, April .

