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ABSTRACT 
This paper presents the proposal and implementation of a 4x4 

reconfigurable crossbar switch (RCS) architecture for network 

processors. Its main purpose is to increase the performance, and 

flexibility for environments with multiprocessors and computer 

clusters. In this paper we show the result of simple 4x4 crossbar 

switch .The results include VHDL simulation of RCS on 

Modelsim software and the use of it in a broadcast function 

implementation, found in message passing support middleware. 

This reconfigurable crossbar Switch used in Network Processor 

to connect the various circuits which are used to perform the 

various task. 
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1. INTRODUCTION 
At the end of nineties, network equipments normally used 

general-purpose processors. However, the need of quality-of-

service and the high speed of data transmission demanded a 

rapid evolution of network equipments. Thus, the Network 

Processor (NP) was Created to increase the data transmission 

speed & also used to perform the various operations. Network 

processors are used in place of some GPPs (General-Purpose 

Processors) and ASICs (Application Specific Integrated 

Circuits) in network equipments, targeting two important issues: 

flexibility and performance. As these features are essential to 

process the packets, a network processor is the best choice to get 

them. The main motivation is the necessity of increasing two 

features cited before. With the use of a reconfigurable crossbar 

switch in a network processor it could be achieved. Thus, using 

network processor with a reconfigurable crossbar switch as 

interconnection structures, it is possible to increase the 

throughput and reduce the latency in communications with 

shared memory and message transference. 

         Therefore, the main objective of this paper is to present the 

RCS-2, a reconfigurable crossbar switch architecture used to 

connect different inputs and outputs in interconnection and 

communication networks, The reconfigurable crossbar switch 

was described in VHDL (VHSIC Hardware Description 

Language) and we want to implemented it on FPGA (Field     

 

Programmable Gate Array) .in this paper we got the result about 

crossbar switch but it will not the reconfigurable. 
Many chips are communications processors but not 

network processors. Communications processors, such as Free 

scale's Power QUICC chips, are closely related to network 

processors but serve applications with lower data rates Data 

rates for communications processors range from a few megabits 

per second to 1Gbps (for instance a single gigabit Ethernet 

channel ). Their lower prices mean they have more integration 

than most network processors. For example, communications 

processors typically contain a RISC processor core that runs a 

standard MIPS, PowerPC, or ARM instruction set. By contrast, 

most NPUs don't include such a processor. In a communications 

processor, it's common for Layer 3 processing and above to be 

handled by this RISC processor, whereas NPUs commonly 

handle Layers 3 and above with proprietary packet engines. 

Many communications processors integrate Layer 1 and Layer 2 

processing; most NPUs don't. These differences in price and 

performance between communications processors and NPUs 

mean systems designers typically specify them for widely 

different application. .   

 

Figure: 1 Generalised Block diagram for Network 

Processor 

The second interface is the fabric interface, which connects the 

NPU to the external switch fabric or, in some cases, directly to 

another NPU. This interface is important for building a line card 

but might not be used in other designs. The fabric interface 

should have at least as much bandwidth as the line interface, 

because nearly all packets in a line card must move across both 

interfaces. In fact, it should have enough extra bandwidth, 

typically at least 25%, to support fabric headers, in-band 

communication, and other fabric overhead. The memory 
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interface often consists of several separate physical connections. 

One or more typically connect to packet memory, where packet 

headers and payloads are stored during processing. Packet 

memory also holds packets queued for speed-matching reasons 

or, in quality of service applications, to support multiple priority 

levels. As a rule of thumb, the packet memory should be 256MB 

for OC-48, 1GB for OC-192 (or 10 GB Ethernet), and 4GB for 

OC-768 data rates. For these large arrays, NPUs typically use 

low-cost DRAM rather than fast but expensive SRAM. 

Sustained bandwidth to this memory must be at least double the 

line bandwidth, because each packet must be written to the 

packet memory and later read back.  

2. CHALLENGES FACED IN NPU DESIGN 
2.1 Organization of computational power one challenge facing 

NPU designers is how to organize all this compute power. 

Although state-of-the-art silicon manufacturing can squeeze 

dozens of small packet engines on a single chip, it's difficult to 

connect more than 16 engines to a single memory using an on-

chip bus or crossbar. Adding too many engines to a bus can 

cause contention, delays, and electrical problems, slowing down 

the entire chip. One solution is to limit the number of packet 

engines to 16 while increasing the performance of each engine. 

Most early packet engines were simple scalar (one instruction at 

a time) RISC processors. Some new designs have shifted to 

VLIW (very long instruction word) packet engines to get more 

performance per packet engine. The superscalar techniques you 

see in PC and server processors like Opteron, Pentium 4, or 

SPARC are less efficient than VLIW and aren't needed unless 

software compatibility is important. Another approach is to 

pipeline packet engines in such a way that each group of engines 

performs a specialized task. EZchip's NP-1 and Agrees APP750, 

to name two examples, have one group of engines that connect 

to lookup-table memory, while another group connects to the 

packet queues. The number of connections to any particular on-

chip resource is thus reduced. This approach however can limit 

certain potential applications that use a well chosen pipeline 

design. For example, these pipelined chips are well designed for 

processing IP packets, but it's more difficult for them to perform 

higher-layer functions such as ISCSI and TCP termination. Yet 

another approach is to combine pipelining of VLIW packet 

engines in a dataflow fashion that increases efficiency. For this, 

a single instruction, multiple data (SIMD) technique can be used 

in order to organize hundreds of stripped-down packet engines. 

 2.2 Fixed or programmable: 

Another factor you have to consider when choosing an NPU is 

the use of fixed-function coprocessors to supplement the 

performance of packet engines. AMCC, for example, uses only 

six scalar packet engines in its simplex 10Gbps NPU, so there's 

room for the company to add more engines in future chips. 

AMCC can get away with so few programmable engines 

because its fixed-function policy engines, search engines, and 

traffic managers perform much of the packet-processing task. 

Fixed-function logic is generally more efficient for any given 

task than programmable packet engines, so using coprocessors 

can increase performance. The obvious downside is reduced 

flexibility; applications have to fit the capabilities of the fixed-

function blocks.  A more subtle issue is relative design 

difficulty. Fixed-function logic typically implements complex 

state machines; this complexity balloons as the system designers 

add more features and options. On the other hand, you can 

replicate a single packet engine many times and can program it 

for a variety of tasks. Fixed-function logic should however be 

used judiciously. Finally, it must be considered that many 

networking customers have unique needs that can be handled 

only through programmability. A flexible, programmable device 

can more easily support whatever algorithms, protocols, or 

services a customer might want to implement. A highly 

programmable NPU will serve the broadest possible market. On 

the other hand, a well-designed NPU with appropriate use of 

fixed-function blocks is likely to be more efficient for 

mainstream applications.  

3.3. Programmability spectrum  

Because of these different design choices, network processors 

offer various levels of programmability, as Figure 3 shows. At 

one end of the spectrum is the entirely fixed-function logic of a 

"net ASIC." As programmable processor elements are added, the 

design moves to the right. A fully programmable NPU with few, 

if any, fixed-function blocks sit at the far right. Intel's IXP 

architecture is a good example of a fully programmable design, 

using packet-engine software to do almost all the work. EZchip 

has a highly programmable NPU chip, but its traffic-manager 

chip is not programmable, so the total product is less 

programmable than Intel's. AMCC's NP chips [8] also use a 

fixed-function traffic manager, and even the NPU combine’s 

limited packet-engine horsepower with plenty of coprocessors. 

Net ASICs, such as Marvell's Prestera-MX, have no packet 

engines at all; it's all hardwired. One limitation to 

programmability is the amount of hardware and software 

requirement. Intel's IXP family of chips requires eight to 10 

times more software than AMCC's does to perform the same 

tasks. Tasks that are done in AMCC's hardware must however 

be written in software for the IXP In the extreme case, a 

hardwired ASIC can be used. Owing to the efficiency of fixed-

Function logic, hardwired ASICs can also provide cost, power, 

and integration advantages. For example, the Prestera-MX 

delivers full-duplex 10Gbps throughput including media-access 

controllers (MACs), search engines, and egress traffic 

management in a single chip costing about $600 and consuming 

only 7W. With the exception of Xelerated's unique PISC (Packet 

Instruction Set Computer) architecture, all the available 

programmable solutions require at least twice as many chips, 

with more than twice the cost and twice the power. 

Programmability enables easy differentiation between NPUs 

with and without ASICs. Programmable NPUs also assure that 

with the change in technology, new features can be easily added 

to the existing NPUs. It comprises of three parts, with the first 

being the Receive to Memory part (Rx2Mem) which is tasked 

with counting the number of bytes in the frame being received 

and determining its initial byte of data. The second part is the 

Control part, which is tasked with forwarding frame data to the 

Process module and storing both the received frames as well as 

the processed ones. Finally, the Process module is the last part 

of our architecture, which is responsible for processing all the 

frame data by performing all the instructions supported by the 

design. 
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Figure: 2 Basic operational diagram of Network Processor 

A. Rx2Mem Module: 

             This is the first module of our design, as shown in figure 

2; it is responsible for three simple yet essential operations: first, 

it keeps a count of all the frames we have received so far 

through the network adapter; second, it calculates the length of 

each frame it receives which is essential when processing frames 

and altering their contents; finally, it is responsible for signalling 

the beginning of each frame, once again a necessary operation, 

since we need to be able to determine where the first byte of a 

frame is stored in the design's data memory. 

 

B. Control Module 

            This module is the heart of our architecture (figure 2). As 

we have already mentioned its purpose is to forward the proper 

frame data to the Process module and to store received and 

processed frame data in the data memories. It can be abstractly 

divided in four parts, each on a different part of the 

architecture's data path. The first part is called Received to 

Memory (R2M), receiving data from the Rx2Mem module and 

storing them in the memory, along with information about each 

frame (its starting address in the data memory and its length in 

bytes).The second is the Memory to Process part 

(M2P),responsible of forwarding proper frame data to the 

Process module in order for them to be processed; this module is 

capable of sending the whole frame or a specific byte of the 

frame to the Process module, thus optimizing the performance of 

some of the instructions supported by the design.  The third part 

is called Process to Memory (P2M) and it is tasked with writing 

processed frame data back to the design's data memory. It is also 

responsible for calculating any changes in the frame's length, 

since an Add or Remove instruction can alter a frame's length. 

Finally, the Memory to Transmit (M2T) part, which is the final 

part of the Control module, is responsible of transmitting 

processed frames back to the client through the board's network 

adapter. 

C. Process Module 

            This module is where all the frame processing takes 

place (figure 2). Instructions are loaded from the instruction 

memory and according to each instruction; different actions are 

taken in order to accomplish the desired effect on the frame data. 

The frame data that are to be processed are requested from the 

Control module and after being processed according to the 

loaded instruction, are forwarded back to the Control module for 

storage on the on board memory. 

 

3. RELATED WORKS 
There are lots of commercial network processors of different 

companies. Some companies and respective network processors 

are: IBM (NP4GS3), Motorola/CPort (C-5 Family), 

Lucent/Agree (FPP/RSP/ASI), and Sitera/Vitesse (IQ2000), 

Chameleon (CS2000), EZChip (NP-1), Intel (IXP1200) and 

others. None of them presents reconfigurability, except the 

CS2000 of Chameleon However, it does not have reconfigurable 

crossbar switch.NP architectures have dedicated blocks to 

execute specific functions as an embedded ASIC (NPSoC – 

Network Processor System-on-Chip). Some blocks are: PCI 

units, memory units, packet classifiers, policy engines, metering 

engines, and packet transform engines, pattern processing 

engine, queue engine, QoS engines and other blocks.  

 

4. RECONFIGURABLE CROSSBAR     

         SWITCH ARCHITECTURE 

 

Figure: 3 Reconfigured Crossbar switch 

RCS-2, presented in figure, has three main blocks: (1) 

connection matrix, where the topologies are implemented 

;(2)decoder, that converts the reconfigurable bits for a matrix 

bits set and  (3) pre-header analyzer (PHA). NPs can add a pre-

header in the packet with the output destination. Reconfigurable 

crossbar switch (RCS-2) uses reconfiguration bits to implement 

the topology in the space. That topology actually maintains the 

created connections as a circuit. The reconfiguration bits set are 

capable of reconfiguring or implement a new topology in RCS-2 

whenever necessary. RCS-2 architecture is based on two 

reconfiguration levels. Using these two levels it is possible to 

reconfigure and to readapt the crossbar switch to many network 

topologies and different workload situations. The first level is 

based on static reconfiguration using a reconfigurable device, 

like FPGA, Programming this device, it is possible to implement 

a RCS-2 with number of in and out ports (and consequently 

rows and columns – circuit and logic gates) limited by the 

device capacity. The second level of reconfiguration makes 

possible the implementation of different network topologies. It 

could be done by dynamically reconfiguration of the connection 

matrix nodes. These nodes determine which connections will be 

closed and consequently which paths exist through the crossbar 

switch. RCS-2 has two bits of reconfiguration to each node, 

which define the current topology. Only the Reconfiguration 

Unit and the instruction set of the network processor are able to 

change those bits in order to implement new topologies. 

Although one instruction can modify a reconfigurable bit, it only 

modifies the 01 and 10 formats the 00 and 11 formats are 
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restricted to Reconfiguration Unit.     A. RCS-2 Implementation 

to allow the first level of reconfiguration, defined in section III, 

and to verify the proposal of reconfigurable crossbar switch, the 

RCS-2 architecture was codified using VHDL. Beyond the 

portage of code, it was necessary to build a parameterized code 

to achieve the first level. To allow the second level of 

reconfiguration, the decoder module was codified. This module 

receives three sets of bits: configuration type, address, and data. 

The configuration type determines which kind of configuration 

must be made: node, line or column. When it is a node 

configuration type bits, the decoder fills the configuration bits of 

a connection matrix node indicated by address with the data bits. 

When it is line or column configuration type bits, the entire line 

or column (all nodes) indicated by address bits is filled by data 

bits. In this way, these types of reconfiguration can be made in 

one reconfiguration time, configuring in Parallel all nodes. This 

time is defined by the technology of the target device. The code 

and the architecture were verified through behavioural 

simulation using the Model Sim XE II from Model Technology.  

 

5. ADVANTAGES & DISADVANTAGES 
The main competitors to NPUs are general-purpose 

microprocessors and custom ASICs.  In  previous  networking  

systems,  microprocessors  were  used  to  perform  routing  

functions  in  low-end  devices  because  of  their  low  cost,  

general  availability,  and  ease  of  programming.  

Microprocessors  don't  have  enough  performance  for  high-

bandwidth  devices,  so  these  boxes used custom ASICs. 

ASICs provide ultimate control over the design.  Using ASICs, a 

networking designer can create highly differentiated products.  

On  the  other  hand,  ASICs  have  long  design cycles( 9 -18 

months), long debug cycles, and high  development  costs 

(millions  of  dollars).  As a result, ASIC development is the 

riskiest portion of system development.   Like  standard  

microprocessors,  network processors are  programmable and 

available off the shelf, yet they can match the  performance  of  

ASICs  in  demanding  networking  applications.  NPUs  replace  

fixed-function  ASICs  with  a  programmable  design,  

providing  additional  advantages.  A  programmable device  

shortens  the  design  cycle  and  is more easily modified to  

support  new  or  evolving  standards.  Programmability  not  

only  accelerates  time  to  market,  it  can  even  enable  an  

NPU-based  router to be field-upgraded with a new  protocol 

something that  can't  be  done  with  a  hardwired  solution.   
 

 

 

 

 

 

 

 

 

 

 

6. RESULTS 

 
Result (1) OBJECT WINDOW 

 

Result (2) WAVE WINDOW 

7. CONCLUSIONS 
The developed reconfigurable crossbar switch architecture 

presented advantages due to its flexibility and high performance. 

This fact justifies its employment in a network processor. The 

capability of adapting the topology implemented on crossbar 

switch to the environment changes generates high performance 

for data processing in several situations as multiprocessors and 

computer clusters could be reached with modifications in The 

contribution of this paper is the proposed RCS-2 architecture. 

The first level of reconfiguration of the RCS-2 could be reached 

through the codification of the architecture using a hardware 

description language, allowing it to be implemented in several 

devices with dimensions determined by device capacity. The 

second level of reconfiguration the matrix of connections. These 

modifications generate an overhead. However, through the 

experiments, it was evidenced that the overhead time is less than 

the speedup obtained through the topologies implementation in 

RCS-2. Therefore, the RCS-2 has a better performance when 

compared to a TCS. 
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