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ABSTRACT 
Lossless image compression is used for reducing the volume 

of image data without compromising the data quality. The aim 

is to reduce the demand on processors and to increase the 

speed at which images can be compressed. LOCO-R 

algorithm is used for image compression. It is based on the 

LOCO-I (Low complexity Lossless Compression for image) 

algorithm. The LOCO-R algorithm has already been 

implemented for image with 8-bit pixel values. 

 In this paper, we proposed the LOCO-R algorithm for 16 bit 

image; it reduces the implementation complexity and reduced 

the compression ratio. This algorithm is based on prediction 

and context models; the model is tuned for efficient 

performance in conjunction with a collection of Huffman 

codes, which realized with Golomb-Rice code.  
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1. INTRODUCTION 
Digital images commonly contain lots of redundant 

information, and thus they are usually compressed to remove 

redundancy and minimize the storage space or transport 

bandwidth. 

Compression can be categorized in two broad ways: Lossless 

Compression and Lossy Compression. Lossless Compression 

in which data is compressed and can be reconstituted 

(uncompressed) without loss of detail or information. In 

Lossy Compression,  the aim is to obtain the best possible 

fidelity for a given bit-rate or minimizing the bit-rate to 

achieve a given fidelity measure.  

 Lossless image compression is used for reducing the volume 

of image data without compromising the data quality. The 

aim is to reduce the demand on processors and to increase the 

speed at which images can be compressed. The compressed 

image produced is a sequence of bits from which the original 

image can be reconstructed. Scientific or legal considerations 

make lossy compression unacceptable for many high 

performance applications such as geophysics, telemetry, non-

destructive evaluation, and medical imaging, which will still 

require lossless image compression. 

LOCO-R is Lossless Image Compression Algorithm. It is 

based on LOCO-I (Low complexity Lossless Compression for 

image) algorithm. The LOCO-R algorithm has already been 

implemented for image with 8-bit pixel values. In this paper, 

we proposed the LOCO-R algorithm for 16 bit image. 

2. RELATED WORK 
Liu Zheng-lin', Qian Ying2, Yang Li-ying', Bo Yu', Li Hui' 

proposed LOCO-R which is based on LOCO-I algorithm with 

the modifications and betterment. This algorithm reduces 

obviously the implementation complexity and compared with 

the Rice Compression algorithm, results illustrates that this 

algorithm is better than the Rice Compression typically by 

around 15 percent.[1] 

 Marcelo J. Weinberger and Gadiel Seroussi proposed, the 

LOCO-I algorithm and discuss the principles underlying the 

design of LOCO-I and its Standardization into JPEG-LS. It is 

conceived as a “low complexity projection” of the universal 

context modeling paradigm, matching its modeling unit to a 

simple coding unit. By combining simplicity with the 

compression potential of context models, it is based on a 

simple fixed context model, which approaches the capability 

of the more complex universal techniques for capturing high-

order dependencies. LOCO-I attains compression ratios 

similar or superior to those obtained with state-of-the-art 

schemes based on arithmetic coding. Moreover, it is within a 

few percentage points of the best available compression 

ratios, at a much lower complexity level. [4][8]. 

Hua Cai and Jiang Li presents a new image coding algorithm 

based on a simple architecture that is easy to model and 

encode the residual samples. In the proposed algorithm, each 

residual sample is separated into three parts: (1) a sign value, 

(2) a magnitude value, and (3) a magnitude level. A tree 

structure is then used to organize the magnitude levels. By 

simply coding the tree and the other two parts without any 

complicated modeling and entropy coding, good performance 

can be achieved with very low computational cost in the 

binary-encoded mode. Moreover, with the aid of context-

based arithmetic coding, the magnitude values are further 

compressed in the arithmetic-coded mode. [16] 
 

3. LOCO-R ALGORITHM FOR 16 BIT 
Previously proposed LOCO-R algorithm is design for only 8 

bit image pixels. It gives the better performance as compared 

with the other lossless compression algorithm. We proposed 

modified LOCO-R algorithm which is work on 16 bit images. 

It reduces the computational efficiency of 16 bit image and 

compression rate. 

The LOCO-R algorithm based on the LOCO-I algorithm, it 

takes as input a rectangular image with 16-bit pixel values 

(the pixel values are within the range 0 to 65535). The 

compressed image produced is a sequence of bits from which 

the original image can be reconstructed. Let wd be the image 

width and ht be the image height. Pixels are identified by 

coordinates (x, y) with x in the range [O, wd-l] and y in the 

range [O, ht-l]. This paper supposes: (0, 0) corresponds to the 

upper left comer of the image. [5] 

The LOCO-R algorithm is based on predictive compression. 

During compression, the pixels of the image are processed in 

raster scan order. Specifically, y is Incremented through the 
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range [O,ht-l], and for each y value, x is incremented through 

the range[O,wd-l]. (Thus, the y dimensions,  the slowly 

varying dimension.)The first two pixels, with coordinates 

(0,0) and (1,0), are simply put into the output bit stream 

uncoded. 

For all other pixels of the image, the processing that occurs 

can be conceptually divided into following steps: 

1. Find out the Histogram Values of the input image. These   

    would give us the probability of the pixels 

2. Find out the Huffman codes for the given input image with  

    the probabilities. This would complete the prediction step. 

3. Estimate the data obtained from the previous step. 

4. Once estimated, we can encode the pixel values based on  

    predictive sampling. 

5. Again sum up the encoded data to form the newer version 

of  

    context data. 

6. Repeat this process for every pixel. 

 

3.1 Context Modeling 
The reducing the number of parameters is a key objective in a 

context modeling scheme. In a sequential formulation, the 

goal is to avoid “context dilution” while in a two-pass scheme 

we wish to reduce unnecessary table overhead. The total 

number of parameters in the model depends on the number of 

free parameters defining the coding distribution at each 

context and on the number of contexts. The context that 

conditions the encoding of the current prediction residual in 

LOCO-R is built out of the differences g1=d−a, g2=a−c, 

g3=c−b, and g4=b−e. These differences represent the local 

gradient, thus capturing the level of activity (smoothness, 

edginess) surrounding a pixel, which governs the statistical 

behavior of prediction errors. Notice that this approach 

differs from the one adopted in the Sunset family and other 

schemes, where the context is built out of the prediction 

errors incurred in previous encodings. By symmetry, g1, g2, 

and g3 influence the model in the same way. Since further 

parameter reduction is obviously needed, each difference gj, 

j=1, 2, 3, is quantized into a small number or approximately 

equiprobable regions (the same regions for j = 1, 2,3). In this 

maximizes the mutual information between the current pixel 

and its context, an information-theoretic measure of the 

amount of information provided by the conditioning context 

on the pixel value to be modeled. Difference g4, being farther 

away from the predicted pixel, is quantized more coarsely. 

In principle, the number of regions into which each context 

difference is quantized should be adaptively optimized. 

However, the low complexity requirement dictates a fixed 

number of “equiprobable” regions. By symmetry, there is one 

region centered at the difference value 0, and if the interval 

[r1, r2] represents a region, then so does [−r1, −r2].Thus, the 

total number of quantization regions for g j, j=1, 2, 3, is an 

odd integer 2R + 1, while g4 is quantized into 2T + 1 regions, 

T < R. This leads to a total of (2T +1) ×(2R +1)3 different 

contexts. A further reduction in the number of contexts is 

obtained after observing that, by symmetry, it is reasonable to 

assume Prob{ei+1 = Δ|Ci = [q1, q2, q3, q4]} = Prob{ei+1 =−Δ|Ci 

= [−q1,−q2,−q3,−q4]} 

where Ci represents the quantized context quartet and qj, j = 

1, . . . . ,4, are quantized differences corresponding, 

respectively, to gj, j = 1,. . . . . , 4. 

To complete the definition of the contexts in LOCO-R, it 

remains to specify the values of the boundaries between 

quantization regions. F or an 8-bit per pixel alphabet, the 

quantization regions for gj, j = 1, 2, 3, are {0}, {1, 2}, {3, 4, 5, 

6}, {7, 8, . . . , 14}, { e | e ≥ 15 }, and their corresponding 

negative counterparts. The three quantization regions for g4 

are |g4| < 5, g4 ≥ 5, and g4 ≤ −5. 

 

3.2 Huffman Coding 
Huffman coder always assigns long codeword’s to less 

frequent symbols and short codeword’s to frequent symbols. 

Huffman codes are optimal in the sense that they generate a 

set of variable length binary codeword’s of minimum average 

length, as long as the source alphabet and PMF are available. 

Huffman codes always produce an average code length within 

one bit of the entropy bound. Huffman coders are adaptive 

and estimate the source PMF from the coded samples. In 

order to encode images:  
 Divide image up into 8x8 blocks  

 Each block is a symbol to be coded  

 compute Huffman codes for set of block  

 Encode blocks accordingly  

The basic idea in Huffman coding is to assign short 

codeword’s to those input blocks with high probabilities and 

long codeword’s to those with low probabilities. A Huffman 

code is designed by merging together the two least probable 

characters, and repeating this process until there is only one 

character remaining. A code tree is thus generated and the 

Huffman code is obtained from the labeling of the code tree. 

 

3.3 Prediction 
Ideally, guessing the value of the current pixel xi+1 based on 

a, b, c, d, and e should be done by adaptively learning a model 

conditioned on the local edge direction. However, our 

complexity constraints rule out this possibility. Yet, a 

primitive edge detector is still desirable in order to approach 

the best possible predictor. The approach in LOCO-R consists 

on performing a primitive test to detect vertical or horizontal 

edges. If an edge is not detected, then the guessed value is 

a+b−c, as this would be the value of xi+1 if the current pixel 

belonged to the “plane” defined by the three neighboring 

pixels with “heights” a, b and c.This expresses the expected 

smoothness of the image in the absence of edges. Specifically, 

the LOCO-R predictor guesses:   

                                                               
Assuming, without loss of generality, that a ≤ b, then the 

predictor of (1) can be interpreted as picking a in many cases 

where a vertical edge exists left of the current location, b in 

many cases of an horizontal edge above the current location, 

or a plane predictor a + b − c if no edge has been detected. 

The above predictor has been employed in image compression 

applications, although under a different interpretation. The 

guessed value is seen as the median of three fixed predictors, 

a, b, and a + b − c. Notice that the predictor of (1) does not 

employ either d or e, which will be used in context modeling. 

The lossless coding process employs a simple predictive 

coding model called differential pulse code modulation 

(DPCM). This is a model in which predictions of the sample 

values are estimated from the neighboring samples that are 

already coded in the image. Most predictors take the average 

of the samples immediately above and to the left of the target 

sample. DPCM encodes the differences between the predicted 

samples instead of encoding each sample independently. The 

differences from one sample to the next are usually close to 

zero. A typical DPCM encoder is displayed in Fig.2. The 
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block in the figure acts as a storage of the current sample 

which will later be a previous sample. 

                             

 

Fig.1: DPCM  encoder  model[13] 

The main steps of lossless operation mode are depicted in 

Fig.3. In the process, the predictor combines up to three 

neighboring samples at a, b, and c , in order to produce a 

prediction of the sample value at the position labeled by x. 

The three neighboring samples must be already predicted 

samples.                          

 

Fig. 2: Three neighboring samples around the sample to 

be predicted 

3.3 Estimation 
A more accurate estimate will produce a smaller and thus 

more compressible residual. A preliminary estimate is 

computed with a fixed (i.e., non-adaptive) estimator, and the 

adaptively computed bias is added to form the final estimate. 

The final estimate of a pixel is obtained by adding the bias 

value (or its negative, if the invert flag is set) to the initial 

estimate. The bias value attempts to adaptively influence the 

fixed predictor. The addition of the bias could put the estimate 

outside the range of 0 to 65535; therefore, the estimate is 

clipped to this range. 

After the encoder determines the estimate of the current pixel 

value, the difference between the actual pixel value and the 

estimate is losslessly encoded. (If the invert flag is set, the 

negative of this difference is encoded instead). We denote this 

value by €. Although € can take on values from -65535 to 

65535, only 65536 of these values are possible for a given 

pixel estimate. 

We eliminate the unused values by mapping € to the range - 

128 to 127, accomplished by simply truncating the two's 

complement representation of € to 16 bits, and interpreting the 

resulting number as a two's complement 16 bit integer, 

referred to as €'. The €' values have a distribution that is 

usually approximately two-sided geometric. the paper map €' 

to M(€') to get a quantity with a distribution that is 

approximately (one-sided) geometric, with the range from 0 to 

65535. This is accomplished with the transformation 

 

 

3.4 Golomb coding 
Golomb coding uses a tunable parameter M to divide an input 

value into two parts: q, the result of a division by M, and r, 

the remainder. The quotient is sent in unary coding, followed 

by the remainder in truncated binary encoding. When M = 1 

Golomb coding is equivalent to unary coding. 

Golomb-Rice codes can be thought of as codes that indicate a 

number by the position of the bin (q), and the offset within the 

bin (r). The above figure shows the position q, and offset r for 

the encoding of integer N using Golomb-Rice parameter M. 

Formally, the two parts are given by the following expression, 

where x is the number being encoded: and r = x − qM − 1 

The final result looks like:  

Note that r can be of a varying number of bits, and is 

specifically only b bits for Rice code, and switches between b-

1 and b bits for Golomb code (i.e. M is not a power of 2): Let 

. If , then use b-1 bits to encode r. If , then use b bits to encode 

r. Clearly, b = log2(M) if M is a power of 2 and we can 

encode all values of r with b bits. The parameter M is a 

function of the corresponding Bernoulli process, which is 

parameterized by p = P(X = 0) the probability of success in a 

given Bernoulli trial. M and p are related by these 

inequalities: The Golomb code for this distribution is 

equivalent to the Huffman code for the same probabilities, if it 

were possible to compute the Huffman code. 

3.5 Updating Context Data 
After the encoding operation takes place, the data associated 

with the context are updated. The goal of this process is to 

ensure that later values with the same context are encoded 

efficiently. As previously mentioned, there are 32 bits of data 

associated with each context: 

(1) Occurrence count (count, 6 bit unsigned integer) 

(2) Magnitude sum of residuals (msum, 13 bit unsigned 

integer) 

(3) Sum of residuals (rsum, 16 bit signed integer) 

(4) Bias value (bias, 5 bit signed integer) 

 For all contexts, the values of these data before compression 

are set identically: count is 2, msum is 12, rsum is 0, and bias 

is O. A small compression improvement might be obtained by 

carefully choosing initial values to minimize the typical time 

to adapt to an image. 

Note that during the update process count, rsum, and bias may 

take on values outside their usual ranges (e.g., the paper 

temporarily allow count to be 64 even though it is stored as a 

6 bit integer). 

The following steps occur during the update process: 

(1) Increment count by 1. 

(2) Add €' to rsum. If the new rsum is greater than 0, bias is 

increased by 1 (unless it already equals its maximum value, 

15) and rsum is decreased by count; if the new rsum is less 

than -count, bias is decreased by 1 (unless it equals its 

minimum value, -16) and rsum is increased by count. 

(3) Clip rsum to the range [-128,127]. 

(4) Increase msum by I€'I. 

(5) If count is 64, then count, msum, and rsum are all divided 

by 2 (accomplished with a right shift, with sign extension in 

the case of rsum). 

 

4. RESULT AND DISCUSSION 
In this paper, we used LOCO-R algorithm for 16 bit image 

having size of 800x600. It gives an efficient result which 

compresses an image upto 50%.  

 

http://en.wikipedia.org/wiki/File:DPCM_concept.svg
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Fig.3: Shows an original image. 

 

 
 

Fig.4: Shows the histogram of the original 16 bit gray scale 

image with their actual probability values. 

 

Then the probability values of the each pixel are calculated 

using actual value of histogram divided by size of the image. 

Compression Ratio is calculated by the difference between 

actual image and the output image by size of the actual image. 

The image compression Ratio is 0.5221. 

 

 
 

Fig. 5: Shows a decompressed image 

 

5. CONCLUSION 
The compression achieved by LOCO-R is upto 50 percent. An 

algorithm of lossless image compression for 16 bit image is 

based on context prediction is proposed. The algorithm and 

implementation can easily be adapted to handle modifications 

in various parameters. Some parameters of the design could 

be made controllable with the interface to allow greater 

flexibility. 

As LOCO-R is designed for 16 bit (gray-scale) images, it 

represents significant progress toward producing lossless 

image compression with improved compression performance 

as compared with currently available solution. 
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