
2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

11

Lossless Image Compression LOCO-R Algorithm for 16

bit Image

Komal Ramteke
Faculty of Information

Technology Department,
NYSS College of Engineering

and Research,
Nagpur

 Sunita Rawat

Faculty of Computer Technology
Department,

NYSS College of Engineering
and Research,

Nagpur

ABSTRACT
Lossless image compression is used for reducing the volume

of image data without compromising the data quality. The aim

is to reduce the demand on processors and to increase the

speed at which images can be compressed. LOCO-R

algorithm is used for image compression. It is based on the

LOCO-I (Low complexity Lossless Compression for image)

algorithm. The LOCO-R algorithm has already been

implemented for image with 8-bit pixel values.

 In this paper, we proposed the LOCO-R algorithm for 16 bit

image; it reduces the implementation complexity and reduced

the compression ratio. This algorithm is based on prediction

and context models; the model is tuned for efficient

performance in conjunction with a collection of Huffman

codes, which realized with Golomb-Rice code.

Keywords
Lossless Image Compression, Huffman Coding, Context

Prediction method.

1. INTRODUCTION
Digital images commonly contain lots of redundant

information, and thus they are usually compressed to remove

redundancy and minimize the storage space or transport

bandwidth.

Compression can be categorized in two broad ways: Lossless

Compression and Lossy Compression. Lossless Compression

in which data is compressed and can be reconstituted

(uncompressed) without loss of detail or information. In

Lossy Compression, the aim is to obtain the best possible

fidelity for a given bit-rate or minimizing the bit-rate to

achieve a given fidelity measure.

 Lossless image compression is used for reducing the volume

of image data without compromising the data quality. The

aim is to reduce the demand on processors and to increase the

speed at which images can be compressed. The compressed

image produced is a sequence of bits from which the original

image can be reconstructed. Scientific or legal considerations

make lossy compression unacceptable for many high

performance applications such as geophysics, telemetry, non-

destructive evaluation, and medical imaging, which will still

require lossless image compression.

LOCO-R is Lossless Image Compression Algorithm. It is

based on LOCO-I (Low complexity Lossless Compression for

image) algorithm. The LOCO-R algorithm has already been

implemented for image with 8-bit pixel values. In this paper,

we proposed the LOCO-R algorithm for 16 bit image.

2. RELATED WORK
Liu Zheng-lin', Qian Ying2, Yang Li-ying', Bo Yu', Li Hui'

proposed LOCO-R which is based on LOCO-I algorithm with

the modifications and betterment. This algorithm reduces

obviously the implementation complexity and compared with

the Rice Compression algorithm, results illustrates that this

algorithm is better than the Rice Compression typically by

around 15 percent.[1]

 Marcelo J. Weinberger and Gadiel Seroussi proposed, the

LOCO-I algorithm and discuss the principles underlying the

design of LOCO-I and its Standardization into JPEG-LS. It is

conceived as a “low complexity projection” of the universal

context modeling paradigm, matching its modeling unit to a

simple coding unit. By combining simplicity with the

compression potential of context models, it is based on a

simple fixed context model, which approaches the capability

of the more complex universal techniques for capturing high-

order dependencies. LOCO-I attains compression ratios

similar or superior to those obtained with state-of-the-art

schemes based on arithmetic coding. Moreover, it is within a

few percentage points of the best available compression

ratios, at a much lower complexity level. [4][8].

Hua Cai and Jiang Li presents a new image coding algorithm

based on a simple architecture that is easy to model and

encode the residual samples. In the proposed algorithm, each

residual sample is separated into three parts: (1) a sign value,

(2) a magnitude value, and (3) a magnitude level. A tree

structure is then used to organize the magnitude levels. By

simply coding the tree and the other two parts without any

complicated modeling and entropy coding, good performance

can be achieved with very low computational cost in the

binary-encoded mode. Moreover, with the aid of context-

based arithmetic coding, the magnitude values are further

compressed in the arithmetic-coded mode. [16]

3. LOCO-R ALGORITHM FOR 16 BIT
Previously proposed LOCO-R algorithm is design for only 8

bit image pixels. It gives the better performance as compared

with the other lossless compression algorithm. We proposed

modified LOCO-R algorithm which is work on 16 bit images.

It reduces the computational efficiency of 16 bit image and

compression rate.

The LOCO-R algorithm based on the LOCO-I algorithm, it

takes as input a rectangular image with 16-bit pixel values

(the pixel values are within the range 0 to 65535). The

compressed image produced is a sequence of bits from which

the original image can be reconstructed. Let wd be the image

width and ht be the image height. Pixels are identified by

coordinates (x, y) with x in the range [O, wd-l] and y in the

range [O, ht-l]. This paper supposes: (0, 0) corresponds to the

upper left comer of the image. [5]

The LOCO-R algorithm is based on predictive compression.

During compression, the pixels of the image are processed in

raster scan order. Specifically, y is Incremented through the

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

12

range [O,ht-l], and for each y value, x is incremented through

the range[O,wd-l]. (Thus, the y dimensions, the slowly

varying dimension.)The first two pixels, with coordinates

(0,0) and (1,0), are simply put into the output bit stream

uncoded.

For all other pixels of the image, the processing that occurs

can be conceptually divided into following steps:

1. Find out the Histogram Values of the input image. These

 would give us the probability of the pixels

2. Find out the Huffman codes for the given input image with

 the probabilities. This would complete the prediction step.

3. Estimate the data obtained from the previous step.

4. Once estimated, we can encode the pixel values based on

 predictive sampling.

5. Again sum up the encoded data to form the newer version

of

 context data.

6. Repeat this process for every pixel.

3.1 Context Modeling
The reducing the number of parameters is a key objective in a

context modeling scheme. In a sequential formulation, the

goal is to avoid “context dilution” while in a two-pass scheme

we wish to reduce unnecessary table overhead. The total

number of parameters in the model depends on the number of

free parameters defining the coding distribution at each

context and on the number of contexts. The context that

conditions the encoding of the current prediction residual in

LOCO-R is built out of the differences g1=d−a, g2=a−c,

g3=c−b, and g4=b−e. These differences represent the local

gradient, thus capturing the level of activity (smoothness,

edginess) surrounding a pixel, which governs the statistical

behavior of prediction errors. Notice that this approach

differs from the one adopted in the Sunset family and other

schemes, where the context is built out of the prediction

errors incurred in previous encodings. By symmetry, g1, g2,

and g3 influence the model in the same way. Since further

parameter reduction is obviously needed, each difference gj,

j=1, 2, 3, is quantized into a small number or approximately

equiprobable regions (the same regions for j = 1, 2,3). In this

maximizes the mutual information between the current pixel

and its context, an information-theoretic measure of the

amount of information provided by the conditioning context

on the pixel value to be modeled. Difference g4, being farther

away from the predicted pixel, is quantized more coarsely.

In principle, the number of regions into which each context

difference is quantized should be adaptively optimized.

However, the low complexity requirement dictates a fixed

number of “equiprobable” regions. By symmetry, there is one

region centered at the difference value 0, and if the interval

[r1, r2] represents a region, then so does [−r1, −r2].Thus, the

total number of quantization regions for g j, j=1, 2, 3, is an

odd integer 2R + 1, while g4 is quantized into 2T + 1 regions,

T < R. This leads to a total of (2T +1) ×(2R +1)3 different

contexts. A further reduction in the number of contexts is

obtained after observing that, by symmetry, it is reasonable to

assume Prob{ei+1 = Δ|Ci = [q1, q2, q3, q4]} = Prob{ei+1 =−Δ|Ci

= [−q1,−q2,−q3,−q4]}

where Ci represents the quantized context quartet and qj, j =

1, ,4, are quantized differences corresponding,

respectively, to gj, j = 1,. , 4.

To complete the definition of the contexts in LOCO-R, it

remains to specify the values of the boundaries between

quantization regions. F or an 8-bit per pixel alphabet, the

quantization regions for gj, j = 1, 2, 3, are {0}, {1, 2}, {3, 4, 5,

6}, {7, 8, . . . , 14}, { e | e ≥ 15 }, and their corresponding

negative counterparts. The three quantization regions for g4

are |g4| < 5, g4 ≥ 5, and g4 ≤ −5.

3.2 Huffman Coding
Huffman coder always assigns long codeword’s to less

frequent symbols and short codeword’s to frequent symbols.

Huffman codes are optimal in the sense that they generate a

set of variable length binary codeword’s of minimum average

length, as long as the source alphabet and PMF are available.

Huffman codes always produce an average code length within

one bit of the entropy bound. Huffman coders are adaptive

and estimate the source PMF from the coded samples. In

order to encode images:
 Divide image up into 8x8 blocks

 Each block is a symbol to be coded

 compute Huffman codes for set of block

 Encode blocks accordingly

The basic idea in Huffman coding is to assign short

codeword’s to those input blocks with high probabilities and

long codeword’s to those with low probabilities. A Huffman

code is designed by merging together the two least probable

characters, and repeating this process until there is only one

character remaining. A code tree is thus generated and the

Huffman code is obtained from the labeling of the code tree.

3.3 Prediction
Ideally, guessing the value of the current pixel xi+1 based on

a, b, c, d, and e should be done by adaptively learning a model

conditioned on the local edge direction. However, our

complexity constraints rule out this possibility. Yet, a

primitive edge detector is still desirable in order to approach

the best possible predictor. The approach in LOCO-R consists

on performing a primitive test to detect vertical or horizontal

edges. If an edge is not detected, then the guessed value is

a+b−c, as this would be the value of xi+1 if the current pixel

belonged to the “plane” defined by the three neighboring

pixels with “heights” a, b and c.This expresses the expected

smoothness of the image in the absence of edges. Specifically,

the LOCO-R predictor guesses:

Assuming, without loss of generality, that a ≤ b, then the

predictor of (1) can be interpreted as picking a in many cases

where a vertical edge exists left of the current location, b in

many cases of an horizontal edge above the current location,

or a plane predictor a + b − c if no edge has been detected.

The above predictor has been employed in image compression

applications, although under a different interpretation. The

guessed value is seen as the median of three fixed predictors,

a, b, and a + b − c. Notice that the predictor of (1) does not

employ either d or e, which will be used in context modeling.

The lossless coding process employs a simple predictive

coding model called differential pulse code modulation

(DPCM). This is a model in which predictions of the sample

values are estimated from the neighboring samples that are

already coded in the image. Most predictors take the average

of the samples immediately above and to the left of the target

sample. DPCM encodes the differences between the predicted

samples instead of encoding each sample independently. The

differences from one sample to the next are usually close to

zero. A typical DPCM encoder is displayed in Fig.2. The

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

13

block in the figure acts as a storage of the current sample

which will later be a previous sample.

Fig.1: DPCM encoder model[13]

The main steps of lossless operation mode are depicted in

Fig.3. In the process, the predictor combines up to three

neighboring samples at a, b, and c , in order to produce a

prediction of the sample value at the position labeled by x.

The three neighboring samples must be already predicted

samples.

Fig. 2: Three neighboring samples around the sample to

be predicted

3.3 Estimation
A more accurate estimate will produce a smaller and thus

more compressible residual. A preliminary estimate is

computed with a fixed (i.e., non-adaptive) estimator, and the

adaptively computed bias is added to form the final estimate.

The final estimate of a pixel is obtained by adding the bias

value (or its negative, if the invert flag is set) to the initial

estimate. The bias value attempts to adaptively influence the

fixed predictor. The addition of the bias could put the estimate

outside the range of 0 to 65535; therefore, the estimate is

clipped to this range.

After the encoder determines the estimate of the current pixel

value, the difference between the actual pixel value and the

estimate is losslessly encoded. (If the invert flag is set, the

negative of this difference is encoded instead). We denote this

value by €. Although € can take on values from -65535 to

65535, only 65536 of these values are possible for a given

pixel estimate.

We eliminate the unused values by mapping € to the range -

128 to 127, accomplished by simply truncating the two's

complement representation of € to 16 bits, and interpreting the

resulting number as a two's complement 16 bit integer,

referred to as €'. The €' values have a distribution that is

usually approximately two-sided geometric. the paper map €'

to M(€') to get a quantity with a distribution that is

approximately (one-sided) geometric, with the range from 0 to

65535. This is accomplished with the transformation

3.4 Golomb coding
Golomb coding uses a tunable parameter M to divide an input

value into two parts: q, the result of a division by M, and r,

the remainder. The quotient is sent in unary coding, followed

by the remainder in truncated binary encoding. When M = 1

Golomb coding is equivalent to unary coding.

Golomb-Rice codes can be thought of as codes that indicate a

number by the position of the bin (q), and the offset within the

bin (r). The above figure shows the position q, and offset r for

the encoding of integer N using Golomb-Rice parameter M.

Formally, the two parts are given by the following expression,

where x is the number being encoded: and r = x − qM − 1

The final result looks like:

Note that r can be of a varying number of bits, and is

specifically only b bits for Rice code, and switches between b-

1 and b bits for Golomb code (i.e. M is not a power of 2): Let

. If , then use b-1 bits to encode r. If , then use b bits to encode

r. Clearly, b = log2(M) if M is a power of 2 and we can

encode all values of r with b bits. The parameter M is a

function of the corresponding Bernoulli process, which is

parameterized by p = P(X = 0) the probability of success in a

given Bernoulli trial. M and p are related by these

inequalities: The Golomb code for this distribution is

equivalent to the Huffman code for the same probabilities, if it

were possible to compute the Huffman code.

3.5 Updating Context Data
After the encoding operation takes place, the data associated

with the context are updated. The goal of this process is to

ensure that later values with the same context are encoded

efficiently. As previously mentioned, there are 32 bits of data

associated with each context:

(1) Occurrence count (count, 6 bit unsigned integer)

(2) Magnitude sum of residuals (msum, 13 bit unsigned

integer)

(3) Sum of residuals (rsum, 16 bit signed integer)

(4) Bias value (bias, 5 bit signed integer)

 For all contexts, the values of these data before compression

are set identically: count is 2, msum is 12, rsum is 0, and bias

is O. A small compression improvement might be obtained by

carefully choosing initial values to minimize the typical time

to adapt to an image.

Note that during the update process count, rsum, and bias may

take on values outside their usual ranges (e.g., the paper

temporarily allow count to be 64 even though it is stored as a

6 bit integer).

The following steps occur during the update process:

(1) Increment count by 1.

(2) Add €' to rsum. If the new rsum is greater than 0, bias is

increased by 1 (unless it already equals its maximum value,

15) and rsum is decreased by count; if the new rsum is less

than -count, bias is decreased by 1 (unless it equals its

minimum value, -16) and rsum is increased by count.

(3) Clip rsum to the range [-128,127].

(4) Increase msum by I€'I.

(5) If count is 64, then count, msum, and rsum are all divided

by 2 (accomplished with a right shift, with sign extension in

the case of rsum).

4. RESULT AND DISCUSSION
In this paper, we used LOCO-R algorithm for 16 bit image

having size of 800x600. It gives an efficient result which

compresses an image upto 50%.

http://en.wikipedia.org/wiki/File:DPCM_concept.svg

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

14

Fig.3: Shows an original image.

Fig.4: Shows the histogram of the original 16 bit gray scale

image with their actual probability values.

Then the probability values of the each pixel are calculated

using actual value of histogram divided by size of the image.

Compression Ratio is calculated by the difference between

actual image and the output image by size of the actual image.

The image compression Ratio is 0.5221.

Fig. 5: Shows a decompressed image

5. CONCLUSION
The compression achieved by LOCO-R is upto 50 percent. An

algorithm of lossless image compression for 16 bit image is

based on context prediction is proposed. The algorithm and

implementation can easily be adapted to handle modifications

in various parameters. Some parameters of the design could

be made controllable with the interface to allow greater

flexibility.

As LOCO-R is designed for 16 bit (gray-scale) images, it

represents significant progress toward producing lossless

image compression with improved compression performance

as compared with currently available solution.

6. REFERENCES
[1] Liu Zheng-lin, Qian Ying2, Yang Li-ying, Bo Yu, Li Hui

(2010), ”An Improved Lossless Image Compression

Algorithm LOCO-R”, International Conference On
Computer Design And Appliations (ICCDA).

[2] Dang Gang,Cheng Zhi-Quan, ZHOU Jingwen, LI Liang,

Jin Shiyao (2010),”An improved progressive Lossless
Compression Algorithm” ,IEEE

[3] Ming Yang,Nikolaos Bourbakis(2005),”An overview of

Lossless Digital Image Compression Techniques”,IEEE,

Information Acquisition and Processing.

[4] Marcelo J. Weinberger, Gadiel Seroussi, and Guillermo

Sapiro,(2000) “The LOCO-I Lossless Image

Compression Algorithm:Principles and Standardization

into JPEG-LS”, IEEE Transaction on Image Processing,

VOL. 9, NO. 8

[5] M.Klimesh,1 V.Stanton,1 and D. Watola1,(2001)

“Hardware Implementation of a Lossless Image

Compression Algorithm Using a Field Programmable
Gate Array” TMO Progress Report 42-144.

[6] M.Rabbani and P.Jones,(1991) “Digital Image

Compression Techniques”, Bellingham, Washington:

SPIE Publications.

[7] Marcelo J. Weinberger, Gadiel Seroussi, and Guillermo

Sapiro,(“LOCO-I: A Low Complexity, Context-Based,

Lossless Image Compression Algorithm” IEEE Trans.
Image Processing.

[8] N.D.Memon and K.Sayood,(1995) “Lossless image

compression: A comparative study,” in Proc. SPIE (Still-

Image Compression), vol.2418, pp. 8–20.

[9] N. Merhav, G.Seroussi, and M. J.W einberger,(1996)

“Modeling and low-complexity adaptive coding for

image prediction residuals.” To be presented at the 1996
Int’l Conference on Image Processing, Lausanne.

[10] X. W u, N.Memon, and K.Sayood,(1995) “A context-

based, adaptive, lossless/nearly lossless coding scheme

for continuous-tone images (CALC).” A proposal

submitted in response to the Call for Contributions for
ISO/IEC JTC 1.29.12.

[11] M. J.W einberger, J.Rissanen, and R.Arps, “Applications

of universal context modeling to lossless compression of

gray-scale images.” To appear in IEEE Trans. Image
Processing.

[12] Information Technology- Lossless and Near-Lossless

Compression of Continuous-Tone Still Images,(1999),
ISOIlEC 14495-1, ITU Recommendation T.87.

[13] Das, M., and Chande, S.,(2001) “Efficient Lossless

Image Compression Using a Simple Adaptive DPCM

Model”,IEEE , pp.164-167.

[14] Boulgouris, N.V., Tzovaras, D., and Strintzis,

M.G.,(2001) “Lossless Image Compression Based on

Optimal Predication, Adaptive Lifting, and Conditional

Arithmetic Coding”, IEEE Transactions on Image
Processing, Vol. 10, No. 1, pp.1-14.

[15] W. Szpankowski,(2000) “Asymptotic Average

Redundancy of Huffman (and Other) Block Codes”,
IEEE Trans. Information Theory, 46 (7), pp. 2434–2443.

[16] Hua Cai and Jiang Li “Lossless Image Compression with
Tree Coding of magnitude levels”,IEEE,pp. 1-4.

