
2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

5

Query Processing and Evaluation for XML Databases

Asmita P. Asre Prof. Dr. M.S.Ali

PG Student, Department of Computer Principal, Prof. Ram Meghe College of
 Engineering & Management, Badnera.

ABSTRACT
While the information published in the form of XML-

compliant documents keeps fast mounting up, efficient and

effective query processing and evaluation for XML have now

become more important than ever. The query processor of a

database system is the most critical component when it comes

to performance and scalability. Structural join operations are

central to evaluating queries against XML data, and are

typically responsible for consuming a lion‘s share of the query

processing time. Thus, structural join order selection is at the

heart of query optimization in an XML database, just as

(value-based) join order selection is central to relational query

optimization. XML is an emerging standard for data

representation and exchange on the World-Wide Web. Due to

the nature of information on the Web and the inherent

flexibility of XML, much of the data encoded in XML will be

semistructured, the data may be irregular or incomplete, and

its structure may change rapidly or unpredictably. Our

contribution can be understood as a roadmap that reveals

desirable information and a theoretical perspective for an

XML query processing, evaluation and query optimization.

Keywords: XML Database, Query Processing, Query

Evaluation, Query Optimization.

1. INTRODUCTION:

After relational, network-based, hierarchical, object-oriented,

object-relational, and deductive database systems, academic

research and businesses increase their attention to the

database-driven processing of XML documents, resulting in a

new kind of information system, namely the (native) XML

database system (XDBS). This development is reasonable,

because the eXtensible Markup Language nowadays plays an

important role in various key technologies like content

management systems, electronic data interchange, and data

integration techniques. Furthermore, for the management of a

possibly large collection of XML documents, the classical

advantages of dedicated database systems over file systems

still hold: Convenient use of XML data through a standardized

application programming interface (API); Transactional

Table 1. XML Query processing abstraction levels

warranties for all operations on XML data; Processing of large

volumes of data, measured in number of documents as well as

document size. Further advantages of database systems like

scalability with respect to the current transactional load, high

availability and fault tolerance, as well as data and application

independence shall be mentioned for completeness, though they

are not XML specific.

As XML [1] has gained prevalence in recent years, the storage

and querying of XML data have become an important issue.

Effective query optimization is crucial to obtaining good

performance from an XML database given a declarative query

specification. A join is frequently the most expensive physical

operation in evaluating a relational query. Thus, selection of join

order is a key task for a relational query optimizer.

This observation is true for an XML query optimizer as well, but

with significant twists. Perhaps the most important of these is the

prevalence of structural joins in XML. Structural join order

selection is a critical component of an XML query optimizer. A

join in the relational context is usually a value-based equi-join,

which involves two tables and is based on the values of two

columns, one in each table. In the XML context, even though

there are value-based joins, structural joins occur much more

frequently. A structural join focuses on the containment

(ancestor-descendant or parent-child) relationship of the XML

elements to be joined. The join condition is specified not on the

value of the XML elements, but on their relative positions in the

XML document. In short, queries on XML data have some

features that are different from queries in the traditional

relational context. Therefore, the set of alternative plans, and

their relative costs, in the XML context are also quite different.

2. LEVELS OF ABSTRACTION IN XML

QUERY PROCESSING:

To handle the complexity of query processing, several levels of

abstraction between a declarative query expression and its

procedural evaluation using a set of low-level operations can be

identified. These levels are depicted in Table 1.To facilitate

comprehension, the new XML-related concepts are compared to

their well-known counterparts of relational query processing.

The most abstract view of a query is its formulation in a way that

only describes the desired result in a certain declarative

language. The same query may be represented using an algebra

expression, whose operators express the query in the Logical

Access Model. Optimization techniques at this level only rely on

the expression itself, but do not cope with system-specific

information. In general, this is the task of the layer below—the

Physical Access Model

Level of

Abstraction

XDBS

RDBS

Language Model XQuery SQL

Logical Access

Model

XML Query

Algebra

Relational

Algebra

Physical Access

Model

Physical XML

Query Algebra

Physical DB-

Operators

Storage Model

XTC, Natrix,

Shredded

Documents

Record-

oriented DB-

Interface

Asmita P. Asre
PG Student, Department of Computer Sc.

& Engg of Prof.Ram Meghe Institute of
Tech & Research, Badnera

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

6

Finally, the bottom layer accomplishing the storage of XML

documents plays also an important role, because the efficiency

of operations is critically dependent on the chosen storage

structure. An explicit separation of this abstraction level helps

to cope with mapping requirements when multiple

heterogeneous storage models are present. [2]

3. XML QUERY PROCESSING:

An XML query language defines more comprehensible and

structurized construct for conducting operation on an XML

document or various XML documents. For processing the

query, an XML query engine or processor translates the

syntaxes and executing the operations hinted by the query.

Output is returned after process and processing time is

projected to be minimum thus alluding efficient processing.

A query processor extracts the high level abstraction of

declarative query and its procedural evaluation into a set of

low-level operations [3]. Analogous to SQL processor, SQL

query is translated at logical access model and then the logical

access prior to accessing and returning the physical storage

model.

XDBS denotes XML database management system and

RDBMS are Relational Database Management System. The

language model is designed to meet the demands of [4] which

are reflected in the language ability to perform search

functionality and document-order awareness hence document-

centric characteristics and later on the data-centric

characteristics which is associated with powerful selection and

transformation. The semantic processing should then be able

to analyze the query and transform it into an international

representation to be used throughout subsequent optimization

steps.

Logical access model should implement algebraic and non-

algebraic procedure to optimize the internal representation of

the query. Non-algebraic optimization minimizes intermediary

results by restructuring the query and executing most selective

operations as early as possible. Algebraic optimization will

transform the internal expression into a more optimized

expression in a semantics-preserving manner.

Physical access model is related to system specific issue. At

this level, each logical algebra operator will be decomposed

into corresponding physical operators. The goal of this step of

optimization is a query executing plan (QEP) which is

arranged of chosen physical operators and their sequences of

execution. Finally, the storage model affects the rate of QEP.

For optimized query processing, appropriate storage model

should be deployed in order to minimize I/O costs, CPU costs,

storage costs for intermediary results, and communication

costs. Currently used storage models comprise LOBs (Large

Objects), certain XML-to-relational mappings (shredded

documents), or native storage formats like Niagara [5] and

Timber [6]. The relational XML data model and native storage

model attract more attentions indicated by various proposals

for respective overlying query processors. Referring to the

abstraction levels, various XML query processors have been

proposed for more optimized query processing.

4. XML QUERY EVALUATION:

When querying data in XML, the query is read by the Query

Parser. It manipulates it and passes an internal data structure

to the Query Optimizer. Then, the Query Optimizer, using

information from the Metadata Manager, changes the structure

and passes it to the Query Evaluator. The Query Evaluator

uses the Data Manager and the Index Manager to evaluate the

query. Again, both the Data Manager and the Index Manager

use the Storage Manager to get actual data. Overall, the

evaluator takes in a query evaluation tree and substitutes each

of the nodes with an appropriate access method. The evaluator

uses both the Index Manager and the Data Manager to get

results of the query and passes them to the Query Output API.

<library>
<book id = “B001-05”>
<category title= “XML Concepts”>
<author>Korth </author>
<author>Navathe </author>
<publisher>McGraw Hill</publisher>
</category>
</book>
<book id= “B002-02”>
<category title= “Introduction to XML”/>
</book>
<journal id= “J001-05” >
<author>Kimball </author>
</journal> </library>

Figure. 1: A small XML document and its OEM

representation

The main challenge of using RDBMS as instance storage is

that, one need to resolve the conflict between the hierarchical

nature of XML data model and the two-level nature (row and

column) of relational data model [11]. There are two ways of

doing so: (1) using the graph-based approach and (2) by

inferring schema from Document Type Definition (DTD)

[12].

Instead of generating relational tables for each XML element,

several XML elements are combined into a single table named

edge to reduce the number of join operations incurred while

querying the data. The edge table stores the object identifiers

(oids) of the source and target objects of each edge, the label

of the edge, the ordering of the edge and a flag to shows

publishe

r

autho

r

autho

r

title
title

Journal id= ―J001-

05‖

author categor

y

categor

y

book

id=”B002-02‖

library

book

id=”B001-05”

Kimball

1

2 3 4

5 6 7

8 10 11 9 11

XML

Concept

s

Kort

h

Navat

he

McGraw

Hill

Introductio

n author
To XML

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

7

whether the edge is a leaf or non-leaf node. If the node is a

leaf, then a corresponding record will be stored in the value

table. This table has the field of vid (storing oids of values)

and value of the string.

Another way to map XML into RDBMS is to derive a

relational schema from either a XML schema or DTD. This

technique is not applicable for XML without a schema. This

limitation, however, has been overcome [13].

A DTD graph (Figure 2) is created based on XML document

in Fig. 1. Traversing down from library on the left-side, we

have ‗+‘ edge follows by book element. Traversing further

down, we reach category element before reaching to title,

author and publisher element. All elements and attributes

nested within category occur at most once, except the author

elements. Hence, we can store category, title, publisher in the

same relation as book. In each relation, the ID field serves as

the primary key, while the parentID field serves as the foreign

key to match with the values in the primary key. For example,

in the relation journal, it has journal.parentID that joins

journal with library.

Figure.2: DTD graph derived from Figure. 1

5. QUERY OPTIMIZATION

 Query optimization in the context of XML databases is

extremely challenging. The main reason for this is the high

complexity of the XML data model, as compared with other

data models, e.g., relational models. This high complexity

renders a much enlarged search space for XML query

optimization. Furthermore, XML applications are typically

Web-hooked and have many simultaneous, interactive users.

This dynamic nature requires highly efficient XML query

processing and optimization. The classical cost-based and

heuristic-based approaches yield unacceptably low efficiency

when applied to XML data—query optimization itself

becomes very time-consuming because of the huge search

space for optimization caused by the high complexity of the

XML data model. Lots of work related to XML query

processing has been done, but the majority is focused on

investigation for efficient supporting algorithms [7], [8,] and

indexing schemes [9].

There are many query optimization techniques discovered and

implemented by researchers. Among them are path traversal,

use of indexes, use of materialized views, pipeline evaluation,

structured join order selection, schema-based optimization,

and reformulation of XML constraints, duplicate removal, tree

pattern matching and labeling scheme.

A problem with path traversal methods is that traversing is

only possible in the constrained set of path. However, for the

structure summary indexing, most of it has the problem of

large index size growth in the worst case and not supporting

partial queries path matching. Labeling scheme allow quick

determination of the relationships among the element nodes

and reduce the index size, but fails to support dynamic XML

data. Towards the later year, most researchers proposed

hybrid-indexing techniques. Hybrid system opens the

possibility of covering each technology‘s weaknesses by its

strengths. [10]

6. CONCLUSION

While the information published in the form of XML-

compliant documents keeps fast mounting up, efficient and

effective query processing and optimization for XML have

now become more important than ever. XML query

processing is important, irrespective of how XML data is

stored: in a native XML database, after mapping to a

relational database, or after some other mapping, such as to an

object-oriented database. In this paper, an attempt is made to

provide a roadmap that reveal desirable information and a

theoretical perspective for an XML query processing,

evaluation and query optimization. Based on the special

features of XML data and XML queries, different techniques

for performing query optimization in the XML framework can

be the optimistic plan ahead for the researchers.

7. REFERENCES
[1] T. Bray, J. Paoli, C. M. Sperberg- McQueen.―Extensible

Markup Language (XML) 1.0‖.W3C Recommendation.

Available at http://www.w3.org/ TR/1998/REC-xml-

19980210, Feb. 1998.

[2] Christian Mathis, Theo Härder-―A Query Processing

Approach for XML Database Systems‖.

www.lgis.informatik.unikl.de/cms/fileadmin/users/mathi

s/.../gws2.pdf

[3] C. Mathis and T. Harder. ―A Query Processing

Approach for XML Database Systems‖. 2005.

[4] D. Maier. ―Database Desire data for XML Query

Language‖.http://www.w3.org/TandS/QL/QL98/pp /mai

er.html

[5] J. Naughton et al. The Niagara Internet Query

System. In IEEE Data Engineering Bulletin vol 24

issue 2. 2001

[6] H. V. Jagadish et al. ‖A Native XML Database‖. In

International Conference of VLDB. 2002

[7] Dunren Che, Karl Aberer, M. Tamer Özsu. ‖Query

optimization in XML structured-document databases‖.

The VLDB Journal (2006) DOI 10.1007/s00778-005-

0172-6. Published online: 28 April 2006 _c Springer-

Verlag 2005

[8] Gottlob, G., Koch, C., Pichler, R.: ―Efficient

algorithms for processing XPath queries. In:

Proceedings of VLDB, Hongkong, China (2002).

+

book

library

categor

y

publisher
author

title

*
journal

+

+

book

library

categor

y

publisher

author
title

*

journal

+

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

8

[9] Chan, C.-Y., Felber, P., Garofalakis, M., Rastogi,

R.: ―Efficient filtering of XML documents with

XPath expressions‖. In: Proceedings of International

Conference on Data Engineering, San Jose,

California, February 2002, pp. 235–244 (2002).

[10] Su Cheng Haw, and G. S. V. Radha Krishna Rao.

―Query Optimization Techniques for XML Database‖

World Academy of Science, Engineering and

Technology 22 2006.

[11] M. Atay, Y. Sun, D. Liu, S. Lu, F. Fotouhi,

―Mapping XML Data To Relational Data: A DOM-

Based Approach‖, Proc. Of the 8th IASTED

International Conference on Internet and Multimedia

Systems and Applications, 2004, pp. 59-64.

[12] T.S. Chung, H-J Kim, ―Techniques for the

evaluation of XML queries: a survey‖, ACM Data

and Knowledge Engineering 46, 2003, pp. 225-

246.

[13] M. Garafalakis, A. Gionis, R. Rastpgo, S.

Seshadri, K. Shim, ―XTRACT: a system for

extracting document type descriptors from XML

documents‖, Proceeding of the ACM SIGMOD

Int. Conference on the Management of Data,

2000, pp. 165-176.

