
2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

8

Forking a New Process with the Predetermined PID

Value during Process Migration

Narayan A. Joshi
Assistant Professor

Computer Science Department
Institute of Science & Technology for Advanced

Studies & Research
Vallabh Vidyanagar

D. B. Choksi
Professor & Head

Post Graduate Department of Computer Science &
Applications

Sardar Patel University
Vallabh Vidyanagar

ABSTRACT

In dynamic process migration, a process which is under

execution is migrated from its originating machine to a new

machine in order to uphold load-balancing in large distributed

systems by allowing applications to access a large number of

computing resources spread across the network and may

provide significant improvements in overall system behavior.

After migration of a process to the destination workstation,

the resuming process must be allocated the same „process-id

value‟: the value which the process originally possessed on

the source workstation before migration. This paper discusses

a kernel-level solution for the problem of checkpointing the

credential of „process identifier‟ and to allocate a selected

process-id value to a new process. We suggest a new system

call setforkpid() to assign the specific process-id value of

interest to the selected new process. An attempt is made to

suggest a solution for the Linux kernel 2.6.25 environment.

General Terms

Load Balancing, Operating Systems

Keywords

Process migration, Process id, Process credentials, Process

checkpointing and restart, setforkpid system call.

1. INTRODUCTION
A binary program image is a description of a computation

which is executable by a computer. A process is a dynamic

entity of this binary program-image that is actually under

execution in the underlying operating system platform. During

the process execution, the process-state consists of two

interconnected components: a static state and a dynamic state.

The binary program image i.e. the executable program file

characterizes the static state of the process. Whereas the

various dynamic features like: the process credentials, the

hardware i.e. CPU-registers (both for process and operating

system), the stack (both for process and operating system),

process virtual memory, process physical memory, occupied

and requested I/O devices, system call under execution,

regular-files opened, pipes-opened, signals received, blocked

and pending, sockets established, IPCs, currently working

threads and such threads‟ state and other such terms

characterize the dynamic process state [1],[4].

In specific circumstances, the system administrator, the

system user, a third party application software or the

underlying operating system itself require to recognize or

capture the process‟s dynamic state information. Next section

we discusses about some of such circumstances.

Section 2 briefly describes the scenarios which motivated us

to conduct the study. Section 3 draws attention to the scope of

problem and its significance. Section 4 focuses on the

theoretical mechanism and our solution for Linux operating

system. Section 5 presents conclusion and directions for

future work.

2. MOTIVATIONS
In certain circumstances it becomes advantageous to identify

the Process‟s dynamic state information. Here some of the

circumstances are discussed:

Process control and debugging: Process examination, or the

ability to recognize a process-state and modify its execution,

is a fundamental requirement for system utilities such as

debuggers and security tools. Certain system programs do

require capabilities to collect the credentials of a desired

process. In certain circumstances such programs would like to

collect the values of the process credentials like process-

identifier (pid), user-identifier (uid), group-identifier (gid),

effective user-identifier (euid) and suid, fsuid, sgid, fsgid and

many others which are currently allocated to or possessed by

the process. As well the programs may prefer that the later

restarting process must possess the same credential values

which it possessed during its initial start.

Process checkpoint-restart to perform process migration: The

optimization techniques such as load balancing and process

migration are used in a network of workstations to relocate the

load from tightly loaded workstations towards the lightly

loaded workstations. Such procedures are also appropriate

where the preferred resource by a process is not distantly

accessible or the remote utilization of the resource produces

reduced performance.

In such circumstances the system performance can be

improved by relocating the executing process itself to the host

machine where the desired resource is accessible. Also the

processes having large execution period of time may require

to be migrated to provide reliability and fault tolerance, in

order to face a certain class of faults about which some

notification in advance can be achieved. For example, either

the system administrator or the operating system may in

advance send notification to process that the system is about

to shut down. In all these situations, where the dynamic

process migration is desirable, the process first needs to be

checkpointed and later to be restarted on different machine.

The process checkpointing mechanism needs to pull together

the recent dynamic state information of the process [2]-[4],

[10]-[12].

3. THE PROBLEM
The dynamic state information of a process is maintained by

an operating system in a kernel-level data structure called

Process Control Block (PCB). The PCB maintains process-

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

9

state details like process-credentials, current state, address-

space, list of virtual memory regions, currently opened files,

signals, signal handlers and much more [1], [2].

In contrast to the static migration of the process, the dynamic

migration of the process is superior to the static migration of

the process. One of the important characteristics of dynamic

migration of a process indicates that the process must resume

and continue its execution on the destination workstation with

the same identity that it possessed when it was checkpointed

on the source workstation.

At the process startup time, the process is assigned a system

vide unique process id by the host operating system. The

unique process id is the only facility available in user-space

through which the associated process can be made enabled to

be controllable or traceable by either the owner of the process

or the system administrator. As well, the application

programmers may manage the process by the associated

unique process id through the application program also.

Therefore, the checkpointing mechanism must consider the

checkpointing of the unique process id possessed by the

process being executed. The mechanism must support not

only checkpointing the unique process id but also make

arrangements such that on resumption on the destination

workstation, the process must continue execution with the

same unique process id.

Although the PCB maintains the process identifier value

owned by the specific process, the Linux kernel 2.6.25 does

not avail a kernel-level facility through which the newly

created process can be started with a specific allocated value

of the process identifier. This paper describes a mechanism to

assign a specific value to the process identifier of a desired

new process. This paper presents a mechanism to checkpoint

the unique process id credential possessed by a process under

execution, to resume the process with the same credential of

process id on destination workstation.

We present the mechanism for the Linux operating system

with kernel version 2.6.25 for the i686 SMP platform. In this

paper, we have discussed a new mechanism to inject the

process id which is specified by us in to the kernel space

(during process resumption on the destination workstation) by

introducing our own new system call in the operating

system‟s kernel; so that the resuming process on the

destination workstation will start with the process id which it

possessed initially before process migration. The proposed

mechanism requires modification of kernel source code and

addition of a new system call; and recompilation of the kernel.

4. MECHANISM
Before we present the steps necessary for establishing a

particular process id value to the process descriptor, we

outline here the working of a process id.

UNIX processes are always assigned a number to uniquely

identify them in their namespace. This number is called the

process identification number or PID for short. Each process

generated with fork or clone is automatically assigned a new

unique PID value by the kernel; which in later can not be

tampered, and such a tampering may cause harm to the

process. In a thread-less process, the PID and TGID of a

process are identical. The main process in a thread group is

called the group leader. The group_leader element of the task

structures of all cloned threads points to the task_struct

instance of the group leader. [1].

The global PID and TGID are directly stored in the UNIX‟s

PCB task_struct, namely, in the elements pid and tgid:

<sched.h>

struct task_struct {

...

pid_t pid;

pid_t tgid;

...

 }

Both are of type pid_t, which resolves to the type

__kernel_pid_t; this, in turn, has to be defined by each

architecture. Usually an unsigned integer is used, which

means that 232 different IDs can be used simultaneously.[1],

[5]

The checkpointing of the existing value of the process id can

be performed with the help of :

struct tast_struct *p=find_task_by_pid(pid);

task_lock(p);

 /* Now checkpoint values of credentials of the

desired process e.g.

 p->pid,

 p->uid and others..

 */

task_unlock(p);

To restore a process on destination workstation with desired

process id; we present here a mechanism to introduce our own

system call setforkpid() whose invocation before forking a

new process will set a specific process id of our interest to the

process descriptor of the newly created process:

1. Enter the following line in the kernel‟s unistd_32.h file.

#define __NR_setforkpid 327

Here we create a constant and assign a unique system-call

number by which our system call is known to the Linux

kernel.
2. Enter the following system call function prototype in the

syscalls.h file.

asmlinkage long sys_setforkpid (pid_t forkpid);

Here we create a prototype for our system-call function;

the system-call implementation and the user-space

invocation to our system call setforkpid() must match the

specified prototype.

3. Enter the following line in the syscall_table_32.S file at

the end of the file.

.long sys_setforkpid

This represents a unique array-index position in the

system call table which is responsible to hold the address

of the our specified system call‟s implementation

function at system startup and later on.

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

10

Create a file setforkpid.c in the new directory

syscall_setforkpid in the kernel source tree and enter the

following code to the file.

#include<linux/linkage.h>

#include<linux/types.h>

#include<linux/unistd.h>

#include<linux/module.h>

#include<linux/kernel.h>

extern void set_specific_pid(pid_t forkpid);

asmlinkage long sys_setforkpid(pid_t forkpid)

{

 …

 //printk(KERN_DEBUG

"sys_setforkpid():parameter forkpid=%d.\n",

forkpid);

 set_specific_pid(forkpid);

 …

 return forkpid;

}

Where, the extern function set_specific_pid and some

other extern functions have been exported by us in the

kernel source; as shown below:

4. Update the Makefile. Append the path of the above

created directory syscall_setforkpid to the kernel‟s

compilation path.

5. Also add the following lines to the kernel‟s source which

are responsible to maintain the specific process id that is

passed to the kernel-space from the user-space:

pid_t specific_pid = 0;

pid_t get_specific_pid();

EXPORT_SYMBOL(get_specific_pid);

pid_t get_specific_pid()

{

return specific_pid;

}

void reset_specific_pid();

EXPORT_SYMBOL(reset_specific_pid);

void reset_specific_pid()

{

 specific_pid=0;

}

void set_specific_pid(pid_t the_pid);

EXPORT_SYMBOL(set_specific_pid);

void set_specific_pid(pid_t the_pid)

{

 specific_pid = the_pid;

 …

 //set pid here

 //set tgid here

 …

}

Where, the kernel symbol specific_pid of type pid_t is

responsible to hold the value arriving to kernel-space

from the user-space.

7. Recompile this updated kernel source and reboot with the

newly compiled kernel.

[6]-[9]. Here are the steps to be followed by the user-space

process on the destination workstation to establish a new

process with a desired process id value [11],[12]:

1. Unpack the received checkpoint image on the destination

workstation.

2. Obtain the checkpointed value of the process id which is

to be assigned to the newly created process, say it as

specific_pid.

3. Execute our own system call as following:
setforkpid(specific_pid);

5. CONCLUSION
An attempt is made here to checkpoint the process credential;

and restore and establish the same value of credential at the

process restart on the destination workstation via the

mechanism of provisioning of a new system call. We believe

that the method represented here will be beneficial not only to

the checkpointing applications and system debuggers but also

to the system administrators and the system programmers.

6. REFERENCES
[1] Daniel P. Bovet and Marco Cesati: “Understanding the

Linux Kernel”, 3rd editon, O‟Reilly publication, 2005.
[2] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler,

and S. Zhou: “Process migration”; ACM Computing

Surveys; 32(3):241-299, 2000

[3] D. Nichols: “Using idle workstation in a shared

computing environment”; Proceedings of the eleventh

ACM symposium on operating system principles; ACM;

November – 1988; pp 512

[4] F. Douglis and J. Ousterhout: “Process migration in the

sprite operating system”; Proceedings of the 7th

international conference on distributed computing

systems, IEEE, Berlin, West Germany, September 1987,

pp. 1825

[5] Jonathan Corbet, Alessandro Rubini and Greg Kroah-

Hartman: “LINUX Device Drivers”, 3rd edition,

O‟Reilly publication.

[6] Linux Kernel source

[7] Linux Reference Manual, Section 2, ptrace.

[8] Linux Reference Manual, Section 5, proc.

[9] Linux Source File: /usr/include/asm/unistd.h in Linux

source code.

[10] M. Kozuch and M. Satyanarayanan: “Internet

suspend/resume”; Proceedings of the IEEE Workshop on

Mobile Computing Systems and Applications, IEEE CS

Press, 2002, pp. 40–46

[11] N. A. Joshi and D. B. Choksi; “Process Forensic For

System-call Details on Linux Platform”; International

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

11

Journal Of Computer Applications in Engineering,

Technology & Sciences; November-2009; pp-510-512

[12] N. A. Joshi and D. B. Choksi; “Checkpointing Process

Virtual Memory Area on Linux Platform”; International

journal of Emerging Technologies and Applications in

Engineering Technology and Sciences; June-2010; pp-

42-44

