
International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

14

Business Process Verification using Formal Language

Petri Net: An Approach

Pankaj Kasar Gaurav Paliwal
Assistant Professor Assistant Professor

 RCPatel Institute of Technology R C Patel Institute of Technology
Shirpur,Dist.Dhule(India) Shirpur,Dist.Dhule(India)

ABSTRACT

In this paper, we propose an approach of verification of

business processes shown in semiformal modeling notation

BPMN, by transforming it into petri net a formal language.

This paper covers the transformation of BPMN to petri net

using model transformation language ATL available in Model

Driven Engineering along with introduction of BPMN and

petri net.

Keywords

Software System, BPMN, Petri net, Business Process, ATL

and Formal semantics

1. INTRODUCTION
The verification and validation of present-day software

systems is difficult job because, day by day, it is increasing

tremendously in size. Along with the size, to model and

analyse real-life applications, an increasing number of

features and formalisms need to be developed and supported.

Each system is represented in the form of model. There are

many modeling notations available such as BPMN (Business

Process Modeling Notation) [1], UML (Unified Modeling

Language) [2], and BPEL (Business Process Execution

Language) [3] etc. Among all only BPMN is an emerging

standard for representing business processes and indirectly

software systems. BPMN is visual process modeling notation

which can be easily understood by business analysts. But

BPMN lags behind formal semantics of systems. At the time

of verification of particular system such modeling notations

are not enough to give semantic correctness of system. Thus

for verification and validation of systems, we proposed an

approach. According to my approach BPMN model of system

is converted into petri net [4] model. Once you are ready with

petri net notation, you can apply it to various automated tools

present. Thus verification of system is performed.

Therefore before deploying any software system into

operation, it is required to verify that the behaviour of the

final system is correct and safe means behaves as expected.

Therefore to ensure the correctness of behaviour two things

are needed, first, formal models should be enough powerful

to faithfully describe all aspects of the system and have strong

constructs to keep components and connectors belonged with

each other’s. Second, formal modeling notation, for analysis

and verification of formal model’s certain properties including

correctness, reachability and complexity. Therefore to satisfy

above both conditions we prefer petri net as formal modeling

language.

2. BPMN
The term BPMN is made up of BPM+N. BPM is business

process modeling which is used to understand, document and

analyse the processes. N in BPMN is Notation nothing but

language. Therefore BPMN is language to visualize,

document, communicate, analyse, improve, simulate and

execute the different business processes. The primary goal of

the BPMN effort was to provide a notation that is readily

understandable by all business users, from the business

analysts that create the initial drafts of the processes, to the

technical developers responsible for implementing the

technology that will perform those processes, and finally, to

the business people who will manage and monitor those

processes. BPMN defines a Business Process Diagram (BPD),

which is similar to a flowcharting technique used for

designing various graphical models of business process

operations. Thus a Business Process Model is a network of

graphical elements, which are activities i.e. work and the flow

controls that define their order of execution. All the elements

present in BPMN are shown in Figure1. There are four basic

categories of BPMN elements-

 Flow Objects

 Connecting Objects

 Swim lanes

 Artifacts

Flow objects consist of three core elements, Event, Activity

and Gateway. An Event is something that happens in business

process. Events are represented by circles with open centres

so that you can show various types of events including Start,

Intermediate and End events by marking particular symbol of

event, e.g. Message, Timer, Error etc events. An Activity is

work that going to perform and represented by rounded corner

rectangle. Gateways are used to control the sequence flow. It

controls divergence and convergence of flow of execution.

Gateways are represented by diamond shape and internal

portion of diamond shape decides the type of control flow by

marking particular symbol of gateway, e.g. Fork, Join, Data

based XOR etc. gateways. Connecting objects are used to

connect the various flow objects. There are also three basic

types - Sequence flow, Message flow and Association.

Sequence flow is represented by solid line with solid

arrowhead. Message flow is used to show communication

between different participants involving in business process

system and is represented by dashed line with open

arrowhead. Similarly Association is used to associate Data,

Text and Artifacts with flow objects and represented by dotted

line with line arrowhead.

Swimlanes are used to categorize the activities based on

functional capabilities and responsibilities. Two swimlane

elements are Pool and Lanes. Pool is rectangle and is nothing

but one graphical container which contains activities

belonging to same functional capabilities Lane is nothing but

either vertical or horizontal partition within the pool. Artifacts

are used to represent more contexts about any

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

15

Fig 1: BPMN elements overview

modeling situation. Three types of BPMN artifacts available

are Data object, Group and Annotation shown in Figure 1.

Data object is used to show how data is required or produced

by activities. Group is represented by dashed line rectangle

with rounded corners and used for documentation and analysis

purpose. Annotation is nothing but additional text about

activities in business processes.

Thus along with all above basic elements BPMN can also

have more advance constructs such as Compensation

association and Transaction. Therefore various versions of

BPMN have developed and each version has different number

of elements.

3. PETRI NET OVERVIEW
Petri nets are a formal model of concurrent systems. Petri nets

are used to model behavior of systems in terms of flow. The

flow may be control flow or object flow or information flow.

This specialty makes Petri nets a good candidate for formally

designing the semantics of BPMN models, since BPMN is

also flow-oriented notation. In addition, Petri nets have been

studied from a theoretical point of view, and a number of tools

that enable their automated analysis are invented. A Petri net

is a directed graph and have two types of nodes: places and

transitions. Places are represented as circles while transitions

are represented as rectangles. Petri nets are bipartite graphs,

means an arc may connect a place to a transition or vice-

versa a transition to place, but no arc never connect a place to

another place or a transition to another transition directly. A

transition may have a number of immediately preceding

places which are also called as its input places and a number

of immediately succeeding places also called as its output

places.

Places may contain Tokens which represent the thing(s) that

flow through the system. At a given instance during the

execution, each place may hold zero, one or multiple tokens.

Fig 2(a): Workflow net in an initial marking.

Therefore a state of a Petri net is represented as a function that

assigns a number of tokens to each place. Such a function is

called a marking. For example, Figure 2(a) shows a marking

of a Petri net where only one token is in the leftmost place and

no token in any other place. The state of a Petri net changes

when one of its transitions fires. A transition may fire only if

at least one token should be in each of its input places and

said to be enabled. For example, in Figure 2(a), the transition

enabled since having only one input place with one token.

When a transition fires, it removes one token from each of its

input places and it adds that token to each of its output places.

For example, Figure 2(b) shows the state obtained when

transition t1 fires. The token in the leftmost place has been

removed, and a token has been added to each of the output

places of transition t1. In a given marking, there may be

multiple enabled transitions simultaneously. In such situation,

any one of these enabled transitions may fire at a time. For

example, in Figure 2(b) there are two transitions enabled:

“Prepare Bill" and “Prepare Shipment". Any one of these

transitions may fire in the next execution step. Note that when

there is name attached to a transition is long (e.g. “Prepare

Bill") we place that label inside the rectangle representing this

transition. Also, we will sometimes omit the name of a

transition altogether. Transitions without names correspond to

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

16

“silent steps" which have no effect on the outside world, as

opposed to a transition with name.

Fig 2 (b): Workflow net after transition t1 fires.

4. BPMN TO PETRI NET

MODELTRANSFORMATION
In model-driven engineering, model transformation aims to

provide a mean to specify the way to produce target models

from a number of source models. For this purpose, it should

enable developers to define the way source model elements

must be matched and navigated in order to initialize the target

model elements.

Fig 3(a): Overview of ATL transformation approach

There are many techniques available for such model

transformation as a result many transformation languages are

proposed such as ATL [5], QVT [6], and YATL [7]. Our

approach uses ATL: a hybrid model transformation language

that allows both declarative and imperative constructs to be

used in transformation definitions

The schema in Figure 3(a) explains full model transformation

process. A source model Ma, conforming to a metamodel

MMa, is here transformed into a target model Mb that

conforms to a metamodel MMb. The transformation rule

defined in the MMa2MMb.atl is conforms to ATL. This ATL,

along with the MMa and MMb metamodels, has to conform to

meta metamodel such as MOF [8] or Ecore[9].

Using similar approach we proposed BPMN to petri net

transformation in Figure 3(b) BPMN is source model which

defined according to given BPMN metamodel. The

transformation rules defined in BPMN2petrinet.atl file is

conforms to ATL. As a result of successful transformation of

BPMN into petri net according to defined ATL rules, we get

the petri net model which must conforms to the petri net

metamodel defined. The BPMN metamodel example is given

in Figure 4 which covers all basic elements of BPMN. The

core petri net metamodel example is given in Figure 5. All the

Fig 3(b):BPMN to Petri net using ATL

theoretical aspects about BPMN to petri net mapping which

we have considered is described in [4]. BPMN elements are

mapped to corresponding petri net elements without changing

the semantics.

The transformation rules used for BPMN to petri net

conversion are defined into .atl file. The ATL rules for BPMN

to petri net conversion defined are based on the conceptual

mapping done in [4]. One example of such ATL rule is as

given below

rule Place {

 from

 g:bpmn2!Event

 to

 p:PetriNet!Place

 (

 location<-g.location,

 name<-g.name,

 net<-g.process,

 incomingArc<-g.incomingConnections,

 outgoingArc<-g.outgoingConnections

)

}

Fig 4:BPMN Metamodel Example

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

17

Thus the mapping of BPMN elements to petri net elements

according to defined ATL transformation rules is performed.

And petri net model formed is conforms to petri net

metamodel defined.

Fig 5: Petri net metamodel example

5. RELATED WORK
Samiraet. al. [10] describes Modeling Web Service

Interactions Using the Coordination Language REO i.e. WS-

BPEL to REO conversion. They propose an approach to

derive the formal semantics of WS-BPEL processes

compositionally using REO and constraint automata. They

map each WS-BPEL process into a REO circuit and then

construct the corresponding constraint automaton which

shows the behaviour of the process. The constraint automaton

can be used for analyzing the process behaviour. Their work

covers the core part of the WS-BPEL language including

basic and structured activities, correlation sets, variables, and

links.

Behnazet. al.[11] developed convertor for BPMN, BPEL, and

UML Sequence Diagrams into REO. In this they have given

ECT plug-in for eclipse platform. All the transformation is

done automatically. BPMN to REO conversion is done by

using ATL rules. After such a transformation, refined and

annotated REO process models can be visualized, verified and

transformed into executable code.

Tscheschneret. al.[12] gives a direct approach of a

transformation from EPC process model elements to BPMN.

They tried to map every construct in EPC fully automated to

BPMN.

LopezGrao et.al.[13] gives application software performance

engineering by transforming UML activity diagrams to

stochastic petri nets.

6. CONCLUSION
In this way we have described an approach to verify the

business processes described in BPMN by transforming it into

the petri net formal language. As we shown petri net has

simple formal modeling language and has mathematical base.

7. REFERENCES
[1] Stephen A. white, “Introduction to BPMN”, IBM

Corporation.

[2] Thomas,R.“Introductionto Unified Modeling Language”,

Technology of Object-Oriented Languages and Systems,

1997.TOOLS 25, Proceedings, p.354.

[3] Khalaf, R. “Business processes for Web Services:

Principles and applications”, IBM Systems Journal

(Volume:45 , Issue: 2),2006, pp.425- 446

[4] Dijkman, R. “Semantics and Analysis of Business

Process Models in BPMN”, Information and software

technology, 50(12), pp.1281-1294.

[5] Frederic Jouault, Freddy Allilaire, Jean Bezivin, Ivan

Kurtev, and Patrick Valduriez.“Atl:a qvt-like

transformation language”. In Peri L. Tarr and William R.

Cook, editors, OOPSLA Companion, ACM, 2006 pp

719-720.

[6] The Object Management Group. Meta object facility

(mof) 2.0 query/view/transformation. Specification

Version 1.0, Object Management Group, April 2008.

[7] Octavian Patrascoiu. “Yatl: Yet another transformation

language”. InUniversity of Twente, the Nederlands, pp

83-90, 2004.

[8] OMG: Meta Object Facility (MOF)

2.0CoreSpecification, OMG Document formal 2006-01-

01.(2006).

[9] Denivaldo Lopes, SlimaneHammoudi, Jean Bezivin ,

and Frederic Jouault, “Mapping Specification in MDA:

From Theory to Practice”.

[10] Samira.Tasharo,ZilouchianMoghaddam, R., M. Sirjani,

and M. Vakilian,, “Modeling Web Service Interactions

using the Coordination Language REO”, in Proceedings

of the 4th International Workshop on Web Services and

Formal Methods, LNCS 4937(2007), pp. 108-123.

[11] B. Changizi, N. Kokash, and F. Arbab,“A unified toolset

for business process model formalization,” inProc.

FESCA’10, 2010.

[12] WilliTscheschner, “Transformation from EPC to

BPMN”.

[13] Juan Pablo LopezGrao, JoseMerseguer, Javier Campos,

“From UML Activity Diagrams to Stochastic Petri

Nets:Application to Software Performance Engineering”,

WOSP 04 January 14-16, 2004.

