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ABSTRACT 

For developing successful software, testing is a very 

important component. In software testing, providing input, 

executes it and check expected output. Many techniques 

which automatically produce inputs have been proposed over 

the years, and today are able to produce test suites with high 

code coverage. In software testing a common scenario is that 

test data are generated and a tester manually adds test cases. It 

is a difficult task to generate test cases manually but it is 

important to produce small representative test sets and this 

representativeness is typically measured using code coverage. 

But there is a fundamental problem with the common 

approach of targeting one coverage goal at a time. Coverage 

goals are not independent, not equally difficult, and 

sometimes infeasible—the result of test generation is 

therefore dependent on the order of coverage goals and how 

many of them are feasible. For solving these problems, 

propose a novel paradigm which is generation of whole test 

suite based on search based testing. Instead of evolving each 

test case individually, evolve all the test cases in a test suite at 

the same time. At the end, the best resulting test suite is 

minimized. 
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1. INTRODUCTION 
Software testing is an essential component in IT field of any 

successful software development process.   Software testing is 

a critical element of software quality assurance and represents 

the ultimate review of specification, design, and code 

generation. Once code has been generated, program testing 

begins. The testing process focuses on the logical internals of 

the software, ensuring that all statements have been tested, 

and on the functional externals; that is, conducting tests to 

uncover errors and ensure that defined input will produce 

actual results that agree with required results. In software 

testing providing input, execute it and check expected output. 

However, in the general case one cannot assume the 

availability of automated test cases. This means that if we 

produce test inputs, then human tester needs to specify the test 

cases in terms of expected outcome. To make this feasible, 

test generation needs to aim not only at high code coverage, 

but also at small test suites that make test case generation as 

easy as possible. A common approach in literature is to 

generate a test case for each coverage goal and then to 

combine them in a single test suite. But the size of resulting 

test suite is difficult to predict as a test case generated for one 

goal may implicitly also cover any number of further 

coverage goals. This is usually called collateral coverage. 

Many techniques which are automatically produce inputs have 

been proposed over the year and today are able to produce test 

suites. These techniques are to generate a test case for each 

coverage goal consider example as branches in branch 

coverage, and then to combine them in a single test suite [9]. 

So it is difficult to find the size of result test suite. Test suites 

are usually generated by applying one test at a time. 

Test case: Test case is nothing but a set of variables or 

conditions under which a tester will determine whether an 

application, software system or one of its features is working 

as it was originally established for it to do. 

Test suite: Test suite is a collection of test cases that are 

intended to be used to test a software program to show that it 

has some specified set of behaviors. A test suite often contains 

detailed instructions or goals for each collection of test cases 

and information on the system configuration to be used during 

testing. A group of test cases may also contain prerequisite 

states or steps, and descriptions. 

In this paper, we evaluate a novel approach for test data 

generation, which we call generation of whole test suite that 

improves upon the current approach of targeting one goal at a 

time. All the test cases are evolved in a test suite at the same 

time, and the fitness function considers all the testing goals 

simultaneously. The whole test suite generation improves the 

current approach of targeting one goal at a time. An 

evolutionary technique [6] is used in which, instead of 

evolving each test case individually all the test cases in a test 

suite are evolved at the same time. The technique starts with 

an initial population of randomly generated test suites, and 

then uses a Memetic Algorithm to optimize toward satisfying 

a chosen coverage criterion, while using the test suite size as a 

secondary objective. At the end, the best resulting test suite is 

minimized, giving a test suite.  The EVOSUITE tool is used 

to implements this approach for generating JUnit test suites 

for Java code. EVOSUITE works on the byte-code level and 

collects all necessary information for the test cluster from the 

byte-code via Java Reflection. This means that it does not 

require the source code of the SUT, and in principle is also 

applicable to other languages that compile to Java byte-code.  

It optimizes whole test suites toward a coverage criterion is 

superior to the traditional approach of targeting one coverage 

goal at a time.  

2. RELATED WORK 
In the literature is branch coverage, but in principle any other 

coverage criterion or related techniques such as mutation 

testing are amenable to automated test generation. 

Metaheuristic search techniques have been used as an 

alternative to symbolic execution-based approaches 

[6].Search-based techniques have also been applied to test 

object-oriented software using method sequences [43] or 

strongly typed genetic programming [8], [10]. When 



International Journal of Computer Applications (0975 – 8887)  

National Conference on Emerging Trends in Computer Technology (NCETCT-2014) 

2 

generating test cases for object-oriented software, since the 

early work of Tonella [9] , authors have tried to deal with the 

problem of handling the length of the test sequences, for 

example, by penalizing the length directly in the fitness 

function. 

Any other coverage criterion is amenable to automated test 

generation. For example, mutation testing  is often considered 

a worthwhile test goal and has been used in a search-based 

test generation environment. Recently, Harman et al. [5]  

proposed a search based multi-objective approach in which, 

although each goal is still targeted individually. And there is 

the secondary objective of maximizing the number of 

collateral targets that are accidentally covered. 

All approaches mentioned so far target a single test goal at a 

time—this is the predominant method. There are some notable 

exceptions in search-based software testing. The works of 

Arcuri and Yao[1] and Baresi et al. [2] use a single sequence 

of function calls to maximize the number of covered branches 

while minimizing the length of such a test case. A drawback 

of such an approach is that there can be conflicting testing 

goals, and it might be impossible to cover all of them with a 

single test sequence, regardless of its length. 

Regarding the optimization of an entire test suite in which all 

test cases are considered at the same time, we are aware of 

only the work of Baudry et al. [3] In that work, test suites are 

optimized with a search algorithm with respect to mutation 

analysis.In the literature of testing object-oriented software, 

there are also techniques that do not directly aim at code 

coverage, as for example, implemented in the Randoop [7] 

tool. 

3. METHODOLOGY 

3.1 Local Search on Method Call Sequence 
Here local search aim is optimizing the values in one 

particular test case of a test suite. When local search is applied 

to a test case, EvoSuite iterates over its sequence of 

statements from the last to the first. And then applies a local 

search for each statement dependent on different type of the 

statement. Following are  types of statements on which Local 

search is performed: primitive statements, array statements,  

method statements, field statements and constructor 

statements. 

3.1.1   Primitive Statements 
Here Booleans and Enumerations are considered. For Boolean 

variables the only two values are considered and option is to 

flip the values. For enumerations, an exploratory move 

consists of replacing the enum value with any other value. 

And  we iterate over all enumeration values if the exploratory 

move was successful.  In integer datatypes, for integer 

variables which includes int, char byte, short, long, the 

possible exploratory moves are +1 and −1. The exploratory 

move decides the direction of the pattern move. If an 

exploratory move to +1 was successful, then with every 

iteration I of the pattern search we add δ to the variable. If +1 

was not successful, −1 is used as exploratory move, and if 

successful, subsequently ∂ is subtracted. Handle the floating 

point number with AVM. Exploratory moves are performed 

for a range of precision values p, where the precision ranges 

from 0–7 for float variables. When an exploratory move was 

successful, pattern moves are made by increasing I when 

calculating δ. Exploratory moves are slightly more 

complicated for string variables. For determining local search 

on a string variable, first apply n random mutations on the 

string1. If any of the n probing mutations changed the fitness, 

then the string has some effect on it, regardless of whether the 

change resulted in an improvement or not. String values affect 

the fitness through a range of Boolean conditions. These 

Boolean conditions are used in branches, and these conditions 

are transformed such that the branch distance also gives 

guidance on strings. If the probing on a string showed that it 

affects the fitness, and then applies a systematic local search 

on the string. 

3.1.2   Array Statements 
When  we consider local search on array , it concerns  the 

length of an array and also consider values which are assigned 

to the block of the array. For getting efficient search on the 

array length, first step of local search is , try to remove 

assignments to array block. Consider if array of length of n, 

then we first try to remove the assignments at slot n-1. When 

fitness value does not change, try or remove assignment at 

slot n-2 and continue until we find the highest index n’ foe 

which an assignment positively contribute to the fitness value. 

Then apply a regular integer-based local search on the array 

length value ,but the length does not get smaller than n’+1. 

When search has found the best length, expand the test case 

by with assignments to all slots of the array . These slots of 

the array are not already assigned in the test case , such  

assignments may be deleted as part of the regular search. 

Then apply local search on each assignment to the array, 

depending on the component type of the array. 

3.1.3   Reference Type Statements 
Statements (such as method statement, field statement, 

constructor statement) which are related to reference values 

do not allow traditional local search in terms of primitive 

values. The neighborhood of a complex type in a sequence of 

calls is huge (e.g., all possible calls on an object with all 

possible parameter combinations, etc.) such that exhaustive 

search is not a viable option. Therefore, we apply randomized 

hill climbing on such statements.  This local search consists of 

repeatedly applying random mutations to the statement, and it 

is stopped if there are R consecutive mutations that did not 

improve the fitness. We use the following mutations for this 

randomized hill climbing: 

 1. Replace the statement with a random call returning the 

same type. 

2. Replace a parameter (for method and constructor 

statements) or the receiving object with any other value of the 

same type available in the test case. 

3. If the call creates a non-primitive object, add a random 

method. 

3.2 Concept of Memetic Algorithm 
Given the ability to perform local search on the individuals of 

a global optimization there is the question of how to integrate 

these techniques. Often, MAs are implemented such that 

individuals can perform Lamarckian or Baldwinian learning 

immediately after reproduction This, however, raises the 

questions of how often to apply the individual learning, on 

which individuals it should be applied, and how long it should 

be done. Because local search can be very expensive, we 

would like to direct the learning towards the better individuals 

of the population, such that newly generated genetic material 

is more likely to directly contribute towards the solution. In 

EvoSuite, local search is applied at regular intervals; the rate 

at which it is applied is the first parameter of local search. 

When local search is applied, we iterate over the population 

ranked by their fitness, such that the first individual to be 

improved is the best individual of the search, then the second 
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best, and so on. Thus, as a second parameter, there is a search 

budget for this local search. 

4. OBJECTIVES 
Our objective is generating whole test suite toward a coverage 

criteria. This is superior to the traditional approach of 

targeting one coverage goal at a time. For optimizing the 

result extended the Genetic Algorithm used in the EVOSUITE 

test generation tool to Memetic Algorithm. Here we will 

define a set of local search operator for getting optimized 

result. And our next objective is to find parameter which 

makes the local search adaptive. 

5. CONCLUSIONS 
In this paper, we have described the whole test suite 

generation technique. Coverage criteria are a standard 

technique to automate test generation. The EVOSUITE tool 

implements the approach presented in this paper for 

generating JUnit test suites.  Then optimize the chosen 

coverage criterion test suite. We use a search algorithm, 

namely, a Memetic Algorithm (MA) that is applied on a 

population of test suites. 
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