
International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

1

Optimized Test Suite Generation using Memetic

Algorithm: A Survey

Ankita A. Mundade
PG Student, Department of Computer Engineering,

North Maharashtra University
SES’s R. C. Patel Institute of Technology, Shirpur,

MS, India

Tareek M. Pattewar
Assistant Prof., Department of Information
Technology, North Maharashtra University

SES’s R. C. Patel Institute of Technology, Shirpur,
MS, India

ABSTRACT

For developing successful software, testing is a very

important component. In software testing, providing input,

executes it and check expected output. Many techniques

which automatically produce inputs have been proposed over

the years, and today are able to produce test suites with high

code coverage. In software testing a common scenario is that

test data are generated and a tester manually adds test cases. It

is a difficult task to generate test cases manually but it is

important to produce small representative test sets and this

representativeness is typically measured using code coverage.

But there is a fundamental problem with the common

approach of targeting one coverage goal at a time. Coverage

goals are not independent, not equally difficult, and

sometimes infeasible—the result of test generation is

therefore dependent on the order of coverage goals and how

many of them are feasible. For solving these problems,

propose a novel paradigm which is generation of whole test

suite based on search based testing. Instead of evolving each

test case individually, evolve all the test cases in a test suite at

the same time. At the end, the best resulting test suite is

minimized.

General Terms

Algorithm, Testing, Optimization, search

Keywords

Length, software-based software engineering, branch

coverage, Memetic Algorithm, local search.

1. INTRODUCTION
Software testing is an essential component in IT field of any

successful software development process. Software testing is

a critical element of software quality assurance and represents

the ultimate review of specification, design, and code

generation. Once code has been generated, program testing

begins. The testing process focuses on the logical internals of

the software, ensuring that all statements have been tested,

and on the functional externals; that is, conducting tests to

uncover errors and ensure that defined input will produce

actual results that agree with required results. In software

testing providing input, execute it and check expected output.

However, in the general case one cannot assume the

availability of automated test cases. This means that if we

produce test inputs, then human tester needs to specify the test

cases in terms of expected outcome. To make this feasible,

test generation needs to aim not only at high code coverage,

but also at small test suites that make test case generation as

easy as possible. A common approach in literature is to

generate a test case for each coverage goal and then to

combine them in a single test suite. But the size of resulting

test suite is difficult to predict as a test case generated for one

goal may implicitly also cover any number of further

coverage goals. This is usually called collateral coverage.

Many techniques which are automatically produce inputs have

been proposed over the year and today are able to produce test

suites. These techniques are to generate a test case for each

coverage goal consider example as branches in branch

coverage, and then to combine them in a single test suite [9].

So it is difficult to find the size of result test suite. Test suites

are usually generated by applying one test at a time.

Test case: Test case is nothing but a set of variables or

conditions under which a tester will determine whether an

application, software system or one of its features is working

as it was originally established for it to do.

Test suite: Test suite is a collection of test cases that are

intended to be used to test a software program to show that it

has some specified set of behaviors. A test suite often contains

detailed instructions or goals for each collection of test cases

and information on the system configuration to be used during

testing. A group of test cases may also contain prerequisite

states or steps, and descriptions.

In this paper, we evaluate a novel approach for test data

generation, which we call generation of whole test suite that

improves upon the current approach of targeting one goal at a

time. All the test cases are evolved in a test suite at the same

time, and the fitness function considers all the testing goals

simultaneously. The whole test suite generation improves the

current approach of targeting one goal at a time. An

evolutionary technique [6] is used in which, instead of

evolving each test case individually all the test cases in a test

suite are evolved at the same time. The technique starts with

an initial population of randomly generated test suites, and

then uses a Memetic Algorithm to optimize toward satisfying

a chosen coverage criterion, while using the test suite size as a

secondary objective. At the end, the best resulting test suite is

minimized, giving a test suite. The EVOSUITE tool is used

to implements this approach for generating JUnit test suites

for Java code. EVOSUITE works on the byte-code level and

collects all necessary information for the test cluster from the

byte-code via Java Reflection. This means that it does not

require the source code of the SUT, and in principle is also

applicable to other languages that compile to Java byte-code.

It optimizes whole test suites toward a coverage criterion is

superior to the traditional approach of targeting one coverage

goal at a time.

2. RELATED WORK
In the literature is branch coverage, but in principle any other

coverage criterion or related techniques such as mutation

testing are amenable to automated test generation.

Metaheuristic search techniques have been used as an

alternative to symbolic execution-based approaches

[6].Search-based techniques have also been applied to test

object-oriented software using method sequences [43] or

strongly typed genetic programming [8], [10]. When

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

2

generating test cases for object-oriented software, since the

early work of Tonella [9] , authors have tried to deal with the

problem of handling the length of the test sequences, for

example, by penalizing the length directly in the fitness

function.

Any other coverage criterion is amenable to automated test

generation. For example, mutation testing is often considered

a worthwhile test goal and has been used in a search-based

test generation environment. Recently, Harman et al. [5]

proposed a search based multi-objective approach in which,

although each goal is still targeted individually. And there is

the secondary objective of maximizing the number of

collateral targets that are accidentally covered.

All approaches mentioned so far target a single test goal at a

time—this is the predominant method. There are some notable

exceptions in search-based software testing. The works of

Arcuri and Yao[1] and Baresi et al. [2] use a single sequence

of function calls to maximize the number of covered branches

while minimizing the length of such a test case. A drawback

of such an approach is that there can be conflicting testing

goals, and it might be impossible to cover all of them with a

single test sequence, regardless of its length.

Regarding the optimization of an entire test suite in which all

test cases are considered at the same time, we are aware of

only the work of Baudry et al. [3] In that work, test suites are

optimized with a search algorithm with respect to mutation

analysis.In the literature of testing object-oriented software,

there are also techniques that do not directly aim at code

coverage, as for example, implemented in the Randoop [7]

tool.

3. METHODOLOGY

3.1 Local Search on Method Call Sequence
Here local search aim is optimizing the values in one

particular test case of a test suite. When local search is applied

to a test case, EvoSuite iterates over its sequence of

statements from the last to the first. And then applies a local

search for each statement dependent on different type of the

statement. Following are types of statements on which Local

search is performed: primitive statements, array statements,

method statements, field statements and constructor

statements.

3.1.1 Primitive Statements
Here Booleans and Enumerations are considered. For Boolean

variables the only two values are considered and option is to

flip the values. For enumerations, an exploratory move

consists of replacing the enum value with any other value.

And we iterate over all enumeration values if the exploratory

move was successful. In integer datatypes, for integer

variables which includes int, char byte, short, long, the

possible exploratory moves are +1 and −1. The exploratory

move decides the direction of the pattern move. If an

exploratory move to +1 was successful, then with every

iteration I of the pattern search we add δ to the variable. If +1

was not successful, −1 is used as exploratory move, and if

successful, subsequently ∂ is subtracted. Handle the floating

point number with AVM. Exploratory moves are performed

for a range of precision values p, where the precision ranges

from 0–7 for float variables. When an exploratory move was

successful, pattern moves are made by increasing I when

calculating δ. Exploratory moves are slightly more

complicated for string variables. For determining local search

on a string variable, first apply n random mutations on the

string1. If any of the n probing mutations changed the fitness,

then the string has some effect on it, regardless of whether the

change resulted in an improvement or not. String values affect

the fitness through a range of Boolean conditions. These

Boolean conditions are used in branches, and these conditions

are transformed such that the branch distance also gives

guidance on strings. If the probing on a string showed that it

affects the fitness, and then applies a systematic local search

on the string.

3.1.2 Array Statements
When we consider local search on array , it concerns the

length of an array and also consider values which are assigned

to the block of the array. For getting efficient search on the

array length, first step of local search is , try to remove

assignments to array block. Consider if array of length of n,

then we first try to remove the assignments at slot n-1. When

fitness value does not change, try or remove assignment at

slot n-2 and continue until we find the highest index n’ foe

which an assignment positively contribute to the fitness value.

Then apply a regular integer-based local search on the array

length value ,but the length does not get smaller than n’+1.

When search has found the best length, expand the test case

by with assignments to all slots of the array . These slots of

the array are not already assigned in the test case , such

assignments may be deleted as part of the regular search.

Then apply local search on each assignment to the array,

depending on the component type of the array.

3.1.3 Reference Type Statements
Statements (such as method statement, field statement,

constructor statement) which are related to reference values

do not allow traditional local search in terms of primitive

values. The neighborhood of a complex type in a sequence of

calls is huge (e.g., all possible calls on an object with all

possible parameter combinations, etc.) such that exhaustive

search is not a viable option. Therefore, we apply randomized

hill climbing on such statements. This local search consists of

repeatedly applying random mutations to the statement, and it

is stopped if there are R consecutive mutations that did not

improve the fitness. We use the following mutations for this

randomized hill climbing:

 1. Replace the statement with a random call returning the

same type.

2. Replace a parameter (for method and constructor

statements) or the receiving object with any other value of the

same type available in the test case.

3. If the call creates a non-primitive object, add a random

method.

3.2 Concept of Memetic Algorithm
Given the ability to perform local search on the individuals of

a global optimization there is the question of how to integrate

these techniques. Often, MAs are implemented such that

individuals can perform Lamarckian or Baldwinian learning

immediately after reproduction This, however, raises the

questions of how often to apply the individual learning, on

which individuals it should be applied, and how long it should

be done. Because local search can be very expensive, we

would like to direct the learning towards the better individuals

of the population, such that newly generated genetic material

is more likely to directly contribute towards the solution. In

EvoSuite, local search is applied at regular intervals; the rate

at which it is applied is the first parameter of local search.

When local search is applied, we iterate over the population

ranked by their fitness, such that the first individual to be

improved is the best individual of the search, then the second

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

3

best, and so on. Thus, as a second parameter, there is a search

budget for this local search.

4. OBJECTIVES
Our objective is generating whole test suite toward a coverage

criteria. This is superior to the traditional approach of

targeting one coverage goal at a time. For optimizing the

result extended the Genetic Algorithm used in the EVOSUITE

test generation tool to Memetic Algorithm. Here we will

define a set of local search operator for getting optimized

result. And our next objective is to find parameter which

makes the local search adaptive.

5. CONCLUSIONS
In this paper, we have described the whole test suite

generation technique. Coverage criteria are a standard

technique to automate test generation. The EVOSUITE tool

implements the approach presented in this paper for

generating JUnit test suites. Then optimize the chosen

coverage criterion test suite. We use a search algorithm,

namely, a Memetic Algorithm (MA) that is applied on a

population of test suites.

6. ACKNOWLEDGMENTS
Our thanks to the experts who have contributed towards

development of the template.

7. REFERENCES
[1] Arcuri and X. Yao, ―Search Based Software

Testing of Object- Oriented Containers,‖

Information Sciences, vol. 178, no. 15, pp. 3075-

3095, 2008.

[2] L. Baresi, P.L. Lanzi, and M. Miraz, ―Testful: An

Evolutionary Test Approach for Java,‖ Proc. IEEE

Int’l Conf. Software Testing, Verification and

Validation, pp. 185-194, 2010.

[3] Baudry, F. Fleurey, J.-M. Je´ze´quel, and Y. Le

Traon, ―Automatic Test Cases Optimization: A

Bacteriologic Algorithm,‖ IEEE Software, vol. 22,

no. 2, pp. 76-82, Mar./Apr. 2005.

[4] G. Fraser and A. Arcuri, ―Evosuite: Automatic Test

Suite Generation for Object-Oriented Software,‖

Proc. 19th ACM SIGSOFT Symp. and the 13th

European Conf. Foundations of Software Eng.,

2011.

[5] M. Harman, S.G. Kim, K. Lakhotia, P. McMinn,

and S. Yoo, ―Optimizing for the Number of Tests

Generated in Search Based Test Data Generation

with an Application to the Oracle CostProblem,‖

Proc. Third Int’l Conf. Software Testing,

Verification, and Validation Workshops, 2010.

[6] P. McMinn, ―Search-Based Software Test Data

Generation: A Survey,‖ Software Testing,

Verification and Reliability, vol. 14, no. 2, pp. 105-

156, 2004

[7] Pacheco and M.D. Ernst, ―Randoop: Feedback-

Directed Random Testing for Java,‖ Proc.

Companion to the 22nd ACM SIGPLAN Conf.

Object-Oriented Programming Systems and

Application, pp. 815-816, 2007.

[8] J.C.B. Ribeiro, ―Search-Based Test Case Generation

for Object- Oriented Java Software Using Strongly-

Typed Genetic Programming,‖ Proc. GECCO Conf.

Companion

