
International Journal of Computer Applications (0975 – 8887)  

National Conference on Emerging Trends in Computer Technology (NCETCT-2014) 

24 

Timestamp-Ordering Protocol for Concurrent 

Transactions - A Performance Study 

Sunil Dhondu Mone 
Asst. Professor, 

R. C. Patel Art, Com and Sci. 
College,Shirpur, Dist.- Dhule.(M.S.) 

 

 

ABSTRACT 

When we have multiple transactions to execute at an instance, 

one can prefer to execute them concurrently, which result in 

improve throughput, improve resource utilization, reduce 

waiting time, and also help to reduce average response time. 

While transaction get executed concurrently, in get facilitate 

by concurrency schemes, numerous concurrency schemes has 

been proposed. The minimum criteria they are expected to 

fulfill are like serializability. To test performance of various 

concurrency schemes various criteria may be consider. In this 

paper I am considering time stamp ordering protocol and 

criteria like conflict serializability, view serializability, 

recoverability, and cascadeless, deadlock, level of 

concurrency support. 

Keywords 

Consistency. Serializability, conflict serializability, view 

serializability, recoverability, cascadeless, 

1. INTRODUCTION 
Transaction is a sequence of instructions. While transaction 

get execute it access as well as update database. While 

transaction update database it access and store data item in 

temporary storage area and perform updating in temporary 

area and update database later. 

While we have multiple transactions to execute at an instance, 

one can prefer to execute all multiple transactions 

concurrently, Concurrent execution of transaction have many 

advantages; few notable advantages are as follows. 

1) it improve throughput : A transaction consists of 

may steps. Some involve I/O operation, while some 

other involve CPU operation. CPU and I/O 

operations may perform parallel, ultimately multiple 

transaction may execute concurrently, in same 

amount of time multiple transaction get execute and 

help to improve throughput.(Abraham Silberrschatz, 

2006) 

2) Improve utilization: As multiple transaction get 

execute concurrently, and may utilize multiple 

resources parallel. Moreover compare to I/O and 

CPU speed, CPU speed may utilize 

properly.(Abraham Silberrschatz, 2006) 

3) Reduce waiting time: Conversely if transaction get 

execute sequentially waiting time of transaction get 

execute at last will be high, which shall be reduce in 

concurrent execution of transactions. 

4) Increase response time:  As transactions get execute 

Concurrently, average response time of all 

concurrently executing transaction may get 

increase.(Abraham Silberrschatz, 2006) 

5) Multiprogramming: As concurrent execution of 

transaction utilize resources in parallel offer 

multiprogramming concept. 

While transactions get execute concurrently, they are expected 

to fulfill criteria serializability. Since serializability offers 

transaction isolation, Atomicity, as well as data consistency 

and data durability. It is well known as ACID property of 

transaction. Serializability may be conflict serializability, 

view serializability.  

Numerous concurrency schemes have been proposed, In this 

paper I am considering only Timestamp-Ordering Protocol. 

We can consider criteria to test performance of concurrency 

schemes base on conflict serializability, view serializability, 

recoverability, cascadeless, level of concurrency offers. 

2. PERFORMANCE TESTING 

CRITERIA  

2.1 Serializability 
Any concurrent schedule (which consist more than one 

transactions executing concurrently) is said to be serialize 

schedule if final effect on database is same as sequential 

execution of same transactions involve in schedule.  

2.2 Conflict Serializability 

Let us consider a schedule S in which there are two 

consecutive instructions, Ii and Ij, of transactions Ti and Tj, 

respectively (i<>j).  If Ii and Ij refer to different data items, 

when we can swap Ii and Ij without affecting the result of 

schedule.  We say that Ii and Ij conflict if they are operations 

by different transactions on same data item, and at least one of 

them is a write operation. 

If a schedule S can be transformed into schedule S’ by a series 

of swaps of non-conflicting instructions, we say that S and S’ 

are conflict equivalent.  The concept of conflict equivalence 

leads to the concept of conflict serializability. (Gehrke) 

2.3 View Serializability 
The schedules S and S’ are said to be view equivalent if 

following conditions are met: 

1. For any data item Q, if Ti reads the initial values of 

Q in S, then transaction Ti in schedule S’, also read 

initial value of Q. 

2. For each data item Q, in schedule S if transaction Ti 

executes read(Q) and Tj executes write(Q), then in 

S’ must also Ti executes read(Q) and Tj executes 

write(Q). 

3. For each data item Q if any transaction Ti perform 

final write operation in S, then in schedule S’ also 

Ti perform final write. 



International Journal of Computer Applications (0975 – 8887)  

National Conference on Emerging Trends in Computer Technology (NCETCT-2014) 

25 

We say that schedule S is view serializable if it is view 

equivalent to a serial schedule. 

Every conflict-serializable schedule is also view serializable, 

but there are view-serializable schedule that are not conflict 

serializable, which content blind writes.(Abraham 

Silberrschatz, 2006) 

2.4 Recoverable  
Consider following schedule  

T1 T2 

Read(A)  

Write(A)  

 Read(A) 

Read(B)  

In which commit operation of T2 appear immediately after 

read(A) this is example of non-recoverable schedule,  which 

should not be allowed.  Database system require that all 

schedule be recoverable.  A recoverable schedule is a 

schedule in which, for each pair of transaction Ti and Tj such 

that Tj reads a data item previously written by Ti the commit 

operation of Ti appears before the commit operation of Tj. 

(Abraham Silberrschatz, 2006) 

2.5 Cascadeless  
Consider following schedule 

T1 T2 T3 

Read(A)   

Read(B)   

Write(A)   

 Read(A)  

 Write(A)  

  Read(A) 

Suppose that, T1 fails, T1  must be rolled back.  Since T2 is 

dependents on T1, T2 must rolled back.  Since T3 dependents 

on T2, T3 must be roll back.  This scenario, in which single 

transaction failure leads to a series of transaction rollbacks, is 

called cascading rollback.  Cascading rollback is undesirable, 

since it leads to undoing significant amount of work.  It is 

desirable to restrict schedule for cascading rollback. Such 

schedule is call cascadeless schedule.   

Cascadeless schedule is one where, for each pair of 

transaction Ti and Tj such that Tj reads a data item previously 

written by Ti, the commit operation of Ti appears before read 

operation of Tj.  Note that every cascadeless schedule is also 

recoverable. (Abraham Silberrschatz, 2006) 

3. TIMESTAMP-BASED PROTOCOLS 
These types of protocols provide another method of 

determining the serializability order.  That is providing order 

among transaction in advanced. Method used to do so is use a 

timestamp-ordering scheme. 

3.1 Timestamps 

With each transaction T in the system, we associate a unique 

fixed timestamp, denoted by TS(Ti). This timestamp is 

assigned by the database system before the transaction Ti 

starts execution. If a transaction Ti has been assigned 

timestamp TS(Ti), and a new transaction Tj enters the system, 

then TS(Ti) < TS(Tj). There are two simple methods for 

implementing this scheme: 

1. Use the value of the system clock as the timestamp; that is, 

a transaction's time- stamp is equal to the value of the clock 

when the transaction enters the system. 

2. Use a logical counter that is incremented after a new 

timestamp has been assigned; that is, a transaction's 

timestamp is equal to the value of the counter when the 

transaction enters the system. 

The timestamps of the transactions determine the 

serializability order. Thus, if TS(Ti) < TS(Tj), then the system 

must ensure that the produced schedule is equivalent to a 

serial schedule in which transaction Ti appears before 

transaction Tj. 

To implement this scheme, we associate with each data item 

Q two timestamp values: 

 W-timestamp(Q) denotes the largest timestamp of any 

transaction that executed write(Q) successfully. 

 R-timestamp(Q) denotes the largest timestamp of any 

transaction that executed read(Q) successfully. 

These timestamps are updated whenever a new read(Q) or 

write(Q) instruction is executed.(Abraham Silberrschatz, 

2006) 

3.2 The Timestamp-Ordering Protocol 
The timestamp – ordering protocol ensures that any 

conflicting read and write operations are executed in 

timestamp order. This protocol operates as follows. 

1. Suppose that transaction Ti issue read(Q) 

a. If TS(Ti) < W-timestamp(Q), then Ti need 

to read a value of Q that was already 

overwritten. Hence, the read operation is 

rejected, and Ti is rolled back. 

b. If TS(Ti) >= W-timestamp(Q), then the 

read operation is executed, and R- 

timestamp(Q) is set to the maximum of R-

timestamp(Q) andTS(Ti ). 

2. Suppose that transaction Ti issues Write (Q). 

a. If TS (Ti) < R-timestamp (Q), then 

the value ofQ thatTi is producing 

was needed previously, and the 

system assumed that value would 

never be produced. Hence, the 

system rejects the write operation 

and rolls Ti back. 

b. If TS(Ti) < W-timestamp(Q), 

thenTi is attempting to write an 

obsolete value of Q. Hence, the 

system rejects this write operation 

and rolls Ti back. 

c. Otherwise, the system executes the 

write operation and sets 

W-time- stamp(Q) to TS(Ti). 

If a transaction Ti is rolled back by the concurrency-control 

scheme as result of issuance of either a read or writes 



International Journal of Computer Applications (0975 – 8887)  

National Conference on Emerging Trends in Computer Technology (NCETCT-2014) 

26 

operation, the system assigns it a new timestamp and restarts 

it.(Abraham Silberrschatz, 2006) 

To illustrate this protocol, we consider transactions T1 and 

T2. Transaction T1 displays the contents of accounts A and B. 

  T1: Read(B) 

   Read(A) 

   Display(A+B) 

Transaction T2 transfers Rs50 from account B to account A, 

and display contain of both. 

  T2: Read (B) 

   B= B – 50 

   Write (B) 

   Read (A) 

   A= A+ 50 

   Write (A) 

   Display (A+B) 

Let us assume that timestamp will be assign immediately 

before its first instruction. Consider following schedule in 

which TS(T1) < TS(T2) and schedule is possible under 

timestamp protocol. 

T1 T2 

read(B) read(B) 

 b=b – 50 

 write(B) 

read(A)  

 read(A) 

display( A + B)  

 A = A + 50 

 write(A) 

 display( A+ B) 

(Abraham Silberrschatz, 2006) 

4. ANALYSIS 

4.1 Advantages 
1) The timestamp ordering protocol ensures conflict 

serializability. This is because conflicting 

operations are processed in timestamp order. 

2) The timestamp based protocol ensures freedom 

from deadlock, since no transaction ever 

waits.(Gehrke) 

4.2 Disadvantages 
1) There is possibility of starvation of long 

transactions. This may cause due to sequence of 

conflicting short transactions causes repeated 

restarting of the long transaction. One can avoid 

this by finding transaction, which is restarts 

repeatedly, and conflicting transaction need to be 

temporarily blocked enable the transaction to 

finish. 

2) The timestamp based protocol may produce 

schedule which is not recoverable. But one can 

make timestamp based schedule recoverable 

using one of the following several ways. 

a) Recoverability and cascadelessness can be 

ensured by performing all write together at the 

end of transaction. And write must be atomic, 

that is while one transaction writing a data 

item, no one transaction allows to read/access. 

b) Recoverability and cascadelessness can also 

be guaranteed by using limited form of  

locking, as well as reads of uncommitted items 

are postponed until the transaction that 

updated the item commits. 

c) Recoverability only can ensure by tracking 

uncommitted write, and allowing a transaction 

Ti to commit only after the commit of any 

transaction that wrote a value, read by Ti. That 

is committing dependencies.(Abraham 

Silberrschatz, 2006) 

5.  CONCLUSION 
- Serializability is a minimum criteria for concurrent 

transactions scheme.  

-Cascadeless and deadlock is inversely proportional to 

concurrency. 

- To get more concurrency, schedule need to allow for 

deadlock, and cascading rollback up to certain extend,  

- Time stamp protocol ensures no deadlock, since data items 

are locked prior to execution of transaction. 

6. REFERENCES 
[1] Abraham Silberrschatz, H. F. (2006). Database System 

Concepts Fifth Edition. NY 10020: McGrawHill. 

[2] Akil Kumar, M. S. (n.d.). Performance Evaluation of 

Operating System Transaction Manager. University of 

California, Berkeley, Ca 94720. 

[3] Date. (n.d.). An Introduction to Database System, 7th 

Edition. Pearson Education. 

[4] Gehrke, R. R. (n.d.). Database Management System, 

Third Edition. McGraw Hill. 

[5] Ramez Elmasri, S. B. (2007). Fundamental of Database 

System, Fifth Edition. Pear Publication. 

[6] RL, L. S. (1996). A multigranularity locking model of 

concurrency control in OODB. IEEE, Transaction on 

Knowlede and Data Engg. 8(1), 144-156. 

[7] Stonebraker, M. J. (n.d.). The performance of 

Concurrency Control Algorithms fo Database 

Management Systems. Singapore: Proceddings of Tenth 

International Conference on Vary large Databse. 

 


