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ABSTRACT 
Dynamic loading is an essential mechanism for computer 

software development. It enables an program, the versatility to 

use its exported functionalities and energetically link a part. 

Dynamic loading is really a system by which a pc program are 

able to at run-time, fill a collection into memory, recall the 

handles of parameters and functions included in the library, run 

those functions or get those variables, and sell the library from 

recollection. This function presents a signal coverage approach 

called motionless binary analysis to assess and discover 

mistakes and weaknesses about the element. Thus the 

dangerous and exposed parts may be recognized previous to 

loading energetically into applications. This paper presents the 

first static binary analysis aiming at detecting all possible 

loading-related errors. The key challenge is how to scalably and 

precisely compute what components may be loaded at relevant 

program locations. Our main insight is that this information is 

often determined locally from the component loading call sites. 

In particular, for a given call site, we first compute its context-

sensitive executable slices, one for each Execution context. 

Then we emulate the slices to obtain the set of components 

possibly loaded at call site. For evaluation, we implemented our 

technique to detect vulnerable and unsafe component loadings 

in popular software on Microsoft Windows and Linux. 

General Terms 
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Keywords 
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1. INTRODUCTION 
Dynamic element load is utilized in software development to 

develop and adaptable software. Java run-time environment 

(JRE) generally supplies applicable method calls to fill dynamic 

parts. The inherent JRE solves and lots the given element, once 

a launching system phone is invoked. Component resolution is 

dependent upon the way the part is specified moreover through 

the plan part’s full path or its file-name. Given a complete 

route, the JAVA Runtime Environment just uses it for quality. 

Which series of sites to search is managed at run-time by the 

special directory explore order at that instance of program call 

invocation. The versatility of the typical fashion of element 

loading does include a cost an inherent security apprehension is 

introduced by it.  

For runtime security and protection, and request should just fill 

its planned parts. Nevertheless, as a constituent is resolved by 

the JRE only during its name, programming errors may cause 

the launching of an accidental component with exactly the same 

name. An approach was suggested to find dangerous part 

loadings. It then performs a evaluation to discover two kinds of 

dangerous loadings: resolution and resolution failure hijacking. 

When the target part isn’t discovered, though a resolution 

hijacking occurs when other sites are looked before the listing 

where the part lives a quality failure occurs. We illustrate this 

dilemma using delayed loading, an optimization to delay the 

loading of rarely used parts until their very first use. Since it is 

hard to activate all deferred loadings at runtime delayed loading 

is tough for dynamic detection. Within this, document the very 

first static analysis to find dangerous loadings from program 

binaries. 

Two items of essential advice are needed 

1) All parts which may be packed at every loading call 

website, and 

2) The security of each potential loading. From these 

findings,  

We style a two period analysis: checking and extraction. The 

removal stage is demand driven, working backwards from every 

loading call website to calculate the group of potential loadings; 

the stage establishes the security of the loading by analyzing the 

applicable directory explore order in the identify site. 

1.1 Context-Sensitive Emulation 
We introduce context sensitive emulation, a new blend of 

emulation and segmenting, to comprehend the diffident 

computation of limitation values throughout the removal period. 

For a specified call site, we remove its context susceptible 

executable blocks in respect to its guidelines, one for every 

execution context. We subsequently copy the blocks to 

calculate the restriction values. 

1.1.1 Incremental and Modular Segmenting 
One specialized hurdle is the way to calculate diffident blocks 

scalable. Normal segmenting approaches are centered on 

processing a program’s entire system dependency graph (SDG) 

a priori and are consequently restricted in scalability. Because 

we just have to think about loading call websites as well as the 

execution pathways to calculate the limitation values to the 

describes are generally fairly short, only a little part of the 

entire SDG is applicable for our evaluation. This inspires the 

utilization of an step-by-step and modular sectioning algorithm 

incremental because we construct the blocks lazily when 

needed; modular because when we see a perform call foo(x,y), 

author use an conditional outline about what addiction foo’s 

parameters and revisit value have in examining the caller. 

1.1.2 Emulation of Context-sensitive Slice 
Once author calculated the piece s regarding a specified loading 

call website, we must calculate values for the important 

guidelines. One organic remedy would be to execute 

conventional representative analysis on the piece to calculate 

the ideals. The chief problem for this strategy is the issue in 

reasoning symbolically about method calls since the applicable 
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parameters frequently rely on complicated, low level system 

calls. [2] 

2. RELATED WORK 
Static Detection of Unsafe Component Loadings on Windows 

and Linux technique performs static analysis of binaries. 

Compared to the analysis of source code, much less work 

exists. In this setting, 

Value Set Analysis (VSA) is perhaps the most closely related to 

ours. It combines numeric and pointer analyses to compute an 

over approximation of numerical values of program 

variables.[4] [5] 

Compared to VSA, our technique focuses on the computation of 

string variables. It is also demand driven and uses context-

sensitive emulation to scale to real-world large applications. As 

we discussed earlier, instead of emulation, symbolic analysis 

could be used to compute concrete values of the program 

variables. However, symbolic techniques generally suffer from 

poor scalability, and more importantly, it is not practical to 

symbolically reason about system calls, which are often very 

complex. Our novel use of context sensitive emulation provides 

a practical solution for computing the values of program 

variables. [6]      Starting with Weisers seminal work [10], 

program slicing has been extensively studied. Our work is 

related to the large body of work on static slicing, in particular 

the SDG-based techniques. Standard SDG-based static slicing 

techniques build the complete SDGs beforehand. In contrast, 

we build control- and data-flow dependence information in a 

demand-driven manner, starting from the given slicing criteria. 

Our slicing technique is also modular because we model each 

call site using its callees inferred summary that abstracts away 

the internal dependencies of the callee. In particular, we treat a 

call as a non-branching instruction and approximate its 

dependencies with the callees summary information. This 

optimization allows us to abstract away detailed data flow 

dependencies of a function using its corresponding call 

instruction. 

We make an effective trade-off between precision and 

scalability. As shown by our evaluation results, function 

prototype information can be efficiently computed and yield 

precise results for our setting. 

Our slicing algorithm is demand-driven, and is thus also related 

to demand-driven dataflow analyses which have been proposed 

to improve analysis performance when complete dataflow facts 

are not needed. These approaches are similar to ours in that they 

also leverage caller-callee relationship to rule out infeasible 

dataflow paths. The main difference is that we use a simple 

prototype analysis to construct concise function summaries 

instead of directly traversing the functions intra procedural 

dependence graphs, i.e., their PDGs. Another difference is that 

we generate context-sensitive executable program slices for 

emulation to avoid the difficulty in reasoning about system 

calls. 

3. METHODOLOGY 
The proposed system is Static Detection of Unsafe Component 

Loadings. This technique statically detects unsafe component 

loadings to achieve high coverage. It first extracts the target 

component specifications from possible code region executed at 

runtime and check their safety. 

3.1 Extraction Phase 
A component can load other components at load time or 

runtime. This loading introduces load time and runtime 

dependencies among components. Based on these 

dependencies, it determines components that can be loaded 

during program execution. Specifically, it recursively resolve 

the components from the program file based on their load time 

and runtime dependencies. To resolve the dependent 

components, the corresponding target specifications, i.e., full 

path or file name, are needed. For load time dependencies, 

compilers specify the dependent components in the executable 

format. For example, the names of the load time dependent 

components are stored in IMAGE_IMPORT_DIRECTORY 

with the PE format. To obtain the specifications of the runtime 

dependent components, it computes values of parameters to 

component-loading system calls.. As an example of recursive 

resolution, it search the components that can be loaded by 

Program in Figure 1. Suppose that components E and F, which 

have no load time and runtime dependent component, 

implement the rand and Load Library functions, respectively. 

The key step of the extraction phase is to obtain the target 

specification for component loading in a binary. The 

specification of a load time dependent component can be easily 

obtained from the binary file format. However, extracting the 

specification of a runtime dependent component is nontrivial 

because it often requires to locate the code relevant to the value 

of the specification and analyze its execution. For example, the 

target component specification for system libraries under 

Microsoft Windows is sometimes determined by concatenating 

the system directory path and the file name. To obtain the 

specification, it is necessary to extract the related code and 

analyze its execution result. 

3.1.1 Searching Program Variable for Specification 

In binary code, invoking the component-loading system calls 

often follows the stdcall calling convention1. When parameters 

are passed to the call site, they are pushed from right to left. For 

example, Figure 2(a) represents the binary code corresponding 

to LoadLibraryExA( 0x7D61AC5C, EAX, EAX). Based on the 

parameter passing mechanism, it locates the program variable, 

e.g., a register or a memory chunk, which stores the target 

specification. In particular, it detect the call site for component 

loading via static taint data analysis and then extract the input 

operands of the instructions passing the parameter to the call 

site. 

3.1.2 Locating Component-loading Call Sites 
In this phase, it aim at finding the call site for component 

loading in a binary. In this observation the software stores the 

address of the system call implementation in its memory space 

and utilizes it in the call sites for component loading at runtime. 

Figure 2 shows the two types of component-loading call sites in 

a binary, which are memory indirect and register indirect. While 

the memory indirect type stores address in a register, e.g., line 4 

in Figure 2(a) and line 3 in Figure 2(b). 

 

Figure 1 Detection framework 

 



International Journal of Computer Applications (0975 – 8887)  

National Conference on Emerging Trends in Computer Technology (NCETCT-2014) 

7 

 

Figure 2 Two types of component-loading call sites. 

Based on this observation, it locates the component-loading call 

sites through static taint data analysis. In particular, it define the 

taint sources and the taint sinks as follows 

1. Taint source An instruction that references a memory 

chunk that stores the address of the component-loading 

system call. 

2. Taint sink A branch instruction, e.g., call, whose target 

address is tainted.  

It considers the taint sink instructions as the call sites. It 

presents examples on how to detect call sites. In Figure 2(a), 

line 4 serves as not only the taint source but also the taint sink, 

i.e., the component-loading call site, because it is the branch 

instruction, accessing a memory chunk that stores the address of 

LoadLibraryExA. For Figure 2(b), line 1 is the taint source, 

accessing the address of the LoadLibraryA, and line 3 is the 

taint sink, because it is the call instruction whose target is the 

address, stored in EBX. 

3.1.2 Extracting Parameter Variables 

Once a call site is located, it extracts the program variables for 

the target specification from the predefined number of the 

instructions to pass the parameters to the call site. In particular, 

it detects the instructions, e.g., PUSH, to initialize the top of 

stack backward from the call site. Because the number of 

parameters of a component-loading system call is known, it can 

precisely extract all the variables to define this target 

specification. For example, the call site in Figure 2(a) invokes 

LoadLibraryExA, and it has three parameters, i.e., 

0x7D61AC5C, EAX, and EAX, via the instructions on lines 13. 

3.2 Context-sensitive Emulation 
In this phase, it compute the concrete values of the parameter 

variables extracted. The computation may seem trivial at first. 

For example, the memory chunk at 0x7D61AC5C in Figure 

2(a) contains the target specification, “xpsp2res.dll”. However, 

the computation is in fact challenging because it is necessary to 

extract the code to compute the variable, requiring 

interprocedural data flow analyses. To address this problem, it 

introduce context-sensitive emulation, which novely combines 

backward slicing and emulation. Based on this combination, it 

can scalably and precisely compute the values of the variables 

of interest. 

3.2.1 Slicing 
Program slicing is a method for automatically decomposing 

programs by analyzing their data flow and control flow. 

Starting from a subset of a program’s behavior, slicing reduces 

that program to a minimal form which still produces that 

behavior. The reduced program, is called as ”slice,”. 

 

 

3.2.2 Backward Slicing  

This phase performs the interprocedural backward slicing w.r.t. 

the parameter variable, extracting the instructions to compute 

the variable. This problem has been extensively studied, and 

many slicing algorithms have been proposed. These algorithms 

commonly solve the graph reachability problem over a System 

Dependence Graph (SDG), a set of Program Dependence 

Graphs (PDGs) and edges capturing data flow dependencies 

among them. In particular, a SDG is constructed beforehand 

based on an exhaustive data flow analysis over the subject 

program. Then, the slicing outcome is determined by traversing 

the SDG from the given slicing criteria. Although the approach 

has been widely used, it is not appropriate for this problem 

setting. Thus, exhaustive data flow analysis is not be necessary 

to extract backward slices w.r.t. the given slicing criteria. Figure 

3 shows the examples of the unnecessary data flow analysis 

during intraprocedural and interprocedural backward slicing. 

Figure 3(a) shows an example of the CFG for constructing the 

PDG. Suppose that it performs intraprocedural backward slicing 

w.r.t. the instruction D. In this case, the bold instructions often 

only affect the instruction D in terms of control flow. Suppose 

that Figure 3(b) depicts the SDG for the interprocedural 

backward slicing. If the instructions of the bold PDGs for bar1 

and bar2 are only traversed during slicing, is it not necessary to 

perform data flow analysis on the instructions of the grayed 

PDGs. [8] 

3.2.3 Intraprocedural backward Slicing 
For each intraprocedural backward slicing, it analyzes only the 

data flow dependencies among the instructions that are control 

dependent on the given slicing criteria. Suppose that it perform 

intraprocedural backward slicing w.r.t. the instruction D in the 

CFG shown in Figure 3(a). If this construct the PDG based on 

the CFG, the data flow dependencies among all the instructions 

in the CFG are analyzed. However, the grayed instructions do 

not affect the instruction D.in terms of control flow 

dependencies. By constructing the PDG based on the subgraph 

composed of the bold instructions, i.e., the predecessor sub 

graph w.r.t. the instruction D, it can avoid some unnecessary 

data flow analysis when performing slicing. 

3.2.4 Interprocedural backward Slicing 
As aforementioned, an exhaustive SDG construction often leads 

to significant amount of the unnecessary data flow analysis for 

interprocedural backward slicing. To address this problem, it 

constructs the interprocedural backward slices incrementally 

combining the intraprocedural backward slices whose slicing 

criteria are chosen in a demand-driven manner. There are two 

key challenges for this demand-driven combination. 

 

Figure 3 Unnecessary data flow analysis 
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First, it is necessary to determine the new slicing criteria if the 

interprocedural backward slice consists of multiple 

intraprocedural backward slices. For example, it construct the 

interprocedural backward slice in Figure 3(b) by combining the 

two intra-backward slices extracted from functions bar1 and 

bar2. In this case, it needs to determine the new slicing criteria 

in the bar1 function. Second, the composed interprocedural 

backward slice needs to be easily handled for the later 

emulation phase. The basic idea for building the new slicing 

criteria is that the interprocedural data flow dependencies are 

captured by parameter passing. In SDG-based slicing, the PDGs 

are connected using the edges that model parameter passing, 

which are traversed to analyze the dependencies. To locate this 

parameter variable, it use caller-callee relationship and the 

callees function prototype. In particular, it detects the call site 

for function f and analyze fs function prototype to obtain the 

index of the parameter corresponding to p. For example, the 

intraprocedural backward slice w.r.t. the target_dllname in 

Figure 1 uses the first parameter, i.e., pImgDelayDesc, of 
delayLoadHelper2. As two call sites on lines 5 to 7 and lines 14 

to 16 invoke_delayLoadHelper2, it choose their first parameter 

variables, i.e., pDelayDesc1 on line 6 and pDelayDesc2 on line 

15, as the new slicing criterion. Once the new slicing criterion is 

determined, it constructs the interprocedural backward slice by 

composing the intraprocedural backward slices and use the 

composed slice in the emulation phase. One simple method for 

composing the intraprocedural slices is to collect the 

instructions of each intraprocedural backward slice. For 

example, the interprocedural backward slice w.r.t. the target 
dllname consists of the instructions of three intraprocedural 

backward slices w.r.t. the slicing criteria, i.e., target_dllname, 

pDelayDesc1, and pDelayDesc2. [7] 

3.2.5 Function Prototype Analysis 
The backward slicing phase relies on function prototypes, but 

such information is often unavailable in binary code. This 

solution to the problem is as follows. For a given function f, its 

parameters are stored in fixed locations during fs execution. 

Thus, it infers its prototype by analyzing how the instructions of 

the function access the memory chunks for the parameters, i.e., 

read or write. Figure 4 shows an example of our proposed 

prototype analysis for the foo function. Suppose that Figures 

4(a) and 4(b) show part of foo and the stack layout at the 

beginning of the functions execution, respectively. To improve 

the precision of our prototype inference, it uses the following 

effective heuristic. If the effective address of the memory 

chunk, obtained by the lea instruction, is passed to the function, 

it considers it as the in out parameter. Although this heuristics 

may increase the size of the computed slice, it is sufficient to 

compute possible values of the slicing criteria via emulation. [9] 

[1] [3] 

 

Figure 4 Function prototype analysis 

 

Figure 5 Data-flow dependencies among basic blocks 

3.3 Emulation Phase 
In this phase, it computes the possible values of the target 

component specification by emulating its corresponding 

context-sensitive slices. There are two challenges for slice 

emulation. The first challenge is how to schedule the 

instructions because it do not know their runtime execution 

sequence. In this case, before emulating fs basic blocks, it 

reserve the stack frame and initialize its memory chunk for the 

parameter with the concrete value of p. The location of the 

memory chunk is determined by the index of the passed 

parameter. The instructions use arg_0 to reference the first 

parameter. Based on the techniques mentioned, it emulates the 

context sensitive slices to compute the possible values of the 

target component specification. For example, it can compute the 

value, “WINSPOOL. DRV”, of the target dllname by emulating 

the backward slice. 

3.4 Checking Phase 
In this phase, it evaluates the safety of the target component 

specifications obtained from the extraction phase. To this end, 

for each specification, it check whether or not the safety 

conditions in are satisfied. Specifically, it consider that a 

specification can lead to unsafe loading if the OS cannot resolve 

the target component in the directory that is first searched. Note 

that the first directory searched by the OS for the resolution is 

known. 

4.  CONCLUSION 

In this, it is presented as practical static binary analysis to detect 

unsafe loadings. The core of this analysis is a technique to 

precisely and scalable extract which components are loaded at a 

particular loading call site. They have introduced context- 

sensitive emulation, which combines incremental and modular 

slice construction with the emulation of context-sensitive slices. 

This evaluation on nine popular Windows application 

demonstrates the effectiveness of our technique. Because of its 

good scalability, precision, and coverage, our technique serves 

as an effective complement to dynamic detection. For future 

work, we would like to consider interesting directions. First, 

because unsafe loading is a general concern and also relevant 

for other operating systems, it plan to extend our technique and 

analyze unsafe component loadings on Unix-like systems. 
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