
International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

5

Static Detection of Unsafe Component Loadings on

Windows and Linux: A Survey

Sneha D. Patel
PG Student

Department of Computer Engineering, NMU
SES’s R. C. Patel Institute of Technology, Shirpur

Tareek M. Pattewar
Assist. Proffesor

Department of Information Technology, NMU
SES’s R. C. Patel Institute of Technology, Shirpur

ABSTRACT
Dynamic loading is an essential mechanism for computer

software development. It enables an program, the versatility to

use its exported functionalities and energetically link a part.

Dynamic loading is really a system by which a pc program are

able to at run-time, fill a collection into memory, recall the

handles of parameters and functions included in the library, run

those functions or get those variables, and sell the library from

recollection. This function presents a signal coverage approach

called motionless binary analysis to assess and discover

mistakes and weaknesses about the element. Thus the

dangerous and exposed parts may be recognized previous to

loading energetically into applications. This paper presents the

first static binary analysis aiming at detecting all possible

loading-related errors. The key challenge is how to scalably and

precisely compute what components may be loaded at relevant

program locations. Our main insight is that this information is

often determined locally from the component loading call sites.

In particular, for a given call site, we first compute its context-

sensitive executable slices, one for each Execution context.

Then we emulate the slices to obtain the set of components

possibly loaded at call site. For evaluation, we implemented our

technique to detect vulnerable and unsafe component loadings

in popular software on Microsoft Windows and Linux.

General Terms
Dynamic loading, Unsafe Component Loading, Vulnerability

Keywords
Software Engineering, Component Testing, Regression Testing,

Code coverage

1. INTRODUCTION
Dynamic element load is utilized in software development to

develop and adaptable software. Java run-time environment

(JRE) generally supplies applicable method calls to fill dynamic

parts. The inherent JRE solves and lots the given element, once

a launching system phone is invoked. Component resolution is

dependent upon the way the part is specified moreover through

the plan part’s full path or its file-name. Given a complete

route, the JAVA Runtime Environment just uses it for quality.

Which series of sites to search is managed at run-time by the

special directory explore order at that instance of program call

invocation. The versatility of the typical fashion of element

loading does include a cost an inherent security apprehension is

introduced by it.

For runtime security and protection, and request should just fill

its planned parts. Nevertheless, as a constituent is resolved by

the JRE only during its name, programming errors may cause

the launching of an accidental component with exactly the same

name. An approach was suggested to find dangerous part

loadings. It then performs a evaluation to discover two kinds of

dangerous loadings: resolution and resolution failure hijacking.

When the target part isn’t discovered, though a resolution

hijacking occurs when other sites are looked before the listing

where the part lives a quality failure occurs. We illustrate this

dilemma using delayed loading, an optimization to delay the

loading of rarely used parts until their very first use. Since it is

hard to activate all deferred loadings at runtime delayed loading

is tough for dynamic detection. Within this, document the very

first static analysis to find dangerous loadings from program

binaries.

Two items of essential advice are needed

1) All parts which may be packed at every loading call

website, and

2) The security of each potential loading. From these

findings,

We style a two period analysis: checking and extraction. The

removal stage is demand driven, working backwards from every

loading call website to calculate the group of potential loadings;

the stage establishes the security of the loading by analyzing the

applicable directory explore order in the identify site.

1.1 Context-Sensitive Emulation
We introduce context sensitive emulation, a new blend of

emulation and segmenting, to comprehend the diffident

computation of limitation values throughout the removal period.

For a specified call site, we remove its context susceptible

executable blocks in respect to its guidelines, one for every

execution context. We subsequently copy the blocks to

calculate the restriction values.

1.1.1 Incremental and Modular Segmenting
One specialized hurdle is the way to calculate diffident blocks

scalable. Normal segmenting approaches are centered on

processing a program’s entire system dependency graph (SDG)

a priori and are consequently restricted in scalability. Because

we just have to think about loading call websites as well as the

execution pathways to calculate the limitation values to the

describes are generally fairly short, only a little part of the

entire SDG is applicable for our evaluation. This inspires the

utilization of an step-by-step and modular sectioning algorithm

incremental because we construct the blocks lazily when

needed; modular because when we see a perform call foo(x,y),

author use an conditional outline about what addiction foo’s

parameters and revisit value have in examining the caller.

1.1.2 Emulation of Context-sensitive Slice
Once author calculated the piece s regarding a specified loading

call website, we must calculate values for the important

guidelines. One organic remedy would be to execute

conventional representative analysis on the piece to calculate

the ideals. The chief problem for this strategy is the issue in

reasoning symbolically about method calls since the applicable

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

6

parameters frequently rely on complicated, low level system

calls. [2]

2. RELATED WORK
Static Detection of Unsafe Component Loadings on Windows

and Linux technique performs static analysis of binaries.

Compared to the analysis of source code, much less work

exists. In this setting,

Value Set Analysis (VSA) is perhaps the most closely related to

ours. It combines numeric and pointer analyses to compute an

over approximation of numerical values of program

variables.[4] [5]

Compared to VSA, our technique focuses on the computation of

string variables. It is also demand driven and uses context-

sensitive emulation to scale to real-world large applications. As

we discussed earlier, instead of emulation, symbolic analysis

could be used to compute concrete values of the program

variables. However, symbolic techniques generally suffer from

poor scalability, and more importantly, it is not practical to

symbolically reason about system calls, which are often very

complex. Our novel use of context sensitive emulation provides

a practical solution for computing the values of program

variables. [6] Starting with Weisers seminal work [10],

program slicing has been extensively studied. Our work is

related to the large body of work on static slicing, in particular

the SDG-based techniques. Standard SDG-based static slicing

techniques build the complete SDGs beforehand. In contrast,

we build control- and data-flow dependence information in a

demand-driven manner, starting from the given slicing criteria.

Our slicing technique is also modular because we model each

call site using its callees inferred summary that abstracts away

the internal dependencies of the callee. In particular, we treat a

call as a non-branching instruction and approximate its

dependencies with the callees summary information. This

optimization allows us to abstract away detailed data flow

dependencies of a function using its corresponding call

instruction.

We make an effective trade-off between precision and

scalability. As shown by our evaluation results, function

prototype information can be efficiently computed and yield

precise results for our setting.

Our slicing algorithm is demand-driven, and is thus also related

to demand-driven dataflow analyses which have been proposed

to improve analysis performance when complete dataflow facts

are not needed. These approaches are similar to ours in that they

also leverage caller-callee relationship to rule out infeasible

dataflow paths. The main difference is that we use a simple

prototype analysis to construct concise function summaries

instead of directly traversing the functions intra procedural

dependence graphs, i.e., their PDGs. Another difference is that

we generate context-sensitive executable program slices for

emulation to avoid the difficulty in reasoning about system

calls.

3. METHODOLOGY
The proposed system is Static Detection of Unsafe Component

Loadings. This technique statically detects unsafe component

loadings to achieve high coverage. It first extracts the target

component specifications from possible code region executed at

runtime and check their safety.

3.1 Extraction Phase
A component can load other components at load time or

runtime. This loading introduces load time and runtime

dependencies among components. Based on these

dependencies, it determines components that can be loaded

during program execution. Specifically, it recursively resolve

the components from the program file based on their load time

and runtime dependencies. To resolve the dependent

components, the corresponding target specifications, i.e., full

path or file name, are needed. For load time dependencies,

compilers specify the dependent components in the executable

format. For example, the names of the load time dependent

components are stored in IMAGE_IMPORT_DIRECTORY

with the PE format. To obtain the specifications of the runtime

dependent components, it computes values of parameters to

component-loading system calls.. As an example of recursive

resolution, it search the components that can be loaded by

Program in Figure 1. Suppose that components E and F, which

have no load time and runtime dependent component,

implement the rand and Load Library functions, respectively.

The key step of the extraction phase is to obtain the target

specification for component loading in a binary. The

specification of a load time dependent component can be easily

obtained from the binary file format. However, extracting the

specification of a runtime dependent component is nontrivial

because it often requires to locate the code relevant to the value

of the specification and analyze its execution. For example, the

target component specification for system libraries under

Microsoft Windows is sometimes determined by concatenating

the system directory path and the file name. To obtain the

specification, it is necessary to extract the related code and

analyze its execution result.

3.1.1 Searching Program Variable for Specification

In binary code, invoking the component-loading system calls

often follows the stdcall calling convention1. When parameters

are passed to the call site, they are pushed from right to left. For

example, Figure 2(a) represents the binary code corresponding

to LoadLibraryExA(0x7D61AC5C, EAX, EAX). Based on the

parameter passing mechanism, it locates the program variable,

e.g., a register or a memory chunk, which stores the target

specification. In particular, it detect the call site for component

loading via static taint data analysis and then extract the input

operands of the instructions passing the parameter to the call

site.

3.1.2 Locating Component-loading Call Sites
In this phase, it aim at finding the call site for component

loading in a binary. In this observation the software stores the

address of the system call implementation in its memory space

and utilizes it in the call sites for component loading at runtime.

Figure 2 shows the two types of component-loading call sites in

a binary, which are memory indirect and register indirect. While

the memory indirect type stores address in a register, e.g., line 4

in Figure 2(a) and line 3 in Figure 2(b).

Figure 1 Detection framework

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

7

Figure 2 Two types of component-loading call sites.

Based on this observation, it locates the component-loading call

sites through static taint data analysis. In particular, it define the

taint sources and the taint sinks as follows

1. Taint source An instruction that references a memory

chunk that stores the address of the component-loading

system call.

2. Taint sink A branch instruction, e.g., call, whose target

address is tainted.

It considers the taint sink instructions as the call sites. It

presents examples on how to detect call sites. In Figure 2(a),

line 4 serves as not only the taint source but also the taint sink,

i.e., the component-loading call site, because it is the branch

instruction, accessing a memory chunk that stores the address of

LoadLibraryExA. For Figure 2(b), line 1 is the taint source,

accessing the address of the LoadLibraryA, and line 3 is the

taint sink, because it is the call instruction whose target is the

address, stored in EBX.

3.1.2 Extracting Parameter Variables

Once a call site is located, it extracts the program variables for

the target specification from the predefined number of the

instructions to pass the parameters to the call site. In particular,

it detects the instructions, e.g., PUSH, to initialize the top of

stack backward from the call site. Because the number of

parameters of a component-loading system call is known, it can

precisely extract all the variables to define this target

specification. For example, the call site in Figure 2(a) invokes

LoadLibraryExA, and it has three parameters, i.e.,

0x7D61AC5C, EAX, and EAX, via the instructions on lines 13.

3.2 Context-sensitive Emulation
In this phase, it compute the concrete values of the parameter

variables extracted. The computation may seem trivial at first.

For example, the memory chunk at 0x7D61AC5C in Figure

2(a) contains the target specification, “xpsp2res.dll”. However,

the computation is in fact challenging because it is necessary to

extract the code to compute the variable, requiring

interprocedural data flow analyses. To address this problem, it

introduce context-sensitive emulation, which novely combines

backward slicing and emulation. Based on this combination, it

can scalably and precisely compute the values of the variables

of interest.

3.2.1 Slicing
Program slicing is a method for automatically decomposing

programs by analyzing their data flow and control flow.

Starting from a subset of a program’s behavior, slicing reduces

that program to a minimal form which still produces that

behavior. The reduced program, is called as ”slice,”.

3.2.2 Backward Slicing

This phase performs the interprocedural backward slicing w.r.t.

the parameter variable, extracting the instructions to compute

the variable. This problem has been extensively studied, and

many slicing algorithms have been proposed. These algorithms

commonly solve the graph reachability problem over a System

Dependence Graph (SDG), a set of Program Dependence

Graphs (PDGs) and edges capturing data flow dependencies

among them. In particular, a SDG is constructed beforehand

based on an exhaustive data flow analysis over the subject

program. Then, the slicing outcome is determined by traversing

the SDG from the given slicing criteria. Although the approach

has been widely used, it is not appropriate for this problem

setting. Thus, exhaustive data flow analysis is not be necessary

to extract backward slices w.r.t. the given slicing criteria. Figure

3 shows the examples of the unnecessary data flow analysis

during intraprocedural and interprocedural backward slicing.

Figure 3(a) shows an example of the CFG for constructing the

PDG. Suppose that it performs intraprocedural backward slicing

w.r.t. the instruction D. In this case, the bold instructions often

only affect the instruction D in terms of control flow. Suppose

that Figure 3(b) depicts the SDG for the interprocedural

backward slicing. If the instructions of the bold PDGs for bar1

and bar2 are only traversed during slicing, is it not necessary to

perform data flow analysis on the instructions of the grayed

PDGs. [8]

3.2.3 Intraprocedural backward Slicing
For each intraprocedural backward slicing, it analyzes only the

data flow dependencies among the instructions that are control

dependent on the given slicing criteria. Suppose that it perform

intraprocedural backward slicing w.r.t. the instruction D in the

CFG shown in Figure 3(a). If this construct the PDG based on

the CFG, the data flow dependencies among all the instructions

in the CFG are analyzed. However, the grayed instructions do

not affect the instruction D.in terms of control flow

dependencies. By constructing the PDG based on the subgraph

composed of the bold instructions, i.e., the predecessor sub

graph w.r.t. the instruction D, it can avoid some unnecessary

data flow analysis when performing slicing.

3.2.4 Interprocedural backward Slicing
As aforementioned, an exhaustive SDG construction often leads

to significant amount of the unnecessary data flow analysis for

interprocedural backward slicing. To address this problem, it

constructs the interprocedural backward slices incrementally

combining the intraprocedural backward slices whose slicing

criteria are chosen in a demand-driven manner. There are two

key challenges for this demand-driven combination.

Figure 3 Unnecessary data flow analysis

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

8

First, it is necessary to determine the new slicing criteria if the

interprocedural backward slice consists of multiple

intraprocedural backward slices. For example, it construct the

interprocedural backward slice in Figure 3(b) by combining the

two intra-backward slices extracted from functions bar1 and

bar2. In this case, it needs to determine the new slicing criteria

in the bar1 function. Second, the composed interprocedural

backward slice needs to be easily handled for the later

emulation phase. The basic idea for building the new slicing

criteria is that the interprocedural data flow dependencies are

captured by parameter passing. In SDG-based slicing, the PDGs

are connected using the edges that model parameter passing,

which are traversed to analyze the dependencies. To locate this

parameter variable, it use caller-callee relationship and the

callees function prototype. In particular, it detects the call site

for function f and analyze fs function prototype to obtain the

index of the parameter corresponding to p. For example, the

intraprocedural backward slice w.r.t. the target_dllname in

Figure 1 uses the first parameter, i.e., pImgDelayDesc, of
delayLoadHelper2. As two call sites on lines 5 to 7 and lines 14

to 16 invoke_delayLoadHelper2, it choose their first parameter

variables, i.e., pDelayDesc1 on line 6 and pDelayDesc2 on line

15, as the new slicing criterion. Once the new slicing criterion is

determined, it constructs the interprocedural backward slice by

composing the intraprocedural backward slices and use the

composed slice in the emulation phase. One simple method for

composing the intraprocedural slices is to collect the

instructions of each intraprocedural backward slice. For

example, the interprocedural backward slice w.r.t. the target
dllname consists of the instructions of three intraprocedural

backward slices w.r.t. the slicing criteria, i.e., target_dllname,

pDelayDesc1, and pDelayDesc2. [7]

3.2.5 Function Prototype Analysis
The backward slicing phase relies on function prototypes, but

such information is often unavailable in binary code. This

solution to the problem is as follows. For a given function f, its

parameters are stored in fixed locations during fs execution.

Thus, it infers its prototype by analyzing how the instructions of

the function access the memory chunks for the parameters, i.e.,

read or write. Figure 4 shows an example of our proposed

prototype analysis for the foo function. Suppose that Figures

4(a) and 4(b) show part of foo and the stack layout at the

beginning of the functions execution, respectively. To improve

the precision of our prototype inference, it uses the following

effective heuristic. If the effective address of the memory

chunk, obtained by the lea instruction, is passed to the function,

it considers it as the in out parameter. Although this heuristics

may increase the size of the computed slice, it is sufficient to

compute possible values of the slicing criteria via emulation. [9]

[1] [3]

Figure 4 Function prototype analysis

Figure 5 Data-flow dependencies among basic blocks

3.3 Emulation Phase
In this phase, it computes the possible values of the target

component specification by emulating its corresponding

context-sensitive slices. There are two challenges for slice

emulation. The first challenge is how to schedule the

instructions because it do not know their runtime execution

sequence. In this case, before emulating fs basic blocks, it

reserve the stack frame and initialize its memory chunk for the

parameter with the concrete value of p. The location of the

memory chunk is determined by the index of the passed

parameter. The instructions use arg_0 to reference the first

parameter. Based on the techniques mentioned, it emulates the

context sensitive slices to compute the possible values of the

target component specification. For example, it can compute the

value, “WINSPOOL. DRV”, of the target dllname by emulating

the backward slice.

3.4 Checking Phase
In this phase, it evaluates the safety of the target component

specifications obtained from the extraction phase. To this end,

for each specification, it check whether or not the safety

conditions in are satisfied. Specifically, it consider that a

specification can lead to unsafe loading if the OS cannot resolve

the target component in the directory that is first searched. Note

that the first directory searched by the OS for the resolution is

known.

4. CONCLUSION

In this, it is presented as practical static binary analysis to detect

unsafe loadings. The core of this analysis is a technique to

precisely and scalable extract which components are loaded at a

particular loading call site. They have introduced context-

sensitive emulation, which combines incremental and modular

slice construction with the emulation of context-sensitive slices.

This evaluation on nine popular Windows application

demonstrates the effectiveness of our technique. Because of its

good scalability, precision, and coverage, our technique serves

as an effective complement to dynamic detection. For future

work, we would like to consider interesting directions. First,

because unsafe loading is a general concern and also relevant

for other operating systems, it plan to extend our technique and

analyze unsafe component loadings on Unix-like systems.

5. ACKNOWLEDGEMENT
We are thankful to all the personalities who helped us

throughout this survey.

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

9

6. REFERENCES
[1] Lal A. Burton E. Driscoll M. Elder T. Andersen A. V.

Thakur, J. Lim and T. W. Reps. Directed proof

generation for machine code. 2010.

[2] G. Lehotai Akos Kiss, J. Jasz and T. Gyimothy.

Interprocedural static slicing of binary executables.

SCAM, 1:68–79,March 2003.

[3] X. Zhang Z. Wu B. Xu, J. Qian and L. Chen. A brief

survey of program slicing. 2005.

[4] G. Balakrishnan and T. Reps. Analyzing memory

accesses in x86 executables. 2004.

[5] D. Binkley. Precise executable interprocedural slices.

ACM Lett.Program. Lang, 2003.

[6] K. J. Ottenstein J. Ferrante and J. D.Warren. The

program dependence graph and its use in optimization.

ACM Trans, 2:23–45, June 1987

[7] T. Reps and G. Balakrishnan. Improved memory-access

analysis for x86 executables. 2:376–390, 2008

[8] T. Reps S. Horwitz and M. Sagiv. Demand

interprocedural dataflow analysis.

[9] J. Lim T. Reps, G. Balakrishnan and T. Teitelbaum. A

nextgeneration platform for analyzing executables.

2005.

[10] M. Weiser. Program slicing.

[11] A. V. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M.

Elder, T. Andersen, and T. W. Reps. Directed proof

generation for machine code. In Proc. CAV, 2010.

[12] T. Reps and G. Balakrishnan. Improved memory-

access analysis for x86 executables. In Proc. CC, 2008.

[13] J. Lim, A. Lal, and T. Reps. Symbolic analysis via

semantic reinterpretation. In Proc. SPIN, 2009.

