
International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

1

A Survey on Software Birthmark based Theft Detection

of JavaScript Programs using Agglomerative Clustering

and Frequent Subgraph Mining

Swati J. Patel
PG Student

Department of Computer Engineering
SES’s R. C. Patel Institute of Technology, Shirpur

Tareek M. Pattewar
Assistant Professor

Department of Information Technology
SES’s R. C. Patel Institute of Technology, Shirpur

ABSTRACT

JavaScript programs are always under the threat of being

copied. Most browsers provide the way to access the code of

JavaScript program so it is easily obtainable. Hence it is

mandatory to protect the software. Watermarking and code

obfuscation are the techniques used to safeguard the software.

A Watermark cannot completely protect the code by getting

stolen because a potential attacker can easily remove it. Code

obfuscation cannot avoid code from being stolen; it only

prevents others by understanding the logic of the program. A

birthmark of the JavaScript program is the unique

characteristics that it possesses. Heap Graph is used to depict

the behaviour of a program as how it calls other objects so as

to fulfil the desired functionality. It requires efficient merging

of heap graphs generated at various points of time. For that

agglomerative clustering can be used. Frequent Subgraph

Mining is used to find the subgraph that represents the unique

behaviour of the program. At the end, the subgraph of genuine

program is searched in the graph of the suspected program.

Our aim is to survey about the system that can protect the

JavaScript programs from being stolen.

General Terms

Heap graphs, JavaScript programs

Keywords

Dynamic birthmark, agglomerative clustering, frequent

subgraph mining, theft identification

1. INTRODUCTION
According to Ninth Annual BSA Global Software 2011 Piracy

Study, 57% computer users admit that they use pirated

software. The global software piracy rate hovered up to 42%

in the year2011. The source code of JavaScript programs can

be easily obtained since most browser provide very easy

method to obtain the source code of web pages and hence it is

very necessary for the industry to safeguard the intellectual

property rights of the JavaScript developers. Software

safeguard is an important topic for computer scientists. There

are several techniques for preventing software theft but out of

them most widely used are watermarking and code

obfuscation that makes the source code of a program difficult

to understand by the humans and proves the ownership of the

program. Software watermark is the approach to detect

software piracy, in which an extra code known as watermark

is included as a part of a program to prove the ownership of

the program [5], [10].Watermarking embeds the secret

message into the cover image. But watermark can easily be

defaced by the determined attacker. It requires the owner of

the program to take extra action prior to release the software.

Hence most JavaScript developers use code obfuscation

before releasing their software. Code obfuscation is the

practice of making code unintelligible and hard to understand.

Code obfuscation is the process of application of

transformations to the code, in such a way that the physical

appearance of the code changes, while black-box

specifications of the program are preserved. Hence code

obfuscation is known as the semantic-preserving process of

transformation of code in such a manner that the structure of

the program changes while it’s meaning and the functionality

doesn’t change [4]. Code obfuscation only prevents others to

understand the logic of the source code but does not protect

them from being copied.

As both code obfuscation and watermarking are good but not

enough techniques to prevent theft of programs a relatively

new and less popular technique is introduced and that is

software birthmark. Software birthmark does not require any

code being added to the software. It depends only on the

internal behavior of a program to determine the similarity

between two programs. According to Wang et al. [3], a

birthmark is a unique characteristic a program possesses that

can be used to identify the program. To detect software theft,

(1) The birthmark of the program under protection (the

plaintiff program) extracted.

(2) The suspected program is searched against the birthmark.

(3) If the birthmark of plaintiff program is found in the code

of suspected one, then it can be claimed as the suspected

program or part of it is a copy of the plaintiff program.

1.1 Taxonomy of Software Birthmarks

There are two categories of software birthmarks,

—Static birthmarks: These are extracted from the syntactic

structure of a program [1].

Definition 1: (Static Birthmarks) [11]

Let p, q be two components of a program or program itself.

Let f be method for extracting the set of characteristics from a

program. Then f(p) is a static birthmark of p if:

1. f(p) is obtainable from p itself.

2. q is copy of p) f(p) = f(q):

—Dynamic birthmarks: These are extracted from the dynamic

behavior of a program at run-time [3]. It is an abstraction of

run-time behavior of the program.

Definition 2: (Dynamic Birthmarks) [12]

Let p,q be two components of a program or program itself.

Let I be the input to p and q. Let f(p,I) the set of

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

2

characteristics extracted from a program p with input I. Then

f(p,I) is a dynamic birthmark of p if:

1. f(p,I) is obtainable from p itself when executing p with

input I.

2. q is copy of p) f(p,I) = f(q,I):

As semantics-preserving transformations like code

obfuscation only modify the syntactic structure of a program

but not its dynamic behavior, dynamic birthmarks are more

robust against them.

2. LITERATURE SURVEY
The first dynamic birthmark was proposed by Myles et al. To

identify the program, they explored the complete control flow

trace of a program execution. They proved that their technique

can resist to any kind of attacks by code obfuscation. There is

a drawback that their work is sensitive to various loop

transformations. Besides, the whole program path traces are

large and hence it is not feasible to scale this technique further

[7].

Tamada et al. proposed two kinds of dynamic software

birthmarks based on API calls. Their approach was based on

the capacity to understand the hidden truths that it was

difficult for opponent to alter the API calls with other

equivalent ones and that the compiler did not make the

effective use of the APIs themselves. Run time information of

API calls was used as a strong signature of the program. The

dynamic birthmark was extracted by looking at the execution

order and the frequency distribution of API calls. These

extracted dynamic birthmarks could differentiate personally

developed same-purpose applications and could resist to

different compiler options. This promising result led to

subsequent researches on dynamic birthmarks based on API

calls [8].

Schuler et al. proposed a dynamic birthmark for Java that

where a program uses objects provided by the Java Standard

API. The short sequences of method calls received by distinct

objects from Java Platform Standard API were observed.

Then the call traces were decomposed into a set of short call

sequences received by API objects. The proposed dynamic

birthmark system could accurately identify programs that

were similar to each other and distinguish separate programs.

In addition, they showed that all birthmarks of obfuscated

programs were identical to that of the original program [13].

Wang et al. put forward SCGG birthmark which is a software

birthmark based on dependence graph. An SCDG is a graph

representation of the dynamic behaviour of a program, where

each vertex represents system call and edges denote data and

control dependences between system calls. The evaluation of

their system showed that it was robust against attacks based

on different compiler options, different compilers and

different obfuscation techniques. It is the first system that can

detect software component theft where only small piece of

code is stolen [13].

Chan et al. proposed the first dynamic birthmark based on the

runtime heap for JavaScript programs. It is in the form of an

object reference tree. A tree comparison algorithm was used

to compare two birthmarks and gave a similarity score

between two birthmarks. However, due to efficiency problem

of the tree comparison algorithm, the depth of the tree was

limited to 3 in order to make the running time of the algorithm

practical. On the other hand, new birthmark is an object graph

and graph monomorphism was used to search for the

birthmark in the heap graph of the suspected program.

Although they limited the size of the heap graphs in the

system, the limitation is less restrictive. It is because the root

node of the heap graph is actually at level 2 of the whole

object reference graph with reference to the virtual node. Even

though the size of the heap graph was limited, the current

birthmark captured far more information than the previous

system [9].

Later, they proposed another heap based birthmark system.

This time, the birthmark system was for Java programs. They

used a different algorithm named as graph isomorphism, for

birthmark detection. As graph isomorphism is too restrictive

and makes the birthmark system vulnerable to reference

injection attack. On the contrary, the current birthmark system

uses graph monomorphism for birthmark detection which

makes this system robust against such attack [1].

3. METHODOLOGY
Fig. 1 shows the overview of birthmark system. It outlines the

processes that the plaintiff program and the suspected

program undergo[12].

3.1JavaScript Heap Profiler
Being an interpreted language, JavaScript allows for the

creation of objects at any time. On the other head, one of the

design elements of the V8 JavaScript engine is efficient

garbage collection. Hence the JavaScript heap keeps changing

due to object creations and garbage collections. To make

entire use of the behaviour exhibited by the objects in the

heap, each and every object is captured that appears in the

heap. In order to achieve this, the objects that disappear from

the heap due to garbage collection must be ignored.

Therefore, the JavaScript heap profiler takes multiple dumps

of the heap and merges them together later on. After kicking

off the JavaScript program, the browser keeps dumping the

JavaScript heap in every2 seconds. Since taking a snapshot

will actually trigger a garbage collection, the heap of the

browser is made larger to delay garbage collection and dump

the heap more frequently hoping that every object is captured

before it becomes garbage.

3.2 Graph Generator and Filter
Since Chromium browser is used to dump out the JavaScript

heap in prototype system, the JavaScript engine that powers

the Chromium browser is V8 JavaScript Engine. The heap

dumps generated by the modified Google Chromium browser

are in the form of object reference trees. It is similar to the

object reference graph in which the nodes represent the

objects while the edges represent the references between

them. The only difference is that objects are duplicated to

remove cycles in the graph. Although this will increase the

size of the data structure, a tree structure allows us to control

the number of objects to be included for comparison as we

can easily do so by limiting the depth of the tree to be

explored [2].

For each snapshot taken using the Chromium browser, a death

first search traversal is performed and the heap graph is

printed out with nodes and edges that pass a filter. A filter is

described in details as follows. Objects in the V8 JavaScript

heap are divided into six categories, INTERNAL, ARRAY,

STRING, OBJECT, CODE, CLOSURE. Objects that belong

to INTERNAL, ARRAY, STRING, and CODE categories are

not included in heap graphs.

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

3

Fig. 1. System Overview

The reasons behind this design decision are as follows:

INTERNAL objects are virtual objects for housekeeping

purpose and are not accessible from the program code. For

ARRAY objects, they represent an array of elements objects.

However, arrays are actually represented by an object of the

type OBJECT with name Array and the references from the

array are coming out from that object. Therefore, ARRAY

objects are not included. For STRING and CODE objects,

there is no reference coming out from them. Therefore, they

are not included as well. To sum up only OBJECT and

CLOSURE objects are used in heap graph. They are

JavaScript objects and function closures respectively.

References between objects in the V8 JavaScript heap are

divided into 4 categories, CONTEXT VARIABLE,

ELEMENT, and PROPERTY, INTERNAL. References that

belong to CONTEXT_VARIABLE and INTERNAL

categories are not included in the heap graph. The reasons

behind this design decision are as follows: CONTEXT

VARIABLE is a variable in a function context, accessible by

its name from inside a function closure. Therefore, it is not

accessible by objects outside that function and it is

automatically created by V8 for housekeeping purpose.

INTERNAL references are properties added by the JavaScript

virtual machine. They are not accessible from JavaScript

code. Therefore, only ELEMENT and PROPERTY references

are included in the heap graph. ELEMENT references are

regular properties with numeric indices, accessed via []

(brackets) notation and PROPERTY references are regular

properties with names, accessed via the ‘.’ (dot) operator, or

via [] (brackets) notation.

There are some objects created by the JavaScript engine that

exist not just for one program. For example, the HTML

Document object can be found in the heap graphs of all the

JavaScript programs. Therefore, it is needed to filter such

objects out as they compromise the uniqueness of the heap

graph. Basically, the filtered objects include objects created to

represent the DOM tree and function closure objects for

JavaScript built-in functions. The output of the graph

generator and filter is a set of filtered heap graphs captured at

different points of time.

3.3 Graph Merger
There is a unique ID assigned to every object in the JavaScript

heap by the V8 JavaScript engine. Moreover, the ID of an

object does not change across multiple dumps and therefore,

can be used to identify the object. The Graph Generator and

Filter also annotates each node in the heap graph with its

object ID. Therefore, it is easy to identify whether or not two

nodes in two heap graphs refer to the same object. The graph

merger takes multiple heap graphs as input and outputs a

superimposition of them (one single graph) that includes all

the nodes and edges appearing in the input heap graphs.

3.3.1 Agglomerative Clustering

Agglomerative Clustering is a subtype of Hierarchical

Clustering. Agglomerative hierarchical clustering begins with

every case being a cluster unto itself. At successive steps,

similar clusters are merged. The algorithm ends with

everybody in one cluster. In agglomerative clustering, once a

cluster is formed, it cannot be split; it can only be combined

with other clusters. Agglomerative clustering does not let

cases separate from clusters that they have joined. An

approach that roots in the clustering of point sets is to begin

grouping the vertices into clusters by forming a two-vertex

cluster from the two most similar vertices. The intuition is that

at least the two closest points should be placed in the same

cluster with each other. Such merging then continues until

only a desired number of clusters remains or another stopping

condition is met. At each iteration, one picks the two clusters

(singletons or larger) that have the highest similarity value to

be merged. This approach is generally known as the pair wise

nearest neighbours method [6].

3.4 Subgraph Selector
After going through the above steps, the resulting heap graph

is one that contains custom objects only and can be used to

identify the JavaScript program. However, it is impossible to

use the entire graph as the birthmark of the program since the

graph is too large for the subgraph monomorphism tool such

as VF Lib. In fact, the subgraph monomorphism problem

itself is known to be NP complete. The graph, which can

comprise hundreds of nodes, is too large for the algorithm and

may lead to very long execution time.

3.4.1 Frequent Subgraph Mining
 Frequent Subgraph Mining (FSM) is the essence of graph

mining. Frequent subgraph mining can be used to get the

frequent subgraph that appears in all the heap graphs extracted

from the program. This can make the birthmark more

representative of the program. However, the running time of

frequent subgraph mining on large graphs is slow and there

should be some performance tuning in order for it to be

practical. The objective of FSM is to extract all the frequent

subgraphs. The straightforward idea behind FSM is to grow

candidate subgraphs, in either a breadth first or depth first

manner (candidate generation),and then determine if the

identified candidate subgraphs occur frequently enough in the

graph data set for them to be considered interesting(support

counting). The two main research issues in FSM are thus how

to efficiently and effectively.

(1) Generate the candidate frequent subgraphs.

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Computer Technology (NCETCT-2014)

4

(2) Determine the frequency of occurrence of the generated

subgraphs. Effective candidate subgraph generation requires

that the generation of duplicate or superfluous candidates is

avoided [9].

3.5 Detector
The detector takes the subgraph from the plaintiff program

and the entire heap graph of the suspected program as inputs

and determines whether the selected subgraph of the plaintiff

program can be found in the heap graph of the suspected

program. Similar to what is done by the subgraph selector; it

takes subgraphs of the objects under the Window objects from

the suspected program and uses subgraph monomorphism to

check whether the subgraph of the plaintiff program can be

found in them. Once there is a match found, the detector

raises an alert and reports where the match is found.

4. CONCLUSION
Software Birthmark system generates Heap Graph of the

system which is treated as the Birthmark to find similarities

between two similarly functioning applications and

distinguish distinct applications. This system can resist to

reference injection attack due using of subgraph

monomorphism while searching the heap graph of plaintiff

program in the heap graph of suspected program.

5. ACKNOWLEDGEMENT
We are grateful to those who have helped us in this survey.

6. REFERENCES
[1] P. Chan, L. Hui, and S. Yiu. Dynamic software

birthmark for java based on heap memory analysis. In

Springer-Verlag, editor, IFIP TC 6/TC 11 Int. Conf.

Commun. and Multimedia Security(CMS11), vol. 12,

pages 94–106, Berlin, Heidelberg, 2011.

[2] P. Chan, L.Hui, and S.Yiu. Jsbirth: Dynamic JavaScript

birthmark based on the run-time heap. In 2011 IEEE

35th Annual Computer Software and Application

Conference (COMPSAC),pages 407–412, July 2011.

[3] C. Collberg, E. Carter, S. Debray, A. Huntwork, J.

Kececioglu,C. Linn, and M. Stepp. Dynamic path-based

software watermarking. In ACM, editor, Programming

Language Design and Implementation (PLDI 04), pages

107–118, New York, 2004.

[4] C. Collberg, C. Thomborson, and D. Low. Taxonomy of

obfuscating transformations. Technical Report 148,

University of Auckland, Auckland, New Zealand, 2003.

[5] Christian Collberg and Clark Thomborson. Software

watermarking: models and dynamic embeddings.

Technical report, Department of Computer Science,

University of Auckland, Private Bag 92091, Auckland,

New Zealand, 2003.

[6] Pasi Franti, Olli Virmajoki, and Ville Hautamaki. Fast

agglomerative clustering using a k-nearest neighbour

graph. In IEEE Transactions on Pattern Analysis AND

Machine Intelligence, number 11 in vol. 28, pages

1875–1881, November 2006.

[7] G.Myles and C. Collberg. Detecting software theft via

whole program path birthmarks. In Inf. Security 7th Int.

Conf. (ISC2004), pages 404–414, Palo Alto, CA,

September 2004.

[8] H.Tamada, K.Okamoto, and K.Matsumoto. Design and

evaluation of dynamic software birthmarks based on

API calls. Technical report, Graduate School of

Information Science, Nara Institute of Science and

Technology, 8916-5 Takayamacho, Ikoma-shi, Nara,

6300101 Japan, 2007.

[9] Michihiro Kuramochi and George Karypis. An efficient

algorithm for discovering frequent subgraphs. In IEEE

Transactions on Knowledge and Data Engineering,

number 9 in vol. 16,pages 1038–1051, September 2004.

[10] Akito Monden, Hajimu Lida, Ken ichi Matsumoto,

Katsuro Inoue, and Koji Torii. Watermarking java

programs. In International Symposium of Future

Software Technology, Nanjing, China, 1999.

[11] Ginger Myles and Christian Collberg. K-gram based

software birthmarks. In ACM, editor, Symposium on

Application Computing (SAC 05), pages 314–318,

2005.

[12] P.Chan, L.Hui, and S.Yiu. Heap graph based software

theft detection. IEEE Transaction On Information

Forensics and Security, pages 101–110, January 2013.

[13] D. Schuler, V. Dallmeier, and C. Lindig. A dynamic

birthmark for java. In IEEE/ACM International

Conference of Automated Software Engineering (ASE

07), volume 22, pages 274–283, New York, 2007.

