
International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

24

Competent solution for 2D-FFT and 2D-IFFT

Computation using FPGA IP-core

Shwetha*, R.Srikantaswamy, PhD
*M.Tech in Signal Processing,

#
Professor

(Dept of ECE)
Siddaganga Institute of Technology

Tumakuru

Jayanta Laha, Tanisha Bhatia, Arindam
Mal

Scientist, LEOS (ISRO)
Peenya 1

st
 stage, 1

st
 cross

Bengaluru

ABSTRACT
Image processing is a recent trend that is grabbing attention in

almost all areas like space, medical, defence, authentication

systems etc.,. Discrete Fourier Transforms is one of the most

used transforms in image processing. Discrete Fourier

Transform helps to transform the signal from spatial domain

to frequency domain which is often used for filtering,

correlation analysis and spectrum analysis. For DFT,

computational complexity is more. Among different

approaches to compute DFT, Fast Fourier Transform (FFT) is

the feasible method that reduces the computational

complexity. FFT can be implemented using DSP or FPGA.

This paper lays a path to implement image FFT on FPGA

using Intellectual Property (IP) core.

Keywords

2D-FFT and IFFT, IP cores, Radix-2

1. INTRODUCTION
Fundamental steps in image processing are image restoration,

compression, reconstruction, filtering and enhancement to

which Fourier Transform is the key tool. Discrete Fourier

Transform (DFT) is confined to, for consideration is on digital

images. Two-dimensional DFT is required for images. In

Digital Signal Processing and Communications, FFT is one of

the most utilized operations. And in modern communication

systems, FFT and IFFT are hard-core requirements. General

purpose DSP implementations fail to achieve the high

performance demands owing to clock rate and the number of

useful operations done per clock rather well suits for

extremely complex math intensive tasks, with conditional

processing. Due to inherent reprogram ability feature of

FPGAs, it outperforms over other approaches. Exploiting the

IP core in FPGA, 2D-DFT has been computed.

A high-level implementation of an efficient pipeline FFT

algorithm Radix-22 Single path Delay Feedback on Virtex-E

FPGAs that consumes minimum required amount of

multipliers and storage has been presented in paper [1].

Handel-C has been made used to realize 1D 1024-point FFT

with 16-bit input and Twiddle factors word length and

maximum frequency of 82 MHz Same code can be utilized for

synthesizes of higher power-of-4 complex-points FFT by

specifying input word length, output word length, Twiddle

factors word length and processing word length parameters as

design requires. The paper [2] proposes the design and

implementation of 32-point FFT processing block using

VHDL and Xilinx ISE Design Suite 12.1. One more

application where FFT/IFFT required is Orthogonal

Frequency Division Multiplexing (OFDM). In paper [3], [8],

an efficient VLSI implementation of FFT has been proposed

to improve performance of OFDM.

2. RADIX-2 DECIMATION-IN-TIME

FFT
If number N of data points is highly composite, which means

N can be factored as 𝑁 = 𝑟1𝑟2𝑟3 … . . 𝑟𝑣 where 𝑟𝑣 are prime,

then this approach stands efficient. The DFTs are of same size

r in case of same factors i.e.,𝑁 = 𝑟𝑣, where r is radix of the

FFT algorithm. The N point data sequence is partitioned into

two N/2-point data sequences 𝑓1(𝑛) and 𝑓2(𝑛), corresponding

to the even-numbered and odd-numbered samples of x (n)

respectively:

 (1)

Where

The resulting algorithm is known as decimation-in-time

algorithm, since 𝑓1(𝑛) and 𝑓2(𝑛) are obtained after decimating

x (n) by a factor of 2 [6], [7].

N-point DFT is given by:

 (2)

DFT expressed in terms of the DFTs of decimating sequences:

 (3)

FFT exploits symmetry and periodicity properties of phase

factors i.e., WN
k+N/2=-WN

k and WN
k+N=WN

k respectively.

Using direct DFT equation, the required number of complex

multiplications is N 2 and complex additions is N (N-1). Four

real multiplications and two real additions are required per

complex multiplication. Hence, total number of real

multiplications and real additions required are 4N 2 and N (4N-

2) respectively. In addition to these N complex input

sequences and N output values has to be stored. The number

of complex multiplications and complex additions will be

reduced to (N/2) log2N and N log2N respectively to compute

DFT with the use of Decimation-in-Time radix-2 FFT

algorithm.

A basic butterfly structure is as shown in Fig. 1

 G (i)

H (i)

𝑓1 𝑛 = 𝑥 2𝑛

 𝑓2 𝑛 = 𝑥 2𝑛 + 1 ,

𝑛 = 0,1,2, ……… .
𝑁

2
− 1

𝑋 𝑘 = 𝑥(𝑛)𝑊𝑁
𝑘𝑛𝑁−1

𝑛=0 𝑘 = 0,1, …… . 𝑁 − 1

 𝑋 𝑘 = 𝑥 𝑛 𝑊𝑁
𝑘𝑛

𝑛 𝑒𝑣𝑒𝑛

 + 𝑥 𝑛 𝑊𝑁
𝑘𝑛

𝑛 𝑜𝑑𝑑

= 𝑥(2𝑚)𝑊𝑁
2𝑚𝑘

 𝑁 2 −1

𝑚=0

+ 𝑥(2𝑚 + 1)𝑊𝑁
𝑘(2𝑚+1)

 𝑁 2 −1

𝑚=0

International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

25

Fig. 1 Basic butterfly computation in the Decimation-In-

Time FFT algorithm

3. FFT IMPLEMENTATION
There are various ways of implementing FFT [4-7], [10-12].

The method used is explained in detail.

3.1 IP core (CoreFFT)
Within the FPGA designs, IP core can be used as building

blocks. For growing Electronic Design Automation (EDA)

industry, IP cores are essential elements of design reuse.

CoreFFT is designed for high- reliability applications

requiring resistance to high temperature, firm- error immunity

and radiation tolerance, such as radar, ground and air

communications, acoustics, oil production and medical signal

processing. CoreFFT produces FPGA optimized modules that

perform FFTs to convert a signal from the time domain to the

frequency domain in order to show the spectral content of the

signal.

The Microsemi‟s fast Fourier transform (FFT) [1-4] core

implements the efficient Cooley-Tukey algorithm for

computing the discrete Fourier transform. CoreFFT is used in

a broad range of applications such as digital communications,

audio, measurements, control, and biomedical. CoreFFT

provides highly parameterizable, area-efficient, and high

performance MAC-based FFT. The core is available as a

register transfer level (RTL) code of the transform in Verilog

and VHDL languages. The core I/O ports are as shown in Fig.

2.

Fig. 2 Core I/O ports

Real and imaginary parts of input and output data with

„WIDTH‟-bits are represented in two‟s compliment from

each. FFT computation using CoreFFT follows frame wise

processing with size of frame „N‟. Two RAM modules

constitute in-place memory with the capacity of N /2 complex

data storage doubling the bandwidth. The same in-place

memory will be used for FFT computations and it begins the

operation automatically after loading one frame.

The process flow is sequential i.e., stage after stage in in-place

FFT computation. The number of stages required is log2N.

The data stored in memory is read in required order for FFT

by the help of read switch and read address generator. The

required twiddle factors for the butterfly are obtained by

twiddle Look Up Table (LUT). The in-place memory also

helps to store intermediate results with the help of write

switch.

After the completion of last stage, the transformed results will

be stored in the memory and outputs the transformed data

frame as one word at a time. The twiddle factors in LUT will

also be computed automatically by CoreFFT on power-on.

4. 2D-FFT AND 2D-IFFT

COMPUTATION
Good design techniques are endorsed inherently by using state

machine. It helps to prevent unnecessary development of bugs

and provides flexibility in programming by modularizing the

code into logical states. The most powerful aspect of state

machines is its ability to make a program retort intelligently to

a stimulus. Instead if looping is used to monitor repetitive

tasks, in each of the loops, the functions handling these tasks

must be distributed resulting in inefficiency and agitation to

understand. Hence, here state machine is used to perform

tasks in specified order. The State machine is shown in Fig. 4.

The states used here are START, INITIALISE, ROW_FFT,

COL_FFT_IM, COL_IFFT and ROW_IFFT.

4.1 2D-FFT
CoreFFT performs 1D-FFT frame-by-frame i.e., one row at a

time will be processed. The row FFT results computed in this

manner will be stored in SRAM row wise. After the

computation of last row FFT CoreFFT is again used to

compute column FFT by inputting the row results column

wise. The results of FFT will be stored back to same SRAM.

The step wise flow of computation of 2D-FFT is as shown in

Fig. 5.

Radix-2 FFT Functional Block Diagram (Minimal

Configuration)

In-place
Memory

RAM 0

RAM 1

R
e
a
d
 S

w
it

c
h

Twiddle
LUT

W
ri

te
 S

w
it

c
h

Radix-2

Butterfly

P

Q

Complex

Input Data

Complex

Output Data

CLK

CoreFFT

SCALE_EXP

PONG

DATAI_IM

DATAI_RE

DATAI_VALID

READ_OUTP

NGRST

DATAO_IM

DATAO_RE

DATAO_VALID

OUTP_READY

BUF_READY

CLK

𝑊𝑁
𝑖+𝑁 2 = −𝑊𝑁

𝑖

𝑊𝑁
𝑖

International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

26

Fig. 4 State Machine

Fig. 5 Computational flow of 2D-FFT

Fig. 6 Computational flow of 2D-IFFT

START

INITIALISE

ROW_FFT

COLUMN_FFT

COLUMN_IFFT

ROW_IFFT

row_ifft_en=‟1‟

row_ifft_en=‟0‟

srt=‟1‟

DATA_READY_s=‟1‟

row_fft_en=‟1‟

col_fft_en=‟1‟
col_ifft_en=‟1‟

Image File

1st row

2nd row

3rd row

Last row

1D-FFT

SRAM

1st row FFT

2nd row FFT

3rd row FFT

Last row FFT

1D-FFT C

C

SRAM

1st

C

o

l

u

m

n

F

F

T

2nd

C

o

l

u

m

n

F

F

T

3rd

C

o

l

u

m

n

F

F

T

Last

C

o

l

u

m

n

F

F

T

D

A

T

A

D

A

T

A

SRAM

1st

C

o

l

u

m

n

I

F

F

T

2nd

C

o

l

u

m

n

I

F

F

T

3rd

C

o

l

u

m

n

I

F

F

T

Last

C

o

l

u

m

n

I

F

F

T

1D-IFFT

1D-IFFT

C

C

Reconstructed

Image File

1st row IFFT

2nd row IFFT

3rd row IFFT

Last row IFFT

International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

27

4.2 2D-IFFT
The transformed data stored will be given as input in column

direction to CoreFFT with type specified as inverse. The 1D-

IFFT results will be stored back to SRAM column wise. Then

again the column IFFT results are fed as input to CoreFFT in

row direction. The final transformed data will be stored in

SRAM as well as written to a text file from which comparison

with input image file can be made for error computation.

5. TEST RESULTS
The images are taken from LRO open source. The input

image 1 and reconstructed image is as shown in Fig. 10 (a)

and (b) respectively. The error measures used are Maximum

Absolute Error (MAE), Relative Root Mean Square (RRMS)

and Root Mean Square (RMS) [9].

RMS is given by:

 (4)

RRMS is given by

 (5)

MAE is given by:

 (6)

Where, I ref(i, j) is input image

 I rec(i, j) is reconstructed image

 i, j are row and column values respectively

Fig. 7 shows the simulation results of the whole operation i.e.,

2D-FFT and 2D-IFFT. First row FFT input and output are

shown in Fig. 8. The results obtained are for the image of size

32x32. The 32-first row FFT values are shown in Fig. 9

The estimated RMS, RRMS and MAE values for images

shown in Fig. 10 and 11 are tabulated as in Table I.

Fig. 7 Simulation result of 2D-FFT and 2D-IFFT operation on FPGA

Fig. 8 Simulation result displaying first row FFT input and output set

Fig. 9 Simulation result displaying first row FFT output

MAE values are scaled up by respective scaling factor. When

scaling is removed, MAE values are 0.2109375 (scaling factor

used for computation is 128) and 0.05078125 (scaling factor

used for computation is 256) for image 10 and 0.1640625

(scaling factor used for computation is 128) and 0.046875

(scaling factor used for computation is 256) for image 11.

Along with data width, scaling factor which is used to retain

the accuracy will also affect the performance. Larger scaling

factor leads to more accurate results which in turn require

larger data width [9]. This is shown in Fig. 12 and 13 for both

the images shown in Fig.10 and 11 respectively. From the

graphs the inference drawn is, as scaling factor increases, the

errors will be reduced. The time taken for 16-bit data width is

less compared to 32- bit data width processing which is shown

in Fig. 14. Depending on the application, the selection of

scaling factor and data-width has to be done.

𝑅𝑀𝑆 =
 𝐼𝑟𝑒𝑓 (𝑖, 𝑗) − 𝐼𝑟𝑒𝑐 (𝑖, 𝑗) 2𝑁

𝑗=1
𝑁
𝑖=1

𝑁𝑋𝑁

𝑅𝑅𝑀𝑆 =
 𝐼𝑟𝑒𝑓 (𝑖, 𝑗) − 𝐼𝑟𝑒𝑐 (𝑖, 𝑗) 2𝑁

𝑗=1
𝑁
𝑖=1

 𝐼𝑟𝑒𝑓 (𝑖, 𝑗) 2𝑁
𝑗=1

𝑁
𝑖=1

𝑀𝐴𝐸 = 𝑚𝑎𝑥 𝐼𝑟𝑒𝑓 𝑖, 𝑗 − 𝐼𝑟𝑒𝑐 𝑖, 𝑗

Row FFT input Row FFT output

International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

28

Fig. 10 (a) Input image 1 and (b) Reconstructed image 1 Fig. 11 (a) Input image 2 and (b) Reconstructed image 2

Table 1. Quantitative Analysis

Scale

factor

32-bit Data width (32-point) 16-bit Data width (32-point)

RMS RRMS MAE

(Scaled

version)

Computation

time(μs)

RMS RRMS MAE

(Scaled

version)

Computation

time(μs)

Image

10(a)

128 6.8645 0.6009 27 316 6.8997 0.6064 27 278

256 3.5350 0.3107 13 316 NA NA NA NA

Image

11(a)

128 6.6716 1.6879 21 316 6.8902 1.7601 21 278

256 3.4127 0.8718 12 316 NA NA NA NA

Fig. 12 Graph representing errors for images shown in

Fig. 10

Fig. 13 Graph representing errors for images shown in

Fig. 11

Fig. 14 Graph representing time taken for computation

6. CONCLUSION
This paper gives an elegant way of computing 2D-FFT and

2D-IFFT using IP core on FPGA. The FFT results obtained

henceforth can be utilised for spectrum analysis. Image

processing techniques like noise removal, filtering can be

applied. Then image is obtained back by IFFT. 2D-FFT and

2D-IFFT computed using IP core is presented in simulation

results and the effect of scaling factor and data width is

analysed. 32-bit data width yields better results at the cost of

computation time. The precision and accuracy of FFT and

IFFT results can be improved by floating-point computation.

7. ACKNOWLEDGMENTS
Our thanks to the director Dr. G Nagendra Rao and group

head Subhalakshmi Krishnamoorthy of LEOS (ISRO),

Bengaluru and Dr. R. Kumaraswamy, head of the department

of Electronics and Communication Engineering, Siddaganga

Institute of Technology, Tumakuru.

0

5

10

15

20

25

30

RMS RRMS MAE

Scaling

factor,128(32-

bit datawidth)

Scaling

factor,256(32-

bit datawidth)

Scaling

factor,128(16-

bit datawidth)

0

5

10

15

20

25

RMS RRMS MAE

Scaling

factor,128(32-

bit datawidth)

Scaling

factor,256(32-

bit datawidth)

250
260
270
280
290
300
310
320

Computation

time(μs)

32-bit

Datawidth
16-bit

Datawidth

International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

29

8. REFERENCES
[1] S Sukhsawas, K Benkrid,“A High-level Implementation

of a High Performance Pipeline FFT on Virtex-E

FPGAs”, Proceedings of the IEEE Computer Society

Annual Symposium on VLSI Emerging Trends in VLSI

Systems Design (ISVLSI‟04), 2004.

[2] Asmita Haveliya,“Design and Simulation of 32-Point

FFT Using Radix-2 Algorithm for FPGA

Implementation”, Second International Conference on

Advanced Computing & Communication Technologies,

2012.

[3] V. Arunachalam, Alex Noel Joseph Raj, “Efficient VLSI

multiplexing applications”, IET Circuits, Devices &

Systems, 2014.

[4] Aleksei Kharin, Sergey Vityazev, Vladimir Vityazev and

Naim Dahnoun, “Parallel FFT implementation on

TMS320C66X Multicore DSP”, IEEE proceedings of the

6th European Embedded design in education and

research, 2014.

[5] Victor Montano and Manuel Jimenez, “Design and

Implementation of a Scalable Floating-point FFT IP Core

for Xilinx FPGAs”, Page no. 533 - 536 ,Circuits and

Systems (MWSCAS), 53rd IEEE International Midwest

Symposium, 2010.

[6] Bhawesh Sahu

, Anil Sahu, “FPGA Implementation of

IP-core of FFT Block for DSP Applications”,

International Journal of Innovative Science, Engineering

& Technology, Vol. 1 Issue 10, December 2014.

[7] Ahmed Saeed, M. Elbably, G. Abdelfadeel, and M. I.

Eladawy, “Efficient FPGA implementation of FFT/IFFT

Processor”, International Journal of Circuits, Systems

and Signal processing, Issue 3, Volume 3, 2009.

[8] Aboelaze, M, “An FPGA based low power multiplier for

FFT in OFDM systems using precomputations”, ICT

Convergence (ICTC) IEEE International Conference, 14-

16 Oct. 2013.

[9] Mohammadnia, M.R, Shannon, L., “Minimizing the

error: A study of the implementation of an Integer Split-

Radix FFT on an FPGA for medical imaging”, Page no.

360 – 367, Field-Programmable Technology (FPT),

IEEE International Conference, 10-12 Dec. 2012.

[10] Mankar. A., Das.A.D., Prasad. N., “FPGA

implementation of 16-point radix-4 complex FFT core

using NEDA”, Page no. 1-5, Engineering and Systems

(SCES), IEEE Students Conference on 12-14 April

2013.

[11] Ren Chen, Prasanna, V.K., “Energy optimizations for

FPGA-based 2-D FFT architecture”, Page no. 1 – 6, High

Performance Extreme Computing (HPEC) IEEE

International Conference, 9-11 September 2014.

[12] Ranganathan, S., Krishnan, R., Sriharsha, H.S.,

“Efficient hardware implementation of scalable FFT

using configurable Radix-4/2”, Page no. 1-5, Devices,

Circuits and Systems (ICDCS), 2nd International

Conference, 6-8 March 2014.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5542407
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5542407
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5542407
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5542407
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6395855
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6395855
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mankar,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Das,%20A.D..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Prasad,%20N..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6530990
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6530990
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6530990
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7040967&queryText=FFT+using+FPGA&newsearch=true&searchField=Search_All
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7040967&queryText=FFT+using+FPGA&newsearch=true&searchField=Search_All
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7040967&queryText=FFT+using+FPGA&newsearch=true&searchField=Search_All
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7027306
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7027306
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7027306
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7027306
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ranganathan%2C%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Krishnan%2C%20R..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sriharsha%2C%20H.S..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6926131&queryText=FFT+using+FPGA&newsearch=true&searchField=Search_All
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6926131&queryText=FFT+using+FPGA&newsearch=true&searchField=Search_All
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6917157
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6917157
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6917157
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6917157

