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ABSTRACT 
Image processing is a recent trend that is grabbing attention in 

almost all areas like space, medical, defence, authentication 

systems etc.,. Discrete Fourier Transforms is one of the most 

used transforms in image processing. Discrete Fourier 

Transform helps to transform the signal from spatial domain 

to frequency domain which is often used for filtering, 

correlation analysis and spectrum analysis. For DFT, 

computational complexity is more. Among different 

approaches to compute DFT, Fast Fourier Transform (FFT) is 

the feasible method that reduces the computational 

complexity. FFT can be implemented using DSP or FPGA. 

This paper lays a path to implement image FFT on FPGA 

using Intellectual Property (IP) core.  
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1. INTRODUCTION 
Fundamental steps in image processing are image restoration, 

compression, reconstruction, filtering and enhancement to 

which Fourier Transform is the key tool. Discrete Fourier 

Transform (DFT) is confined to, for consideration is on digital 

images. Two-dimensional DFT is required for images. In 

Digital Signal Processing and Communications, FFT is one of 

the most utilized operations. And in modern communication 

systems, FFT and IFFT are hard-core requirements. General 

purpose DSP implementations fail to achieve the high 

performance demands owing to clock rate and the number of 

useful operations done per clock rather well suits for 

extremely complex math intensive tasks, with conditional 

processing. Due to inherent reprogram ability feature of 

FPGAs, it outperforms over other approaches.  Exploiting the 

IP core in FPGA, 2D-DFT has been computed. 

A high-level implementation of an efficient pipeline FFT 

algorithm Radix-22 Single path Delay Feedback on Virtex-E 

FPGAs that consumes minimum required amount of 

multipliers and storage has been presented in paper [1]. 

Handel-C has been made used to realize 1D 1024-point FFT 

with 16-bit input and Twiddle factors word length and 

maximum frequency of 82 MHz Same code can be utilized for 

synthesizes of higher power-of-4 complex-points FFT by 

specifying input word length, output word length, Twiddle 

factors word length and processing word length parameters as 

design requires. The paper [2] proposes the design and 

implementation of 32-point FFT processing block using 

VHDL and Xilinx ISE Design Suite 12.1. One more 

application where FFT/IFFT required is Orthogonal 

Frequency Division Multiplexing (OFDM). In paper [3], [8], 

an efficient VLSI implementation of FFT has been proposed 

to improve performance of OFDM.  

2. RADIX-2 DECIMATION-IN-TIME 

FFT 
If number N of data points is highly composite, which means 

N can be factored as 𝑁 = 𝑟1𝑟2𝑟3 … . . 𝑟𝑣 where 𝑟𝑣 are prime, 

then this approach stands efficient. The DFTs are of same size 

r in case of same factors i.e.,𝑁 = 𝑟𝑣, where r is radix of the 

FFT algorithm. The N point data sequence is partitioned into 

two N/2-point data sequences 𝑓1(𝑛) and 𝑓2(𝑛), corresponding 

to the even-numbered and odd-numbered samples of x (n) 

respectively:  

      

 

       .......... (1) 

Where  

The resulting algorithm is known as decimation-in-time 

algorithm, since 𝑓1(𝑛) and 𝑓2(𝑛) are obtained after decimating 

x (n) by a factor of 2 [6], [7]. 

N-point DFT is given by: 

         

        .......... (2) 

DFT expressed in terms of the DFTs of decimating sequences: 

             

      

 

 

   .......... (3) 

FFT exploits symmetry and periodicity properties of phase 

factors i.e., WN
k+N/2=-WN

k and WN
k+N=WN

k  respectively. 

Using direct DFT equation, the required number of complex 

multiplications is N 2 and complex additions is N (N-1). Four 

real multiplications and two real additions are required per 

complex multiplication. Hence, total number of real 

multiplications and real additions required are 4N 2 and N (4N-

2) respectively. In addition to these N complex input 

sequences and N output values has to be stored. The number 

of complex multiplications and complex additions will be 

reduced to (N/2) log2N and N log2N respectively to compute 

DFT with the use of Decimation-in-Time radix-2 FFT 

algorithm.  

 

 

A basic butterfly structure is as shown in Fig. 1 
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Fig. 1 Basic butterfly computation in the Decimation-In-

Time FFT algorithm 

3. FFT IMPLEMENTATION 
There are various ways of implementing FFT [4-7], [10-12]. 

The method used is explained in detail.  

3.1 IP core (CoreFFT) 
Within the FPGA designs, IP core can be used as building 

blocks. For growing Electronic Design Automation (EDA) 

industry, IP cores are essential elements of design reuse. 

CoreFFT is designed for high- reliability applications 

requiring resistance to high temperature, firm- error immunity 

and radiation tolerance, such as radar, ground and air 

communications, acoustics, oil production and medical signal 

processing. CoreFFT produces FPGA optimized modules that 

perform FFTs to convert a signal from the time domain to the 

frequency domain in order to show the spectral content of the 

signal. 

The Microsemi‟s fast Fourier transform (FFT) [1-4] core 

implements the efficient Cooley-Tukey algorithm for 

computing the discrete Fourier transform. CoreFFT is used in 

a broad range of applications such as digital communications, 

audio, measurements, control, and biomedical. CoreFFT 

provides highly parameterizable, area-efficient, and high 

performance MAC-based FFT. The core is available as a 

register transfer level (RTL) code of the transform in Verilog 

and VHDL languages. The core I/O ports are as shown in Fig. 

2.  

 

 

 

 

 

 

 

 

Fig. 2 Core I/O ports 

Real and imaginary parts of input and output data with 

„WIDTH‟-bits are represented in two‟s compliment from 

each. FFT computation using CoreFFT follows frame wise 

processing with size of frame „N‟. Two RAM modules 

constitute in-place memory with the capacity of N /2 complex 

data storage doubling the bandwidth. The same in-place 

memory will be used for FFT computations and it begins the 

operation automatically after loading one frame.  

The process flow is sequential i.e., stage after stage in in-place 

FFT computation. The number of stages required is log2N. 

The data stored in memory is read in required order for FFT 

by the help of read switch and read address generator. The 

required twiddle factors for the butterfly are obtained by 

twiddle Look Up Table (LUT). The in-place memory also 

helps to store intermediate results with the help of write 

switch. 

After the completion of last stage, the transformed results will 

be stored in the memory and outputs the transformed data 

frame as one word at a time. The twiddle factors in LUT will 

also be computed automatically by CoreFFT on power-on.    

4. 2D-FFT AND 2D-IFFT 

COMPUTATION 
Good design techniques are endorsed inherently by using state 

machine. It helps to prevent unnecessary development of bugs 

and provides flexibility in programming by modularizing the 

code into logical states. The most powerful aspect of state 

machines is its ability to make a program retort intelligently to 

a stimulus. Instead if looping is used to monitor repetitive 

tasks, in each of the loops, the functions handling these tasks 

must be distributed resulting in inefficiency and agitation to 

understand. Hence, here state machine is used to perform 

tasks in specified order. The State machine is shown in Fig. 4. 

The states used here are START, INITIALISE, ROW_FFT, 

COL_FFT_IM, COL_IFFT and ROW_IFFT. 

4.1 2D-FFT 
CoreFFT performs 1D-FFT frame-by-frame i.e., one row at a 

time will be processed. The row FFT results computed in this 

manner will be stored in SRAM row wise. After the 

computation of last row FFT CoreFFT is again used to 

compute column FFT by inputting the row results column 

wise. The results of FFT will be stored back to same SRAM.  

The step wise flow of computation of 2D-FFT is as shown in 

Fig. 5. 

 
Radix-2 FFT Functional Block Diagram (Minimal 

Configuration) 
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Fig. 4 State Machine 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Computational flow of 2D-FFT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Computational flow of 2D-IFFT 
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4.2 2D-IFFT 
The transformed data stored will be given as input in column 

direction to CoreFFT with type specified as inverse. The 1D-

IFFT results will be stored back to SRAM column wise. Then 

again the column IFFT results are fed as input to CoreFFT in 

row direction. The final transformed data will be stored in 

SRAM as well as written to a text file from which comparison 

with input image file can be made for error computation. 

5. TEST RESULTS 
The images are taken from LRO open source. The input 

image 1 and reconstructed image is as shown in Fig. 10 (a) 

and (b) respectively. The error measures used are Maximum 

Absolute Error (MAE), Relative Root Mean Square (RRMS) 

and Root Mean Square (RMS) [9].  

RMS is given by: 

 

 

     .......... (4) 

  

RRMS is given by 

     

       

     ..........(5) 

MAE is given by: 

 

     ..........(6)  

Where, I ref(i, j) is input image  

           I rec(i, j) is reconstructed image 

           i, j are row and column values respectively 

Fig. 7 shows the simulation results of the whole operation i.e., 

2D-FFT and 2D-IFFT. First row FFT input and output are 

shown in Fig. 8. The results obtained are for the image of size 

32x32. The 32-first row FFT values are shown in Fig. 9  

The estimated RMS, RRMS and MAE values for images 

shown in Fig. 10 and 11 are tabulated as in Table I.  

 

 

 

 

 

 

 

 

 

 

Fig. 7 Simulation result of 2D-FFT and 2D-IFFT operation on FPGA 

 

 

 

Fig. 8 Simulation result displaying first row FFT input and output set 

 

 

Fig. 9 Simulation result displaying first row FFT output 

MAE values are scaled up by respective scaling factor. When 

scaling is removed, MAE values are 0.2109375 (scaling factor 

used for computation is 128) and 0.05078125 (scaling factor 

used for computation is 256) for image 10 and 0.1640625 

(scaling factor used for computation is 128) and 0.046875 

(scaling factor used for computation is 256) for image 11.  

Along with data width, scaling factor which is used to retain 

the accuracy will also affect the performance. Larger scaling 

factor leads to more accurate results which in turn require 

larger data width [9]. This is shown in Fig. 12 and 13 for both 

the images shown in Fig.10 and 11 respectively. From the 

graphs the inference drawn is, as scaling factor increases, the 

errors will be reduced. The time taken for 16-bit data width is 

less compared to 32- bit data width processing which is shown 

in Fig. 14. Depending on the application, the selection of 

scaling factor and data-width has to be done. 
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Fig. 10 (a) Input image 1 and (b) Reconstructed image 1    Fig. 11 (a) Input image 2 and (b) Reconstructed image 2 

 

Table 1. Quantitative Analysis 

  

Scale 

factor 

32-bit Data width (32-point) 16-bit Data width (32-point) 

RMS RRMS MAE 

(Scaled 

version) 

Computation 

time(μs) 

RMS RRMS MAE 

(Scaled 

version) 

Computation 

time(μs) 

Image 

10(a) 

128 6.8645 0.6009 27 316 6.8997 0.6064 27 278 

256 3.5350 0.3107 13 316 NA NA NA NA 

Image 

11(a) 

128 6.6716 1.6879 21 316 6.8902 1.7601 21 278 

256 3.4127 0.8718 12 316 NA NA NA NA 

 

 

 

 

 

 

 

 

 

 
 

Fig. 12 Graph representing errors for images shown in 

Fig. 10 

 

 

 

 

 

 

 

 

 
 

Fig. 13 Graph representing errors for images shown in 

Fig. 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 Graph representing time taken for computation 

6. CONCLUSION 
This paper gives an elegant way of computing 2D-FFT and 

2D-IFFT using IP core on FPGA. The FFT results obtained 

henceforth can be utilised for spectrum analysis. Image 

processing techniques like noise removal, filtering can be 

applied. Then image is obtained back by IFFT. 2D-FFT and 

2D-IFFT computed using IP core is presented in simulation 

results and the effect of scaling factor and data width is 

analysed. 32-bit data width yields better results at the cost of 

computation time. The precision and accuracy of FFT and 

IFFT results can be improved by floating-point computation. 
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