
International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

1

Geo-Fencing for Unmanned Aerial Vehicle

P.L.Pratyusha
Department of Avionics

Institute of Science and Technology, JNTUK
Kakinada, India

V.P.S.Naidu
Multi-sensor Data Fusion (MSDF) Lab,

CSIR-NAL (National Aerospace Laboratories),
Bangalore, India

ABSTRACT

Geo-fencing is an application which plays a major role in

security for Unmanned Aerial Vehicles (UAVs) and Micro

Aerial Vehicles (MAVs). This application can be used in

Ground Control Station (GCS), which helps in increasing the

level of security, or it can be used on board UAV to increase

the level of automation. The current work includes two types

of geo-fencing (polygonal and circular) techniques for GCS.

The geo-fencing algorithm has been implemented and tested

using Unmanned Aerial System (UAS) simulator which

consist of UAV Flight Simulator (UAVFS), Communication

link (CL) and GCS. A Graphical User Interface (GUI) has

been designed which helps in user interaction and the

simulated results are satisfactory. The geo-fencing algorithm

is developed in Visual C#.Net environment.

General Terms

Algorithm, Security, MAV, Software

Keywords

Unmanned Aerial Vehicle (UAV), Ground Control Station

(GCS), Geo-fencing, GUI, C#.Net, UAV simulator

1. INTRODUCTION
Geo-Fencing is a boundary or region of interest in the

geographical region. Geo-fencing is used for many

applications and it provides many benefits to users. One of the

major applications for Geo-fencing is security, when anyone

enters or leaves a particular area, an alert or text messages has

been sent to the user [1]. In military applications this can be

used, when the enemy vehicles enter into our boundary it

gives an alarm sound to alert the officers and takes necessary

actions.

Geo-fencing is necessary option for GCS as well as for

onboard UAVs which helps in increasing the level of

autonomy. When UAV goes out of range or if it crosses a

particular boundary defined by the user, geo-fencing is used to

give an alert to the pilot/operator. For example, an operator

who doesn‟t know the limit of caution region can fly beyond

it, in such cases geo-fencing algorithm will give the sound

alerts so that user can operate it safely. If UAV is flying in

auto mode, with the help of algorithm UAV will not go

beyond this caution region. Geo-fencing is also used for

restricted areas; if anyone enters into those regions then it

gives an alarm.

In critical operational scenario, a boundary is drawn by the

user to confine the UAV movement. If the UAV crosses the

boundary then an alarm sound with a message box will be

displayed. The boundary can be polygon, circle etc. In

polygon type geo fencing, the user will select different points

and a polygon is drawn between those points and checks

whether the UAV is within the boundary or not. In circle type,

user has to give the radius. Once the radius is entered by the

user, a circle with that radius is drawn at user‟s point of

interest. The second section explains about the mathematical

logic behind the geo-fencing algorithm. Third section gives a

detail explanation about experimental setup. Finally, Fourth

section discuss about the simulation results.

2. GEO-FENCING ALGORITHM
This paper includes two types of geo-fencing algorithms

namely polygonal geo-fencing and circular geo-fencing.

C#.Net based GUI is developed for this algorithm which

requires a map [2] and provides a selection for type of

boundary. Some additional functions are also included like

save the data in XML format and load the saved data,

selecting the type of map etc.,

2.1 Polygonal Geo-fencing
A Polygon is drawn between user selected points. Geo-

fencing algorithm uses those selected points defines the

boundary and determine whether the UAV position is inside

boundary or not. Polygon may be of any shape, for complex

type of polygons it is difficult to find whether the point is

inside or outside the boundary. The solution for this type of

polygon is, make a horizontal threshold line which is passing

through the UAV position [3]. Each side of polygon is taken

as y coordinate of UAV position and each side is represented

as a node. If there are an odd number of nodes in each side of

UAV position then it is within the boundary, if there is an

even number of nodes in each side then it is out of boundary.

If the UAV is exactly in the polygon edge then it may be

within or out of the boundary [3]. The C# code for

determining whether UAV position is within or outside the

polygon is:

Public bool FindUAVPosition(doubleX,

double Y)

{

int no_of_polySides =this.Count()-1;

int j = no_of_polySides -1;

bool UAVStatus=false;

//Position of UAV is (X,Y)

for(int i =0; i < no_of_polySides; i++)

{

// checks Y coordinate in range of

bndryPts[i], bndryPts[j]

if(bndryPts[i].Y < Y &&bndryPts[j].Y >= Y

||bndryPts[j].Y < Y &&bndryPts[i].Y >= Y)

{

// checks X coordinate below the line

which is drawn between points i and j

if(bndryPts[i].X +(Y -bndryPts[i].Y)/(

bndryPts[j].Y -bndryPts[i].Y)*(

bndryPts[j].X -bndryPts[i].X)< X)

{

UAVStatus =! UAVStatus;

}

}

 j = i;

}

return UAVStatus;

}

International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

2

In the above code, initially it will check the Y coordinate of

UAV position within the range of (bndryPts[i], bndryPts[j]), if

it is true it will check whether the X coordinate of UAV

position is below the line, which is connecting from point i to

point j, or not. If these two conditions are true for odd number

of times then „FindUAVPosition()‟ function will return true

otherwise it returns false. If it is true then UAV is inside

otherwise it is outside.

Let us consider an example as shown in the Fig 1. From this

figure a threshold (brown dotted) line is taken which passes

through UAV position (red dot), each side of polygon which

touches the threshold taken as a node. If there is odd number

of nodes on either side of UAV position, then UAV is within

the boundary [2]. If the number of nodes is even, then UAV is

in outside of the boundary. In this example three nodes are on

the left side of UAV, hence UAV is inside the boundary. The

example is for static point (i.e. assuming that UAV is at

constant point) and algorithm is working correctly. Now the

problem is, UAV will move continuously, the latitude and

longitude values has to update and it has to verify whether the

UAV is inside or not. By using timer, receiving data event

was called continuously. Then the UAV position data is

passed continuously to another form [4]. The C# code for

sending the updated position of UAV from Form1 to Form 2

is shown below. In Form 1 code, whenever user clicks on the

„polygon‟ item from context menu, a timer will get started and

updates the UAV position for every 100ms. In Form 2, data_

received() function will get the UAV position continuously as

shown in the Fig 2.

Fig 1: Example of polygonal Geo-fencing [3]

Form1:

private void

rectangleToolStripMenuItem_Click(objectse

nder,EventArgs e) {

childfrm_fencing=newGeo_Fencing();

childfrm_fencing.Show();//opens another

form

timer1.Start();

}

Private void

timer1_Tick(objectsender,EventArgs e)

{

ReceivingData+=newDataHandler(childfrm_fe

ncing.data_received);

storeddata();

}

Private void storeddata()

{

PointLatLng data;

var lat2 =Interface.UAVPose.lat;

var lng2 =Interface.UAVPose.lon;

data=newPointLatLng(lat2, lng2);

DataEventArgs e =newDataEventArgs();

e.LatLng_frm2 = data;

//Lat,Lng values are stored in event args

sendData_frm2(newobject(),e);

}

Private void

sendData_frm2(objectp,DataEventArgs e)

{

if(ReceivingData!=null)

{

ReceivingData(newobject(), e);

}

}

Form2:
Public void

data_received(objectsender,DataEventArgs

e)

{

textBox1.Text = e.LatLng_frm2.ToString();

gMapfence1.Position = e.LatLng_frm2;

}

Fig 2: Example of Polygon geo-fencing at HAL Airport

International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

3

2.2 Circular Geo-fencing
If circular fencing radio button was clicked, an input text box

will appear as shown in the Fig 3, in that user has to give the

value of radius in meters.

Fig 3: Message box taking radius as input

With that radius, a circle will be drawn at the user point of

interest in the map. This circle will be taken as boundary to

the UAV Position and if it crosses the boundary then a voice

alert as well as message box will appear.

Circular geo-fencing is easier compared to polygonal geo-

fencing in terms of implementation. In circular geo-fencing,

distance between centre of the sphere and current UAV

position has to be calculated, if the distance is greater than

radius then the UAV crosses the boundary. If the distance is

less, then UAV is inside the boundary. In order to calculate

the great circle distance between two points on sphere

“Haversine Formula” is used [5]. In earlier trigonometric

tables)sin(ver is a trigonometric function, which equals

to

 (1)

Whereas  sinhaver is half the  sinver i.e.,

 (2)

Haversine formula for calculating distance between two

points on sphere is given by the equation

 (3)

Where, 1 , 2 are latitudes of point 1 and point 2

1 , 2 are longitudes of point 1 and point 2

d is the distance between two points (along the

 sphere) in km

r is the radius of earth in km = 6371 km

12  d

12  d

d can be obtained with the help of sine inverse (arcsin)

function

 (4)

Where




















r

d

r

d
haverh

2
sinsin 2

(5)

By solving the above equation (Eq.5)

 hrd 1sin2 

 (6)

   
































2
sincoscos

2
sinarcsin2 2

21

2 


 dd
rd

 (7)

Eq.7 is the final equation to calculate distance between two

points on a sphere in kilometres in which the latitudes and

longitudes has to be converted to radians (i.e., multiplying the

latitude/longitude value with pi/180). If this result is less than

radius of the circle then UAV is inside the boundary else it is

out of boundary. C# code implements the above formula for

calculating the distance is shown below:

public double Distance(PointLatLng pos1,

PointLatLng pos2)

 {

int Radius = 6371; // radius of earth

in km

  









2

2
sin2cos1)sin(


ver














2
sin

2

)cos(1
)sin(2 

haver

     )sin(coscossinsin 21  dhaverdhaver
r

d
haver 









)(sin 1 hhaverrd 

International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

4

double dLat = this.toRad(pos2.Lat-

pos1.Lat);

double dLon = this.toRad(pos2.Lng-

pos1.Lng);

double inn_brckt = Math.Sin(dLat / 2) *

Math.Sin(dLat / 2) +

Math.Cos(this.toRad(pos1.Lat)) *

Math.Cos(this.toRad(pos2.Lat)) *

Math.Sin(dLon / 2) * Math.Sin(dLon / 2);

double f = 2 * Math.Asin(Math.Min(1,

Math.Sqrt(inn_brckt)));

double d = Radius * f;

return d;

}

private double toRad(double deg_val)

{

 return (Math.PI / 180) * deg_val;

}

After calculating the distance, if the distance is greater than

radius then it will alert the operators by giving warning sound.

C# code for checking the UAV whether it is inside or not is:

if(radbtn_circle.Checked == true &&

radbtn_poly.Checked != true)

{

PointLatLng LL_circle =

gMapfence1.Position;

double dist_result =

Distance(circle_centre, LL_circle);

 if(dist_result > (radius/1000))

 {

Warningsound.Play();

MessageBox.Show("UAV Crossed boundary",

"Error", MessageBoxButtons.OK);

 }

}

3. EXPERIMENTAL SETUP
A laboratory based UAS simulator setup has been developed

to test the geo-fencing algorithm at MSDF lab, CSIR-NAL.

The UAS has been realized with two PC‟s as shown in Fig 4.

Fig 4: Block diagram of UAS setup

UAS consists of the following three components:

 UAV Flight Simulator (UAVFS)

It is difficult to fly an aerial vehicle for every time

to check the GCS functions, hence a UAVFS is

required. UAV Flight simulator is a PC -1 (which

consists of Flight gear and Mission Planner).

 Wireless Communication link
Wireless Communication Link plays a crucial role

in UAS. Because, transferring of data from UAV to

GCS is done through this link. This link should be

bi-directional. UAV can send the data regarding its

position, attitude, speed etc., at the same time it has

to receive the commands from the GCS. Similarly,

GCS should be capable of receiving and sending

commands to UAV. In UAVFS, through flight gear

the data will be transmitted to the APM board

which transmits the data to GCS through X-Bee

Pro modules.

 Ground Control station (GCS) section

GCS is a PC-2 which is having Geo-fencing

algorithm.

3.1 UAVFS
PC-1 is act as UAVFS. PC-1 has following specification

 Processor: Intel(R) Core(TM) i7 CPU 870 @

2.93GHz

 RAM: 4 GB

 System type:64 - bit Windows 7 OS

 Graphics card : NVIDIA GeForce 8400GS

For making PC-1 as UAVFS it should have following

software and hardware.

1) Software Required in PC-1

a) Mission Planner-1.3.10 (needs .NET framework

version v4.0) [6]

b) Flight Gear(complied with generated photo scenery)

c) APM board drivers [7]

2) Hardware Required in PC-1

a) APM 2.5 (Ardu Pilot Mega board)

b) XBee (able to connect with APM 2.5)

Steps for configuring UAVFS

1. Launch the Mission Planner Software by double

clicking on the Mission Planner icon placed on the

desktop (PC-1).

2. Once the Software is launched the dialog box opens

in which we need to select the port to which the

Autopilot board is connected as shown in Fig 5(a)

and then enter the baud rate as 115200.Click on

Connect to connect to APM 2.5 board.

UAVFS

Wireless Communication

Joy

Stick

Auto pilot

(APM 2.5)

Tx/Rx
Flight Gear

(FG)Flight

Gear (FG)

Mission Planner

(FG)Flight Gear

(FG)

UAV(PC-1)

(FG)Flight

Gear (FG)

GCS Tx/Rx

Mouse Key board

GCS

(PC-2)

Display Geo- fencing

International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

5

Fig 5(a): Initializing the Mission Planner

3. Then Mavlink will be established as soon as the

connect button is clicked. Once the connection is

established, on the left hand side of the window the

status will be changed from DISARMED to

ARMED as shown in Fig 5(b), which indicates that

the device is connected.

Fig 5(b): MAVLINK Connection established

4. Then Click on Configuration > Basic Tuning, check

for the P to T (0.100) and Rudder Mix‟s (0.200)

Values shown in Fig 5(c). In case they are different,

change the values to specified values [6, 7].

Fig 5(c): Tuning the UAV in configuration tab

5. Click on Flight Modes and check for Mode 1 and

Mode 2 to be Auto and Mode 3 and Mode 4 to be

STABILIZED and Mode 5 to be Manual as shown

in Fig 5(d).

Fig 5(d): Selecting the modes

6. Then go to Flight Plan, select the waypoint (Wp).

Set default Alt as 50 and click on absolute Alt. For

the starting point, select it as take off, it should be

home and decrease the Alt to 10 and for last

waypoint select it as land and its Alt should be

0.Then click on Write Wp‟s which will write the

Waypoints on the board [8] as shown in Fig 5(e).

Fig 5(e): Writing waypoints onto the log

7. Then click on Simulation, on the Simulation

window select Flight Gear radio button as shown in

the Fig 5(f) and then click Start FG Plane. It will

open a “Flight Gear” window which indicates the

movement of UAV as shown in Fig 5(f).

Fig 5(f): Flight gear simulation

8. Then click on Sim Link Start/Stop which will start

the simulation as shown in Fig 5(g). Once

simulation started user should get following screen

or else check the configuration of Flight Gear.

International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

6

Fig 5(g): Start SimLink

3.2 GCS
PC-2 is act as GCS-Geo fencing PC. PC-2 has following

specification

 Processor: Intel(R) Core(TM) i3-3217U CPU @

1.80GHz

 RAM: 4 GB

 System type:64 - bit Windows 8.1 Pro

Steps to Configure

1. Launch the GCS Software.

2. Once the Software is launched, at the top right

corner there are two combo boxes in which select

the port to which the X-Bee Pro module is

connected and then select the baud rate as

57600.Click on Connect button to open the port and

receive the data.

3. Mavlink will be established as soon as the connect

button is clicked. Once the mavlink is established,

the Connect button will be changed to Connected as

shown in Fig 6.

Fig 6: GCS Software

4. Continuous data is received and updated which is

shown in the right most side of the window as

shown in Fig 6. According to that data, the position

of the aircraft in the map is also updated.

5. Right click on the map then a context menu strip

will open as shown in the Fig 7, in that select the

Geo-fencing > polygon option which opens another

window as shown in Fig 8 and performs required

operations.

Fig 7: Starting the Geo-fencing window

Fig 8: Geo-fencing Window

The realized model at MSDF Lab, CSIR-NAL with the above

three sections is shown in the Fig 9.

Fig 9: Realized model of UAS

4. RESULTS AND DISCUSSIONS
Initially, start the flight simulator as explained in the previous

section, once simulation gets started, the flight can be

controlled either by manually through joystick or by auto

mode. The data has been transmitted from UAVFS to GCS

through APM2.5 & XBee Pro RF module. When user selects

the geo-fencing option in GCS, a new window will be open as

explained in section 3.2. In that Geo-fencing form, select the

Joy Stick

APM 2.5 X-Bee Pro

X-Bee Pro

UAVFS

GCS

Wireless

Communication

International Journal of Computer Applications (0975 – 8887)

National Conference “Electronics, Signals, Communication and Optimization" (NCESCO 2015)

7

type of the map from the right hand side combo box and then

select the type of fencing as polygonal as shown in Fig 10.

Fig 10: Polygonal Fencing

The red dots in Fig 11 are UAV‟s updated positions; if the

“Run” button is clicked then it will check whether the UAV

position is within or without the polygonal boundary. If UAV

crosses the polygon then it will give an error message box and

a warning sound will play as shown in Fig 11 and the pseudo

code of polygonal fencing is given in the section 2.1.

Fig 11: The simulated data (UAV position) crosses the

boundary of polygon

In circular type of fencing, user will give the radius of circle

in meters as shown in the Fig 12

Fig 12: Circular Fencing

With that radius a circle will be drawn, if the UAV crosses the

circular boundary then an alert sound with a message box will

be displayed as shown in the Fig 13 and the pseudo code of

circular fencing is given in the section 2.2.

By clicking on the “Save in XML” button, user can save the

boundary either polygon or circular in a XML file for future

use. Load these saved data through “Load XML” button.

“Refresh” button will refresh the map and removes the

planned boundaries.

5. CONCLUSION
As part of GCS, a GUI has been developed for Geo-fencing in

C# .Net environment. Using this algorithm, a virtual boundary

can be drawn using polygon or circular methods on the map at

GCS to confine the UAV flying. While flying, UAV sending

its position through telemetry link to GCS and Geo-fencing

algorithm checks whether UAV crosses the boundary or not,

and if UAV crosses the boundary, an audio as well as pop-up

message will alert the operator at the GCS. It is observed that

circular fencing is easy compared to polygonal fencing in

terms of implementation. Provision has been added to GUI to

save the planned geo-fencing scenario as xml file for future

use. There is a provision to load previously planned geo-

fencing scenario.

6. ACKNOWLEDGMENTS
We would like to thank Miss. Indhu B for helping us while

dealing with hardware.

7. REFERENCES
[1] Andrew, “How to make Geo-fencing work for your small

business”, http://www.biznessapps.com/blog

/2014/03/18/how-to-make-geofencing-work-for-your-

small-business/, 2014, accessed on 20th March 2015.

[2] “Using GMap.Net- Great Maps for Windows Forms &

Presentation”, http://geekswithblogs.net/saifkhan/archiv

e/2011/08/03/using-gmap.net-ndash-great-maps-for-win

dows-forms-amp-presentation.aspx, 2011, accessed on

14th November 2014.

[3] Darel Rex Finley, “Point-in-Polygon Algorithm –

Determining whether a Point is inside a complex

polygon”, http://alienryderflex.com/polygon/, 2007,

accessed on 18th March 2015.

[4] MitjaBonca, “Passing continuous data between multiple

displayed forms”, https://social.msdn.microsoft.com/

Forums/vstudio/en-US/d09a814b-d943-4d29-a185-3748

da14f371/passing-continuous-data-between-multiple-dis

played-forms?forum=csharpgeneral, 2011, accessed on

18th March 2015.

[5] “Haversine Formula”, http://en.wikipedia.org/wiki

/Haversine_formula, accessed on 18th March 2015.

[6] “Mandatory APM 2.5 Hardware Configuration”,

http://copter.ardupilot.com/wiki/initial-setup/

configuring- hardware/, accessed on 24th November

2014.

[7] “Mission Planner”, http://planner.ardupilot.com/,

accessed on 24th November 2014.

[8] “Planning a Mission with Waypoints and Events”,

http://planner.ardupilot.com/wiki/ common -planning-a-

mission-with-waypoints-and-events/, accessed on 24th

November 2014.

Fig 13: The simulated data (UAV position) crosses the

boundary of circle

IJCATM : www.ijcaonline.org

http://planner.ardupilot.com/wiki/%20common%20-planning-a-mission-with-waypoints-and-events/
http://planner.ardupilot.com/wiki/%20common%20-planning-a-mission-with-waypoints-and-events/

