
International Journal of Computer Applications (0975 – 8887)

Confernce on Emerging Applications of Electronics System, Signal Processing and Computing Technologies (NCESC 2015)

21

Pipeline Orchestration for Test Automation using
Extended Buildbot Architecture

Sushant G.Gaikwad

Department of Computer Science and engineering,
Walchand College of Engineering,

Sangli, India.

M.A.Shah
Department of Computer Science and engineering,

Walchand College of Engineering
Sangli, India.

ABSTRACT

Whenever developers do any changes into code base of

software, they want to see effect of changes quickly, Continuous

Integration can solve this problem. In recent software

development where agile methodology is followed turnaround

time for software is less, this leads to availability of less time to

develop, build and test processes. Test Orchestration

methodology can be used to reduce testing efforts and time. Test

Orchestration in broad sense is a tests execution step by step in

automated fashion, where different type of tests will executes

like Junit tests, Integration tests, Sniff tests, Acceptance tests and

so on. Here tests are selected dynamically based on developer’s

check-ins. For Junit tests, we have extended Buildbot

architecture which is a master/slave architecture, with a single

central server and multiple build slaves. The objective of this

paper is to develop distributed architecture for test orchestration.

All higher level tests like functional tests, sniff tests and

performance tests will execute in pipeline, finally result of all

tests will send to developer through email.

Keywords
Continuous Integration (CI), Agile Methodology, Test

Orchestration, Dynamic test Selection, Deployment Pipeline

(DP), Pipeline Test Orchestration, Business works (BW).

1. INTRODUCTION
Software is useful to customer only if it is deployed in

production and provide necessary functionalities in right time. In

continuous Integration every check-in needs to be verified, to

integrate new checked-in code into entire code base. This

integration requires build to be performed and exhaustive testing

on new build. Continuous delivery also requires frequent testing

of different types. We want to reduce manual efforts required for

testing and test engineers to focus on key areas. Also to detect

problems early in development we need to speed up testing.

Benefit of CI is to reduce time lag between development and

testing.

A long standing problem for software development teams has

been to maintain the stability of an application while integrating

the changes made by multiple developers. Later the integration

is delayed the more potential there is a risk and failure in the

integration process. Continuous Integration (CI) tries to mitigate

this risk by frequently integrating small changes into an evolving

code base [3].

In Continuous Integration members of a team integrate their

work as much as possible. Each integration is verified by a build

and series of different types of tests. Many teams find that this

approach leads to significantly reduced integration problems and

allows a team to develop cohesive software more rapidly [7].

Continuous integration requires that for every commit the whole

application will built and a set of automated tests will run against

it. If the build or test process fails, the development team fixes

the problem immediately. The goal of continuous integration is

that the software is in a working state all the time [3]. To make

this process faster and efficient Test Orchestration is helpful.

Test Orchestration involves selecting platform and configuration

information on which tests will executes, carefully selecting

particular tests to execute in a particular order according to build

and finally analysis of tests reports so that developers can

identify errors if any.

Continuous Integration (CI) systems are systems that build and

test software automatically and regularly. CI systems can

simplify and automate the execution of many otherwise tedious

tasks like detection of infrequently failing tests, the regular

production of up-to-date release products and so forth [2].

CI is often a first step towards a continuous deployment

framework wherein software updates can be deployed quickly

to live systems after testing [5].

A deployment pipeline is an automated implementation of an

application’s build, deploy, test, and release process. The

deployment pipeline has its foundation in the process of

continuous integration.

Fig. 1 Deployment Pipeline

International Journal of Computer Applications (0975 – 8887)

Confernce on Emerging Applications of Electronics System, Signal Processing and Computing Technologies (NCESC 2015)

22

 The deployment pipeline has three advantages, it makes

processes visible and transparent to everyone. It provides early

feedback so that problems are identified, and hence resolved, as

soon as possible [3]. Finally, teams can have any version of their

software for any environment.

Continuous Integration has become a mainstream technique for

software development. Hardly any Thought Works projects goes

without it [7]. Krishnan develops an economic model to

optimize the delivery cycle of delivering good quality software

[8]. Lahtela presented the challenges in the release of software

[9]. Most organizations are in the process of achieving

continuous delivery and it becomes universal standard and CD

advocates the creation of maximally automated deployment

pipelines. According to “DZone community” survey more than

65% organizations have implemented continuous Delivery [11].

1.1 Overview of problem
A lot of work already done in the field of software testing

automation. Many tools like Jenkins, Cruise Control are

available in market to automate testing procedure. But the

problem with these tools is that none of them provide end-to-end

support for build management and automation tasks [1].

Organizations have been orchestrating pipelines with existing

Jenkins plugins for several years. With time, organizations want

to move beyond simple pipeline and chart complex flows to map

to their specific delivery process [10].

The goal of this research is to develop architecture which

provides end to end support for automation of testing process in

pipeline fashion, which allow developers to trigger testing

quickly and supports on demand, triggered or scheduled testing.

2. DESIGN OF EXTENDENT BUILDBOT

ARCHITECTURE

2.1 Delivery Pipeline Approach
Software build process consists of following activities

1. Download latest updates of code and related configuration

files from svn.

2. Build with latest code (compilation).

3. Setup test beds. Configure test machines with all

prerequisite tools and test suites.

4. Executes test suites and store results.

5. Result are aggregated and stored on server.

For above activities organizations already using many tools.

Pipeline orchestration requires coupling between number of

tools and technologies, and provide more efficiency in work. So

pipeline orchestration framework requires to achieve complex

and diverse external coordination and needs to

Fig. 2 Changes moving through Deployment Pipeline

The process starts with the developers committing changes into

their version control system. At this point, the continuous

integration management system triggers a new instance of a

pipeline. The first (commit) stage of the pipeline compiles the

code, runs unit tests, and performs code analysis. If the unit tests

all pass and the code is up to scratch, next level of tests starts

execution. We provide a facility to store results of test execution

and make them easily accessible both to the users and to the

later stages in pipeline. In case of failures process will be

stopped at failure point and feedback will be given to respective

developer. CI servers will execute these test jobs in parallel.

Once the tests are successful the notification will be given to

developers.

2.2 Buildbot Architecture

Buildbot uses a master/slave architecture, with a single central

server
and multiple build slaves. Master is responsible for managing

remote executions.

Configuration specifies the command to be executed on each

remote system [2]. Scheduling and build requests are not only

coordinated through the master but directed entirely by the

master. Buildbot

International Journal of Computer Applications (0975 – 8887)

Confernce on Emerging Applications of Electronics System, Signal Processing and Computing Technologies (NCESC 2015)

23

maintains a constant connection with each build slave, and

manages and coordinates job execution between them.

Coordinate remote machines with constant connection is complex

[2].

Many modern CI tools follows Buildbot architecture but fail to

manage complex external coordination required with different

technologies and tools. So there is a need to develop a pipeline

orchestration framework that fills gap left open by CI tools and

mange build slaves.

In purposed architecture, Orchestrator will acts as a Master which

directs and controls builds. Orchestrator is the process that

schedules builds on different slaves. We call it as a test beds,

which have configured to execute a particular type of tests. This

is a loosely coupled architecture where different technologies are

interact with each other through orchestrator.

Fig. 3 Buildbot Architecture [2]

2.3 Extended Buildbot Architecture

Fig. 4 Extended Buildbot Architecture

So orchestrator will acts as coordinator. For communicating

among different components we have used REST architecture.

Testing can be triggered either through UI, Eclipse plug-in or svn

poller which is a java application. SVN Poller is the Java

application that polls from SVN after a fixed time period and

comes up with a log containing revision number, user name, code

path, and comments then SVN Poller will parse the log. Then

poller create a unique id and put it in the JMS/EMS queue and all

information in asset repository.

We have different machines and different queues for each type of

tests. We keep track of idle and occupied machines.

To execute particular type of test like Junit, if Junit VM is idle then id is retrieved from queue, and puts the id in the test job

International Journal of Computer Applications (0975 – 8887)

Confernce on Emerging Applications of Electronics System, Signal Processing and Computing Technologies (NCESC 2015)

24

queue. Based on id orchestrator queries asset repository to get all

details for that id. Once the request is put in the test job queue it

is then picked and the execution is started.

 Fig.5 BW Pipeline process Setup

Following steps has been performed for test execution

 Firstly the product code is updated.

 Jenkins job configuration and Build is done according

to data which is fetched form asset repository.

 Jenkins job is triggered to execute the test cases on the

new build.

 Once the execution is successfully finished the Log

analyzer is triggered and it analyses the test result logs.

 The analyzed logs are then pushed to the asset

repository and are maintained for future reference.

The report summary mail is then sent to respective

developer along with the link to detailed report. Once

developer clicks on the link detailed report is shown in

the browser.

For each type of test we have designed separate orchestrating

process and that are connected to each other in sequence as

shown in figure. After completing Junit tests, it passes id to Lisa

test process (kind of Functional test) and so on. For designing

orchestrating processes of different types, we have used Tibco’s

Business work where we can design different activity with

minimum coding and designing is also very simple. We can use

java to design and define flow of processes. Each process has to

bring other components together to execute test as shown in Lisa

Junit test BW setup. Each BW process may contains number of

different processes

3. ANALYSIS OF APPROCH
We have implemented end to end pipeline for Tibco’s Active

Matrix Service grid product in Tibco Software Pune. For every

commit testing is automatically triggered and parsed reports with

detailed report link is send to developer. Parsed reports gives

exact statistics like number of passed and failed test cases and

causes. From which developer can easily detects whether code

has properly integrated or has introduced any bugs.

We have taken developers and test engineers feedback in which

we have got following information

 No need to configure any environment as it is already

done.

 All tests executes one after another without manual

intervention, it saves lot of time of developers and test

engineers.

 No need to analyse complicated reports as report

analyser gives all required information.

 Different types of tests executes parallel and

independent.

 Thus all resources has been used optimally and

efficiently.

Fig. 6 Functional Test Setup

International Journal of Computer Applications (0975 – 8887)

Confernce on Emerging Applications of Electronics System, Signal Processing and Computing Technologies (NCESC 2015)

25

4. CONCLUSION
We have designed pipeline test orchestration framework that

fills the gap left open by many CI tools, it can be integrated with

any supporting technology and leverages the testing process. The

purposed solution scales well for any number of test types also

optimally uses available resources. In future we will improve the

log analysis approach and the GUI. Also purposed model can be

extended to use cloud where based on requirements environment

can be created dynamically and tests will be executed on it,

finally environment will be deleted after tests execution.

5. REFERENCES
[1] P. P. Bhanu Prakash Gopularam, Yogeesha C B, “Highly

scalable model for test execution in cloud environment,”

18th Annual International Conference on Advanced

Computing and communication, 2012.

[2] The architecture of open source applications,”

osabook.org/en/integration.html, August 2014.

[3] J. Humble and D. Farley, “Continuous delivery: reliable

software releases through build, test, and deployment

automation,” Addison-Wesley.

[4] “http://continuousdelivery.com/,” August 2014.

[5] http://in.wikipedia.org/wiki/continuousintegration,” August

2014

[6] http://www.ibm.com/developerworks/rational/library/contiu

ous-integration-agiledevelopment/,” August 2014.

[7] http://martinfowler.com/articles/continuousintegration.htm”

#building a feature with continuous integration, August

2014.

[8] M. Krishnan, “Software release management: a business

[9] perspective” center for Advances studies on collaborative

research, June 1994. M. J. A Lahtela, “Challenges and

problems in release management process: A case study,”

IEEE 2nd International Conference on Software

Engineering and Service Science (ICSESS), 2011.

[10] Continuous Delivery with Jenkins – Deliver Software

more quickly with Jenkins Workflow by “ClodBees

Enterprise”.

[11] http://www.cloudsidekick.com/blog/pipelineorchestration-

frameworks-part-two.html.

IJCATM : www.ijcaonline.org

