
MPGI National Multi Conference 2012 (MPGINMC-2012) “Advancement in Electronics & Telecommunication Engineering”

7-8 April, 2012 Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

4

Distributed Database: Concepts and Applications
Priyanka Singh

Department of Computer Engineering

CPC, Chandrapur, MS (India)

ABSTRACT
The author wants to submit the endeavor about the Distributed

Database storage concepts and usefulness in large enterprises.

One of the most useful storage technique for Distributed

Database is sharding and the concept of database sharding has

gained popularity over the past several years due to the

enormous growth in transaction volume and size of business-

application databases and database security also. Database

sharding can be simply defined as a "shared-nothing"

partitioning scheme for large databases across a number of

servers, enabling new levels of database performance and

scalability. If you think of broken glass, you can get the

concept of sharding—breaking your database down into

smaller chunks called "shards" and spreading them across a

number of distributed servers.

High performance web applications often reach the limits of

one database server. Such systems require a smart distribution

of data. Sharding is a mechanism that helps the application to

scale horizontal and gain responsibility by splitting

information across multiple servers. The paper will give an

introduction on sharding and possible implementations as well

as covering problems with this approach.

1. INTRODUCTION
Sharding is a database technique where you break up a big

database into many smaller ones. In other words, Sharding, or

horizontal partitioning, is the process of splitting a database

into separate instances (or shards) based on row data (as

opposed to columns, which is the process of normalization).

This process makes huge amounts of data more manageable

and consequently, can increase system performance (i.e.

queries are faster due to smaller table data).

Fragmentation has a very important role in distributed

databases. Fragmentation means partitioning of data .when the

data is very large partitioning is done to improve the

performance. This partitioning can be done horizontally or

vertically. Vertical partition can be performed easily using

normalization. As we normalize the data vertical

fragmentation is done. Horizontal fragmentation means to

store the different tuples at different places. This horizontal

fragmentation means Data Sharding.

Each partitioned forms part of a shard, which may be located

on a separate database server or physical location. The

advantage is the number of rows in each table is reduced (this

reduces index size, thus improves search performance).

dbShards is the industry’s first software product that allows

database sharding to be applied to existing applications and

databases with little or no modification to existing code.

Database sharding is a simple concept - instead of storing

application data in a single database on a single server with

shared CPU, memory and disk, the database is divided into a

number of smaller "shards", each of which can be hosted on

independent servers, with dedicated CPU, memory and disk,

therefore greatly reducing resource contention. Because each

shard is small, the database server can do a much better job of

storing indexes and query caches in memory, resulting in

significantly improved performance. Just as databases slow

down exponentially as they grow beyond the limits of a single

server, sharding a database can result in better-than-linear

performance gains.

2. THE SHARDING PROCESS
The sharding process includes a number of steps. The data is

divided into number of shards and the different shards are

stored on different servers. But here comes various problems

like joining .The sharding process does not includes

replication. Converting an existing application to work with

the sharded database is simply a matter of replacing the

database driver with the dbShards database driver as well as

installing and configuring dbShards replication and query

agents on each shard server. dbShards currently supports Java,

PHP and Ruby clients.

Using data sharding load of different servers can be

distributed. In data sharding different fragments are stored on

different nodes. each node maintains its copy of fragment.

For example if we want to store the data of bank branch wise

each branch will have the same fields but they will have

different rows.

Branch name Branch Address

Customer ID Customer

Name

Cust

Address

Phone no

Acc no Acc type Balance

In the above example each branch will have the tables but

will have different rows.

Accounts

Acc no Acc type Balance

1010010 SAVINGS 25000

1025639 SAVINGS 15000

1010010 SAVINGS 25000

1025639 SAVINGS 15000

2056987 CURRENT 32000

2056987 SAVINGS 50000

Shards are as follows:

Accounts with Branch 1

Acc no Acc type Balance

1010010 SAVINGS 25000

1025639 SAVINGS 15000

MPGI National Multi Conference 2012 (MPGINMC-2012) “Advancement in Electronics & Telecommunication Engineering”

7-8 April, 2012 Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

5

Accounts with Branch 2

Acc no Acc type Balance

3012562 CURRENT 300000

3256014 SAVINGS 12500

Accounts with Branch 3

Acc no Acc type Balance

2056987 CURRENT 32000

2056987 SAVINGS 50000

To keep the servers in the sharding system balanced we are

monitoring several parameters such as number of users, file

size of tables and databases, amount of read and write queries,

cpu load, etc. Based on those stats we can make decisions to

move shards to new or different servers, or even to move

users from one shard to another.

Move operations of single users can be done completely

transparently and online without that user experiencing

downtime. We do this by monitoring write queries. If we start

a move operation for a user, we start copying his data to the

destination shard. When a write query is executed for that

user, we abort the move process, clean up and try again later.

The Sharding Process is based on partitioning. If we want to

partition the data it can be done using σ operator. The

selection (σ) operator is used to partition the rows according

to the condition specified. Let us consider the complete

database as the master database and the result obtained after

the operation is called the slaves. The slave can again be

divided into slaves. The Account table as mention above is a

master table

And the accounts at branch 1, 2, 3 are the slaves. If each

branch have many account it can again be sharded.

Let us call master as M and Slaves as S.The master M2 will

act as M1 if the master M1 fails.

3. THE ADVANTAGES
 Easily available. If one box goes down the others

still operate.

 Speed Increases. As the amount of data is less thev

queries access is fast..

 More write bandwidth. With no master database

serializing writes you can write in parallel which

increases your write throughput. Writing is major

bottleneck for many websites.

 Extra work can be done. As the data is stored at

various sites Parallel processing can be done .

4. THE PROBLEMS
Along with the advantages.Sharding has some disadvantages

also which are as follows:

 Rebalancing data. Sometimes when the data is very

large.It has to be rebalanced because shards may be

smaller as compared to the data.

 Shards have to be rejoined. Data is stored at

different places which has to be rejoined for use.

 How do you partition your data in shards? What

data do you put in which shard? Where do

comments go? Should all user data really go

together, or just their profile data? Should a user's

media, IMs, friends lists, etc go somewhere else?

Unfortunately there are no easy answer to these

questions.

 Less leverage. People have experience with

traditional RDBMS tools so there is a lot of help out

there. You have books, experts, tool chains, and

discussion forums when something goes wrong or

you are wondering how to implement a new feature.

Eclipse won't have a shard view and you won't find

any automated backup and restore programs for

your shard. With sharding you are on your own.

 Implementing shards is not well supported. It is not

properly supported.

 Refrential integrity cannot be maintained . As the

data is stored on different database servers therefore

it is difficult to maintain the foreign key for

different servers because many database

management server does not support it.

denormalization and lack of referential integrity can

MPGI National Multi Conference 2012 (MPGINMC-2012) “Advancement in Electronics & Telecommunication Engineering”

7-8 April, 2012 Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

6

become a significant development cost to the

service.

 Rebalancing . As there may be difference be

difference in the data present in various

shards.Some may contain very large data and some

may not therefore it is necessary to rebalance the

data.

5. SOLUTION OF THE PROBLEMS
The difficulties of sharding are partially tackled by

implementations with these 3 technologies: Caching the

memory, parallel processing and full text search engine.

5.1 Caching the memory
It is a memory caching system for distributed database it

increases the speed of the database. This system is very fast.

This technique is called "memcached". By putting a memory

caching layer in between our application logic and the SQL-

queries to our shard database we are able to get results much,

much faster. This caching layer also allows us to do some of

the cross-shard data fetching, previously thought impossible

on SQL-level.

5.2 PARALLEL PROCESSING
Parallel processing increases the speed of execution. In

parallel processing several servers performs the task and each

server performs a small task. This in results increases the

performance.

It is not strange to fetch data stored on different shards in one

go, because most data is probably available from memory The

amount of actual database queries needed for this will be

small, and even so, the queries are simple and super fast

.Problem arises when a large amount of data is to be retrieved.

For this we've implemented a system for splitting up certain

big tasks into several smaller ones we can process in parallel.

It is actually faster to process 10 smaller tasks simultaneously

than to do the whole thing at once. The overhead of the extra

web requests and cpu cycles it takes to split up the task and

combine the results, are irrelevant compared to the gain.

5.3 Full text search engine(Sphinx)
Other typical queries that become impossible for sharded data

are overview queries. Say you'd like a page of all the latest

photos uploaded by all users If we have data distributed over a

hundred of databases, you'd have to query each, and then

process all of those results. Doing that for several features

would not be justifiable, so most of our "Explore" pages are

served from a different system. Sphinx is a free and open

source SQL full-text search engine. In fact a list of most

viewed videos of the day can also be a query result from

Sphinx. For most of the data on these overview pages it's not a

problem if the data isn't real time. So it's possible to retrieve

those results from indexes that are regularly built from the

data on each shard

6. DATA SHARDING IS UNIQUE WHY ?
Sharding is different than traditional database

architecture in several important ways:

 Data are denormalized. Traditionally we normalize

data. Data are splayed out into anomaly-less tables

and then joined back together again when they need

to be used. In sharding the data are denormalized.

You store together data that are used together.

 Data are parallelized across many physical

instances. Historically database servers are scaled

up. You buy bigger machines to get more power.

With sharding the data are parallelized and you

scale by scaling out. Using this approach you can

get massively more work done because it can be

done in parallel.

 Data are kept small. The larger a set of data a server

handles the harder it is to cash intelligently because

you have such a wide diversity of data being

accessed. You need huge gobs of RAM that may not

even be enough to cache the data when you need it.

By isolating data into smaller shards the data you

are accessing is more likely to stay in cache.

Smaller sets of data are also easier to backup, restore, and

manage.
 Data are more highly available. Since the shards

are independent a failure in one doesn't cause a

failure in another. Keeping multiple data copies

within a shard also helps with redundancy and

making the data more parallelized so more work can

be done on the data. You can also setup a shard to

have a master-slave or dual master relationship

within the shard to avoid a single point of failure

within the shard. If one server goes down the other

can take over.

6.1 Methods of Sharding
Sharding can be done in various ways .If we want to save

large amount of data on various servers it has to be divived

into many data bases .Some of the sharding schemes defined

as follows.

 Vertical Partitioning: In Vertical Partitioning the

data is stored to the related server.But there is a

problem that some server may have very large data

in that case again sharding is done.

 Range Based Partitioning: In range based sharding

a particular field is selected according to the value

of that field shard are made.It is necssary to look

after the fiel dwhich is selected because if the field

is not properly selected then There may be

imbalance in the shards.

 Key or Hash Based Partitioning: This is often a

synonym for user based partitioning for Web 2.0

sites. With this approach, each entity has a value

that can be used as input into a hash function whose

output is used to determine which database server to

use.

 Directory Based Partitioning: A loosely couples

approach to this problem is to create a lookup

service which knows your current partitioning

scheme and abstracts it away from the database

access code.

6.2 Partitioning vs. Sharding
A partition is a structure that divides a space into two parts.

Multiple partitions can break up that space into an arbitrary

number of parts. In computer operating systems, this even has

a more specific definition referring to the division of

resources into portions. As a verb it means to divide

something (typically a space) into small pieces.

Partitioning is a more general concept and it can be applied to

databases at many levels. One common use is taking a single

large table and splitting it into parts in order to place those

parts that are accessed more frequently on faster (more

MPGI National Multi Conference 2012 (MPGINMC-2012) “Advancement in Electronics & Telecommunication Engineering”

7-8 April, 2012 Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

7

expensive) storage. However, partitioning isn't limited to a

single machine. That partitioning schema was to allow use of

more than one (and even a different type/cost) disk spindle. It

can also be applied to multiple database instances; it is a loose

term. However, partitioning does not imply a logical

separation. Some partitioning schemes require mapping

questions across many nodes and some partitioning schemes

provide a priori knowledge about which components hold

what data allowing more targeted questioning.

A shard is a piece of broken ceramic, glass, rock (or some

other hard material) and is often sharp and dangerous.

Sharding is the act of creating shards. Sharding really is

different than database partitioning. With partitioning, you

traditionally split up your logical data model into parts and put

each of the data partitions on different servers. One logical

record in a partitioned database usually has its information

stored across each of the partitions. Sharding differs from data

partitioning in two ways. Firstly, each database server is

identical, having the same table structure. Secondly, the data

records are logically split up in a sharded database. Unlike the

partitioned database, each complete data record exists in only

one shard in that database. You may not like the terminology

used, but this does represent a different way of organizing a

logical database into smaller parts.

As we understand, the difference between partitioning and

sharding is that sharding applies specifically to the technique

of horizontal partitioning, whereas partitioning itself could be

either horizontal or vertical. The term sharding is slightly

more specific.

7. CONCLUSION
OUR PERSONAL INFORMATION IS IMPORTANT TO ALL OF US. WE

WANT TO BE ABLE TO SHOP ONLINE AND HAVE GOODS

DELIVERED TO OUR DOOR. WE WANT RESPONSIVE, ACCESSIBLE

AND INDIVIDUALIZED PUBLIC SERVICES. THEREFORE, THE

authors want to bring into light the concept of data sharding

and the problems Faced by data sharding. Data sharding

makes the query processing faster. Extra work can be done in

less time .The data sharding approach needs data security

which can be explored more widely

8. REFERENCES
[1] www.mongodb.org/display/DOCS/Sharding+Introductio

n

[2] www.datacenterknowledge.com

[3] www.genomel.org

[4] www.icpsr.umich.edu

[5] Sharing Data from Large-scale Biological Research

Projects: A System of Tripartite Responsibility

(Wellcome Trust, 2003); available at

http://www.wellcome.ac.uk/stellent/groups/corporatesite/

@policy_communications/documents/web_document

[6] http://lifescaler.com/2008/04/database-sharding-

unraveled-part-i/

[7] Kraitchik, M. "The Unfinished Game." §6.1 in

Mathematical Recreations. New York: W. W. Norton,

pp. 117-118, 1942.

[8] www.wow.com/2009/

[9] 08/19/wow-rookie-sharding-etiquette/

