
MPGI National Multi Conference 2012 (MPGINMC-2012) “Advancement in Electronics & Telecommunication Engineering”

7-8 April, 2012 Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

10

Customized Multiprocessor Scheduling Algorithms for
Real time Systems

Komal S. Bhalotiya

Department of Computer Science & Engineering G. H. Raisoni College of Engineering, Nagpur

Abstract
For variety of reasons comprising instruction level

parallelism, power consumption and memory speed mismatch,

many of the chip manufacturers are moving towards the

development of multicore processors. Multiprocessors are

considered as a powerful computing resource because of their

reliability and high performance.

Such Multiprocessor Real time system requires an efficient

algorithm to determine when and on which processor a given

task should execute. This paper presents a comparative study

of different customized Multiprocessor scheduling algorithms

which are for specific performance parameters and which

maximizes the real time tasks that can be processed without

violating timing constraints.

Keywords
Real Time Operating System, Multi-Processor, Scheduling

Algorithm.

1. INTRODUCTION
In today’s Embedded system, Multi-Processor system are

becoming the norm with increasing demand for higher

performance under limited budgets. Real time systems are

defined as those systems in which the correctness of system

depends not only on the logical result of computation, but also

on the time at the results are produced. If result is not obtained

within limited time then result may be incorrect or no

meaning of that result In such a type of system result must be

obtained within the limited time constraints.Multi-Processors

have appeared as a powerful computing means for running

real time applications. An efficient scheduling algorithm is

required to decide when and on which processor the given

task should execute. Hence, the OS scheduler that assigns

tasks to different processors is the crucial component for the

performance of the real time systems on Multi-Processor.

Scheduling is an important aspect in real time system to

ensure soft/hard timing constraints. Real time systems make

use of scheduling algorithms to maximize number of real time

task that can be processed without violating timing

constraints.

The performance of each and every scheduling algorithm

depends on performance parameters. The following are some

performance parameters of the Scheduling algorithms.

1.1 CPU Utilization
In the Multiprocessor Real time Operating System, CPU

utilization is the parameter which is very important. All the

processors in the system must be effectively utilized.

1.2 Task Migration
Task Migration is the performance parameter which measures

the Number of context switches of the task on different

processors.

1.3 Number of Preemption
It measures the number of preemptions of a task by a Higher

Priority task.

1.4 Less Execution Time
This parameter measures the time taken by a scheduler for

execution of a task.

1.5 Success Ratio
Success Ratio is the ratio of Number of tasks successfully

scheduled to the Total Number of tasks arrived at the

scheduler.

1.6 High Throughput
Scheduler must be able to achieve high Throughput.

1.7 Resource Utilization
In addition to the CPU Utilization, there should be the optimal

use of system resources in Multi-Processor environment.

1.8 Effectiveness
Effectiveness of a Scheduler can be measured on any factor

for example, Energy.

2. ALGORITHMS

2.1 Adaptive scheduling Algorithm
Adaptive scheduling algorithm is the combination of

ACO(Ant colony Optimization) Scheduling Algorithm and

EDF (Earliest Deadline First) Scheduling Algorithm for real

time tasks on Multi-Processor environment. This adaptive

algorithm is very useful when future workload condition of

the system is unpredictable. This algorithm can automatically

switch between EDF and ACO.During underload condition,

the algorithm uses EDF Algorithm and priority of job will be

decided dynamically depending on its deadline. During

Overload condition, it uses ACO based Algorithm in which

priority of the jobs will be decided depending on the

pheromone value laid on each schedulable task and heuristic

function.The performance of this algorithm is measured in

terms of 2 performance parameters which are success ratio

and Effective CPU utilization. In real time systems for

measuring the performance of a scheduling algorithm the

most important performance parameter is success ratio which

determines whether the task is meeting its deadline. Success

ratio is defined as the ratio of Number of tasks successfully

scheduled to the total number of tasks arrived. In this

algorithm effective CPU Utilization is considered as another

performance parameter .Effective CPU Utilization is the ratio

of summation of computation time of a task to the total time

of scheduling.[2]

MPGI National Multi Conference 2012 (MPGINMC-2012) “Advancement in Electronics & Telecommunication Engineering”

7-8 April, 2012 Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

11

2.2 FPZL scheduling Algorithm
This algorithm is based on the state of zero laxity. Zero laxity

is the state where execution time is equal to its deadline.

In this algorithm the task reaches a state of zero laxity it is

given the highest priority.The priorities of all the tasks are

considered as fixed until it reaches to a state of zero laxity.

This algorithm is also known as a minimally dynamic

algorithm because priority of a task can change at most once

during its run time. Hence this algorithm bounds the number

of preemptions which is very important performance

parameter. The performance of this algorithm is measured in

terms of Deadline analysis, CPU Utilization and response

time performance parameters.[3]

2.3 IUF scheduling Algorithm
This algorithm targets the soft real time systems. It schedules

the periodic tasks. This algorithm is based on instantaneous

Utilization Factor [IUF]. Instantaneous utilization Factor

[IUF] is the processor utilization of a task at any time instant.

Here for every task after one time quantum the instantaneous

utilization of task is computed. The task having highest

instantaneous utilization is given the highest priority and task

is given to the processor. The quantum for which task is

applied to CPU is Qi. The total sum of quantum of all task(for

that quantum iteration only) is ΣQi=Q. Here,the Periodic task

cycle(PTC) is computed for a given task set which is the LCM

of period of invocation of all tasks. After computation of

initially the CPU utilization is computed. CPU Utilization is

the ratio of initial computation time and its initial period.

Depending on this initial utilization the task having highest

initial utilization is mapped to the CPU. At this point of time

In a given PTC one task has executed for one time

quantum.Now for calculating new instantaneous utilization

factor agin the value of computation time and period is

computed.For computing new computation time, the total sum

of quantum of all task is subtracted from the previous

computation time. In a similar way the new period is

calculated. After this ,the new instantaneous utilization is

computed. Likewise the process will be repeated.[3]

Using this algorithm we can easily compute that whether any

task is going to miss its deadline or not which is a very critical

performance parameter in real time systems.In addition to this

the algorithm gives good schedulability, predictability and

sustainability.

2.4 Modified IUF scheduling Algorithm
In many situations it is desirable to complete the important

portion of every task rather than giving up completely the

processing of some task. This is the aim of this algorithm to

meet the deadline constraints. This is modified algorithm of a

IUF scheduling Algorithm where it may be possible that some

tasks may be given up completely by the scheduler In addition

to that there is one more drawback in IUF scheduling

algorithm that the context switching between tasks is very

high. Hence this type of algorithm can only work in soft real

time systems.

So in order to overcome the drawback of IUF scheduling

algorithm and to reduce the context switching there was need

to modify the IUF scheduling Algorithm.This algorithm was

named by authors as “Modified Scheduling Algorithm”. In

this algorithm to schedule the important portion of every

task,each taskis logically divided into 2 parts mandatory and

optional. Mandatory portion is the portion which is the

important portion of a task and which should always be

executed.optional portion is the portion which is less

important and can be given up by the scheduler.All mandatory

portions of the tasks are scheduled according to the

instantaneous utilization like IUF.In this algorithm first all the

mandatory portions of every task is scheduled first and then

the optional portions are considered for scheduling. For

scheduling mandatory portion of every task first the CPU

Utilization is computed.CPU Utilization is ratio of the initial

computation time of task to their initial period.Rest of the

procedure is same as that of IUF scheduling algorithm where

after generating the CPU mapping for tasks,the mandatory

portions of tasks are executed according to the highest

instantaneous utilization. After scheduling all the mandatory

portions the optional portions are to be scheduled. for this the

shortest job First policy is employed.[4]

In this proposed algorithm authors have concluded that

context switching, CPU Utilization and response time has

been increased as compared to the IUF scheduling algorithm.

2.5 Incremental GA scheduling

Algorithm
A novel Genetic Algorithm Scheduling Algorithm is having

two unique features which distinguishes this GA from

Traditional GA.First it uses flexible representation style which

allows the GA to evolve both the structure and the value of

the solutions.Because of above reason this GA possess the

ability to identify and retail good building blocks.Second, this

GA uses dynamically incremental fitness function which starts

out rewarding for simpler goals, gradually increasing the

difficulty of the desired fitness values or goals until a full

solution is found. As a result, ourGAplaces no restrictions

on the individuals that can be formed and does not require

special operators or repair mechanisms to ensure

validity.The modified versions of crossover and mutation

operators are used.The advantage of this GA algorithm are

that it is simple to use,requires minimal problem specific

information and it is able to effectively adapt in

dynamically changing environments[5].

3. COMPARISON BETWEEN

DIFFERENT MULTI-PROCESSOR

SCHEDULING ALGORITHM
The following table shows the comparative study between

these customized scheduling algorithms for multi-Processor

real time system on the basis of performance parameters

concentrated.

Table 1: Comparison between different Multi-Processor

Scheduling algorithm on the basis of performance

parameters considered

Algorithm
Performance parameter

Concentrated

Adaptive Scheduling

Algorithm

Effective CPU Utilization and

Success Ratio

FPZL
Deadline Analysis, CPU

Utilization and Response Time

IUF
Deadline analysis, CPU

Utilization

Modified IUF
Number of preemptions, CPU

Utilization, Response time

MPGI National Multi Conference 2012 (MPGINMC-2012) “Advancement in Electronics & Telecommunication Engineering”

7-8 April, 2012 Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

12

Algorithm
Performance parameter

Concentrated

Incremental GA
CPU Utilization, Resource

Utilization

4. CONCLUSION
In this paper, some customized algorithms are reviewed and a

comparative study has been done on the basis of performance

parameters considered for measuring effectiveness of

algorithms. As all the algorithms are for scheduling tasks on

Multi-processor real time systems, one parameter which is

common in all the algorithms for measuring and comparing

their performance with other algorithm is CPU Utilization. In

future, one adaptive algorithm can be developed which will

be a combination of two or more algorithms for increasing the

performance of a System. For Example, the FPZL and

Modified IUF algorithm can be combined to make a new

algorithm which will increase the performance of a Multi-

Processor Real time system. Using this combination of

algorithms maximum performance parameters can be covered

and effectiveness of the system can be achieved.

5. REFERENCES
[1] K. Ramamritham, J.A. Stankovic, and P. F. Shiah,

"Efficient Scheduling Algorithms for Real-Time

Multiprocessor Systems," IEEE Trans. Parallel and

Distributed Systems, vol. 1, no. 2, pp. 184194, Apr.

1990.

[2] Apurva shah,ketan Kotecha,“Adaptive Scheduling

Algorithm for real time multiprocessor System”,IEEE

Advance computing Conference,2009.

[3] Robart Devis,”FPZL Schedulability Analysis”, IEEE

Real time and embedded Technology and Application

Symposium,2011.

[4] Radhakrishna Naik, Vivek Joshi , R.R. Manthalkar,” IUF

Scheduling Algorithm for improving

schedulability,predictability and sustainability of the real

time system”, Second International Conference on

Emerging Trends in Engineering and Technology,

ICETET-2009.

[5] Radhakrishna Naik, R.R. Manthalkar, Mukta

Dhopeshwarkar” Modified IUF Scheduling Algorithm

for Real time Systems”, Third International Conference

on Emerging Trends in Engineering and

Technology,2010 .

[6] Annie s. Wu,han yu,kuo chi lin.”An incremental Genetic

Algorithm Approach to multiprocessor

Scheduling”,IEEE Transaction on Parallel and

Distributed System,2004.

[7] S. R. Vijayalakshmi,Dr. G. Padmavathi,”A Performance

study of GA and LSH in multiprocessor Job

Scheduling,International Journal Of Computer

Science,2010

[8] Geoffery Black,Ronald Dreslinski,Trevor Mudge,”A

Survey of Multicore Processors”,2009.

[9] K. Ramamritham, J.A. Stankovic, and P. F. Shiah,

"Efficient Scheduling Algorithms for Real-Time

Multiprocessor Systems," IEEE Trans. Parallel and

Distributed Systems, vol. 1, no. 2, pp. 184194, Apr.

1990.

[10] J. Carpenter, S. Funk, et al. A categorization of real-time

multiprocessor scheduling problems and algorithms. In J.

Y. Leung, editor, Handbook on Scheduling Algorithms,

Methods, and Models, page 30.130.19 , 2004.

[11] K. Lakshmanan, Rajkumar,“Scheduling Parallel Real

time Tasks on Multicore Processors”,Real Time System

Symposium,IEEE 2010.

[12] Fanxin Kong,yang yi,qingxu deng,”Energy Efficient

Scheduling of Real time tasks on Cluster based

Multicores”,2011.

[13] Jinkyu lin,Insik Shin,“LLF Schedulability Analysis on

multiprocessor System”,Real time system

symposium,2010.

[14] Geoffrey Blake, Ronald G. Dreslinski, and Trevor

Mudge,”A survey of multicore Processors”,November

2009.

[15] Mostafa R. Mohamed, Medhat H. A. Awadalla,”Hybrid

Algorithm for Multiprocessor task scheduling”, IJCSI

International Journal of Computer Science Issues, Vol. 8,

Issue 3, No. 2, May 2011.

[16] Oscar H. Ibarra and Chul E. Kim,” Heuristic Algorithms

for scheduling Independnt tasks on non-identical

processors”, Journal of association for computing

machinery,vol 24,no 2, April 1977,pp 280-289.

[17] Dan McNulty, Lena Olson, Markus Peloquin,”A

comparision of scheduling algorithms for

multiprocessors”, December 2010.

[18] Sanjoy K. Baruah, Member, IEEE, and Joe¨ l Goossens,”

Rate-Monotonic Scheduling on Uniform

Multiprocessors”, IEEE Transactions on Computers,

VOL. 52, NO. 7, JULY 2003.

[19] Jia Xu,” Multiprocessor Scheduling of Processes with

Release Times, Deadlines, Precedence, and Exclusion

Relations” IEEE Transactions on Software Engineering,

VOL. 19, NO. 2, FEBRUARY 1993 .

