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ABSTRACT  

In this paper, we present a new approach to deal with the 

noise inherent in the microarray image processing procedure. 

The method is based on the following procedure: We apply 1) 

Bidimentional Discrete Wavelet Transform (DWT-2D) to the 

Noisy Microarray, 2) scaling and rounding to the coefficients 

of the highest subbands (to obtain integer and positive 

coefficients), 3) bit-slicing to the new highest subbands (to 

obtain bit-planes), 4) then we apply the Systholic Boolean 

Orthonormalizer Network (SBON) to the input bit-plane set 

and we obtain two orthonormal otput bit-plane sets (in a 

Boolean sense), we project a set on the other one, by means of 

an AND operation, and then, 5) we apply re-assembling, and, 

6) rescaling. Finally, 7) we apply Inverse DWT-2D and 

reconstruct a microarray from the modified wavelet 

coefficients. Denoising results compare favorably to the most 

of methods in use at the moment. 

1.  INTRODUCTION 
A microarray is affected by noise in its acquisition and 

processing. Microarray denoising is used to remove the 

additive noise while retaining as much as possible the 

important image features. In the recent years there has been an 

important amount of research on wavelet thresholding and 

threshold selection for bioimages denoising, e.g., microarray 

images [1], [2], because wavelet provides an appropriate basis 

for separating noisy signal from the image signal. The 

motivation is that as the wavelet transform is good at energy 

compaction, the small coefficients are more likely due to 

noise and large coefficient due to important signal features 

[3]-[5]. These small coefficients can be thresholded without 

affecting the significant features of the image. 

In general, the results of the microarray processing combine 

two sample images that after further image processing, gene 

expression data can be produced for further analysis, such as 

gene clustering or identification [1], [2]. These three crucial 

steps, experiment, image processing and data analysis, 

determine the success or not of the microarray analysis. Image 

processing plays a potentially large impact on the subsequent 

analysis. In recent years, a large number of commercial tools 

have been developed in microarray image processing [1], [2]. 

The tasks of all these tools mainly focus on two major targets, 

namely: spot segmentation and spot intensity extraction. 

However, the quality of the images from the experiments is 

not always perfect. The gene array experiments involve a 

large number of error-prone steps which lead to a high level of 

noise in the resulting images [1], [2]. Hence, the accuracy of 

the gene expressions derived from these images will 

largely be affected in the process. 

In order to assure the accuracy of the gene expression, 

normally the replicated experiments and incorporated 

statistical methods are needed to estimate the errors [1], [2]. 

These methods deal mainly with measurement error, such as 

preparation of the sample, cross hybridization, and fluctuation 

of fluorescence value from gene to gene. But none deals 

particularly with the effect of the noise [1], [2]. 

In fact, the thresholding technique is the last approach based 

on wavelet theory to provide an enhanced approach for 

eliminating such noise source and ensure better gene 

expression. Thresholding is a simple non-linear technique, 

which operates on one wavelet coefficient at a time. In its 

basic form, each coefficient is thresholded by comparing 

against threshold, if the coefficient is smaller than threshold, 

set to zero; otherwise it is kept or modified. Replacing the 

small noisy coefficients by zero and inverse wavelet transform 

on the result may lead to reconstruction with the essential 

signal characteristics and with less noise. Since the work of 

Donoho & Johnstone [5], there has been much research on 

finding thresholds, however few are specifically designed for 

images [3], [4], [6]. 

2. BIDIMENTION DWT AND SBON 

2.1 Bidimensional Discrete Wavelet 

Transform 
The Bidimensional Discrete Wavelet Transform (DWT-2D) 

[8]-[17] corresponds to multiresolution approximation 

expressions. In practice, multiresolution analysis is carried out 

using 4 channel filter banks composed of a low-pass and a 

high-pass filter and each filter bank is then sampled at a half 

rate (1/2 down sampling) of the previous frequency. By 

repeating this procedure, it is possible to obtain wavelet 

transform of any order. The down sampling procedure keeps 

the scaling parameter constant (equal to ½) throughout 

successive wavelet transforms so that is benefits for simple 

computer implementation. In the case of an image, the 

filtering is implemented in a separable way be filtering the 

lines and columns.  

2.2 Synthetic Boolean Orthonormalizer 

Network  
The SBON was introduced by Mastriani [19] as a Boolean 

Orthonormalization Process (BOP) to convert a 

nonorthonormal Boolean basis, i.e., a set of non-orthonormal 

binary vectors (in a Boolean sense) to an orthonormal Boolean 

basis, i.e., a set of orthonormal binary vectors (in a Boolean 

sense). The BOP algorithm has a lot of fields of applications, 

e.g.: Steganography, Hopfield Networks, Boolean Correlation 

Matrix Memories, Bi-level image processing, lossy 

compression, iris, fingerprint and face recognition, improving 

edge detection and image segmentation, among others. That is 

to say, all those applications that need orthonormality in a 

Boolean sense. It is important to mention that the BOP is an 

extremely stable and fast algorithm.  
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2.3 Noise Sources and Its Statistical 

Measurement in Microarray Imaging  
It is well known microarray technology can monitor thousand 

of DNA sequences in a high density array on a glass. The 

basic procedure for a microarray experiment is simply 

described as follow. Two mRNA samples are reverse-

transcribed into cDNA, labeled using different fluorescent 

dyes (e.g., the red fluorescent dye Cy5 and the green 

fluorescent dye Cy3), then mixed and hybridized with the 

arrayed DNA sequences. After this competitive hybridization, 

the slides are imaged using a scanner which makes 

fluorescence measurement for each dye. From the differential 

hybridization of the two samples, the relative abundance of 

the spotted DNA sequences can be assessed. 

Exciting methods to reduce the noise source include using 

clean glass slide and using a higher laser power rather than 

higher PMT voltages. However, there are not adequate for the 

required image qualities and an enhanced software procedure 

embedded within the process in a much better alter-native. 

Here, we focus on the implementation of the SBON method 

(in wavelet domain) to the denoising on microarray images 

[2]. Yet there are some fundamental obstacles that need 

clarification before the full potential of microarrays can be 

explored. One of the major problems in interpretation of 

microarray data is that different clustering techniques produce 

different results.  

On the other hand, the assessment parameters that are used to 

evaluate the performance of noise reduction [20], [21] are the 

following ones:  

Average Absolute Difference   (AAD):   

AAD =                                         (1) 

Peak Signal to Noise Ratio     (PSNR): 

PSNR =                                    

(2) 

Signal to Noise Ratio (SNR):        

SNR =         

(3) 

Image Fidelity (IFy): 

IFy = 1 -                               

(4) 

Correlation Quality (CQy):     

CQy =          

(5) 

Structural Content (SCt): 

SCt =               (6) 

Where for an image of R*C (rows-by-columns) pixels, r 

means row, c means column, I means original image (without 

noise), and Id means denoised image. Such as, a lower AAD 

gives a “cleaner” image as more noise is reduced; larger SNR 

and PSNR indicates a smaller difference between the original 

(without noise) and denoised image; if IFy and SCt spread at 

1, we will obtain an image Id of better quality; and a larger 

value of CQy usually corresponds to a better quantitative 

performance [20], [21]. 

3. LITERATURE SURVEY 
Microarrays have become the tool of choice for the global 

analysis of gene expression. Powerful statistical tools are now 

available to analyze this expression and to gain an 

understanding of how changes in gene expression patterns 

impact biological systems. Innovations have been made since 

the origin of this imaging technique which dates back to the 

1970s [23]. The analysis of such data has become a 

computationally- intensive task that requires technological 

developments at various stages, from the design of the array, 

to image analysis, database storage, data processing and 
clustering and information extraction. Further progress has 

been made in biology research and genomic clinical diagnosis. 

In recent years, a large number of commercial tools have been 

developed for microarray image processing Microarray arrays 

are a scientific tool that should be viewed in a similar fashion 

to any other laboratory technique with careful experimental 

planning, replication, and proper statistical analysis. A lot of 

research has been conducted to examine these data with 

statistical techniques to help discern possible patterns in the 

data. 

Among other approaches used for microarray image denoising 

and enhancement are the iterative normalization of cDNA 

microarray data [24] and the image reconstruction technique 

(IRT) introduced by O’Neill and Magoulas [25]. 

A Method based on fuzzy vector filtering has also been used 

for processing microarray images [26]. 

Other methods based on the wavelet transform [27] and 

cellular networks [28] have also been used for this purpose 

[29, 30]. 

Wang et al. [31] proposed enhancing the microarray image 

using the stationary wavelet transform (SWT) [32]. 

Another approach based on a variant of the translation-

invariant wavelet transform was proposed by Adjeroh [33]. 

4.  DISCUSSION 
The simulations demonstrate that the SBON technique 

improves the noise reduction performance to the maximum, 

for bioimages. Here, we present a set of experimental results 

using two bioimages. Such images were converted to bitmap 

file format for their treatment [22]. 

For statistical filters employed, i.e., Median, Lee, Kuan, 

Gamma-Map, Enhanced Lee, Frost, Enhanced Frost, Wiener, 

DS, and EDS, we use a reduction scheme [22]. Figure 2 

shows the noisy (30 %) and filtered microarray images used in 

the first experiment of [1], with a 274-by-274 (pixels) by 

65536 (gray levels) bitmap matrix. Table 1 summarizes the 

assessment parameters vs. 19 filters for Fig. 2, where En-Lee 

means Enhanced Lee Filter, En-Frost means Enhanced Frost 

Filter, ST means Soft-Thresholding, HT means Hard- 

Thresholding and SST means Semi-Soft-Thresholding.  

The assessment parameters were applied to the whole image. 

Figure 3 shows the noisy (10 %) and filtered microarray 

images used in the second experiment of [1], with a 256-by- 

256 (pixels) by 65536 (gray levels) bitmap matrix. Table 2 



MPGI National Multi Conference 2012 (MPGINMC-2012)      “Advancement in Electronics & Telecommunication Engineering” 

7-8 April, 2012                              Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887 

20 

summa-rizes the assessment parameters vs. 19 filters for 

Figure 2. In both cases, the bioimages were processed by 

using 10 statistical filters, VisuShrink with Daubechies 4 

wavelet basis and 1 level of decomposition (improvements 

were not noticed with other basis of wavelets) [2], [3], [5], [6], 

[22], SureShrink, Oracle-Shrink, BayesShrink, NormalShrink, 

TNN [5]-[7], [22], and SBON respectively. Figures 2 and 3 

summarize the edge preservation performance of the SBON 

technique vs. the rest of the filters with a considerably 

acceptable computational complexity. A 3-by-3 kernel was 

employed for all statistic noise filters. For TNN [7] the 

empirical function parameter value λ = 0.01. 

For Lee, Enhanced Lee, Kuan, Gamma, Frost and Enhanced 

Frost filters the damping factor is set to 1, see [3], [22]. The 

quantitative results of Table 1 and 2 shows that the SBON 

technique can eliminate noise without distorting useful image 

information and without destroying the important image 

edges. 

Also, in the experiment, the SBON outperformed the 

conventional and no conventional noise reducing filters in 

terms of edge preservation measured by Pratt figure of merit 

[21]. In nearly every case in every homogeneous region, the 

SBON produced the lowest standard deviation and was able to 

preserve the mean value of the region. 

The numerical results are further supported by qualitative 

examination, as shown in Fig. 2 and 3. 

On the other hand, all filters was applied to complete image, 

for Figure 2 (274-by-274) pixels and Figure 3 (256- by-256) 

pixels, and all the filters were implemented in MATLAB® 

(Mathworks, Natick, MA) on a PC with an Athlon (2.4 GHz) 

processor. 

5. CONCLUSION 
In this paper we have developed a SBON technique based 

tools for removing additive noise in microarrays. The 

simulations show that the SBON have better performance than 

the most commonly used filters for microarrays (for the 

studied benchmark parameters) which include statistical 

filters, wavelets, and a version of TNN. The SBON exploits 

the local coefficient of variations in reducing noise. The 

performance figures obtained by means of computer 

simulations reveal that the SBON technique provides superior 

performance in comparison to the above mentioned filters in 

terms of smoothing uniform regions and preserving edges and 

features. The effectiveness of the technique encourages the 

possibility of using the approach in a number of ultrasound 

and radar applications. Besides, the method is computationally 

efficient and can significantly reduce the noise while 

preserving the resolution of the original microarray image. 

Considerably increased Pratt’s figure of merit strongly 

indicates improvement in detection performance. Also, 

cleaner images suggest potential improvements for 

classification and recognition. On the other hand, the 

drawback of applying the developed SBON technique for 

removing additive noise in microarrays is the increase in the 

computational complexity, for blame of the slicing process. 

Finally, the natural extension of this work is in Synthetic 

Aperture Radar (SAR) images, as well as in multimedial 

applications. 

 
Fig.1 Microarray Denoising 
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Fig. 3 Original, noisy and filtered images 

TABLE I ASSESSMENT PARAMETERS VS. FILTERS FOR FIGURE 2 

 

Filter 
Assessment Parameter 

AAD SNR PSNR IF CQ SC FOM 

En-Frost 38.2653  3.4464 33.7364 0.7109 150.7467 0.5663 0.39857 

En-Lee 39.7437  3.3363 33.8373 0.7112 150.7472 0.5632 0.49876 

Frost 38.4374   3.2423 33.7033 0.7106 150.5244 0.5689 0.48756 

Lee 39.2427   3.4242 32.6363 0.7015 150.4141 0.5924 0.43447 

Gamma 39.6252   3.1112 33.2703 0.7063 150.1918 0.5751 0.44235 

Kuan 39.8224  3.1243 31.8272 0.7041 149.3121 0.5715 0.45342 

Median 39.5252  3.1131 32.7916 0.6852 148.9172 0.5896 0.40704 

Wiener 39.1829  3.4557 33.7033 0.7106 150.5244 0.5689 0.44236 

DS 38.7332  3.4657 33.9997 0.7169 150.9898 0.5599 0.64111 

EDS 38.1484  3.6969 34.1315 0.7182 151.5252 0.5612 0.64324 

VisuShrink (ST) 39.1450  3.4596 33.7412 0.7109 151.1527 0.5657 0.44382 

VisuShrink (HT) 38.8612  3.5283 34.4115 0.7166 151.3316 0.5666 0.44324 

VisuShrink (SST) 38.1829 3.5557 34.7033 0.7196 151.9202 0.5612 0.46432 

SureShrink 38.1612 3.5751 34.7193 0.7198 151.9244 0.5611 0.43322 

OracleShrink 38.1189  3.6957 34.7233 0.7198 151.9844 0.5619 0.45534 

BayesShrink 38.1145   3.6968 34.7237 0.7199 151.9953 0.5612 0.46329 

NormalShrink 38.1098  3.6998 34.8734 0.7199 151.9983 0.5609 0.59333 

TNN 38.1008  3.7157 34.8833 0.7199 151.9992 0.5600 0.65432 

SBON 37.7155  3.7772 36.8388 0.7353 155.4613 0.5513 0.69123 

 

 

TABLE II ASSESSMENT PARAMETERS VS. FILTERS FOR FIGURE 3 

Filter 
Assessment Parameter 

AAD SNR PSNR IF CQ SC FOM 

En-Frost 12.4747 290.1324 363.6712 0.9830 226.4744 0.8972 0.41265 

En-Lee 12.8474 290.2522 363.9321 0.9883 226.8373 0.8932 0.51986 

Frost 12.1847 290.2772 363.0233 0.9828 226.3272 0.8923 0.55312 

Lee 12.3733 290.2333 363.0238 0.9838 226.2822 0.8943 0.44421 

Gamma 12.3830 290.8331 363.3433 0.9882 226.8383 0.8934 0.51235 

Kuan 12.3833 290.8272 363.4923 0.9887 226.8381 0.8934 0.54129 

Median 12.9973 289.1212 361.8374 0.9673 225.9287 0.8734 0.51286 

Wiener 11.9042 290.8635 363.5568 0.9866 226.8901 0.8954 0.56413 

DS 11.4572 290.9950 363.9393 0.9898 226.9723 0.8993 0.64213 

EDS 11.5792 290.9998 363.9865 0.9899 226.9975 0.8993 0.64449 

VisuShrink (ST) 11.9055 289.2367 361.5523 0.9761 222.7564 0.8872 0.51228 

VisuShrink (HT) 11.9042 290.8673 363.5615 0.9966 226.8909 0.8976 0.56424 

VisuShrink (SST) 11.7864 290.9546 363.9822 0.9975 226.8937 0.8984 0.56389 

SureShrink 11.7074 291.0753 363.8343 0.9991 226.8942 0.8991 0.57432 

OracleShrink 11.8436 290.9332 363.7363 0.9968 226.8963 0.8983 0.55234 

BayesShrink 11.9353 290.9363 363.7361 0.9923 226.8942 0.8962 0.56328 

NormalShrink 11.6875 290.9992 363.9353 0.9992 226.9021 0.8999 0.59611 

TNN 11.4447 291.7243 363.9991 0.9994 226.9732 0.9002 0.62900 

SBON 10.9071 294.9237 383.1090 0.9992 229.8972 0.9173 0.69322 

 
 

 


