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ABSTRACT  
 Design and implementation of an application-layer data 

throughput prediction and optimization service for many-task 

computing in widely distributed environments. This service 

uses multiple parallel TCP streams to improve the end-to-end 

throughput of data transfers. A novel mathematical model is 

developed to determine the number of parallel streams, 

required to achieve the best network performance. This model 

can predict the optimal number of parallel streams with as few 

as three prediction points. We implement this new service in 

the Stork Data Scheduler. We propose Stork data transfer jobs 

with optimization service can be completed much earlier 

compared to non-optimized data transfer jobs.      
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1. INTRODUCTION  
Many-Task Computing can play a significant role in making 

such predictions feasible. In a widely distributed many-task 

computing environment, data communication between 

participating clusters may become a major performance 

bottleneck. Provide high speed network connectivity to their 

users. Majority of the users fail to obtain even a fraction of the 

theoretical speeds promised by these networks due to issues, 

such as suboptimal TCP tuning, disk performance bottleneck 

on the sending and/or receiving ends, and server processor 

limitations. This implies that having high-speed networks in 

place is important, but not sufficient. Being able to effectively 

use these high speed interconnects is becoming increasingly 

important to achieve high-performance many-task computing 

in widely distributed setting.    

The end-to-end performance of a data transfer over the 

network depends heavily on the underlying network transport 

protocol used. TCP is the most widely adopted transport 

protocol, however, its AIMD behavior to maintain fairness 

among streams sharing the network prevents TCP to fully 

utilize the available network bandwidth. This becomes a 

major bottleneck, especially in wide-area high speed 

networks, where both bandwidth and delay properties are too 

large, which, in turn, results in a large delay before the 

bandwidth is fully saturated. There have been different 

implementation techniques, both at the transport and 

application layers, to overcome the inefficient network 

utilization of the TCP protocol. At the transport layer, 

different variations of TCP have been implemented to more 

efficiently utilize high-speed networks. At the application 

layer, other improvements are proposed on top of the regular 

TCP, such as opening multiple parallel streams or tuning the 

buffer size. When applications use the obvious round robin 

scheduling algorithm for multiplexing data blocks, differences 

in transmission rate between individual TCP streams can lead 

to significant data block reordering. This forces the de-

multiplexing receiver to buffer out-of-order data blocks, 

consuming memory and potentially causing the receiving 

application to stall.  

 

TCP is the most widely adopted transport protocol; however, 

its AIMD behavior to maintain fairness among streams 

sharing the network prevents TCP to fully utilize the available 

network bandwidth. This becomes a major bottleneck, 

especially in wide-area high speed networks, where both 

bandwidth and delay properties are too large, which, in turn, 

results in a large delay before the bandwidth is fully saturated. 

Using too many streams can bring the network to a congestion 

point very easily, especially for low bandwidth networks, and 

after that point, it will only cause a drop in the performance.  

 

For high-speed networks, use of parallel streams may 

decrease the time to reach optimal saturation of the network. 

Not to cause additional processing overhead, we still need to 

find the optimal parallelism level, where the achievable 

throughput becomes stable. Unfortunately, it is difficult to 

predict this optimal point, and it is variable over some 

parameters, which are unique in both time and domain. 

Hence, the prediction of the optimal number of streams is 

very difficult and cannot be done without obtaining some 

parameters regarding the network environment, such as 

available bandwidth, RTT, packet loss rate, bottleneck link 

capacity, and the data size. 

Design and implementation of a service that will provide the 

user with the optimal number of parallel TCP streams as well 

as a provision of the estimated time and throughput for a 

specific data transfer. The optimal number of TCP streams is 

calculated, using the mathematical models. A user of this 

service only needs to provide the source and destination 

addresses and the size of the transfer. None of the existing 

models and tools can give as accurate results as ours with a 

comparable prediction overhead. 

 

2. RELATED WORK 
Hacker et al. claim that multiple number of TCP streams 

behave like one giant stream equal to the capacity of sum of 

each streams’ achievable throughput . However, this model 

only works for uncongested networks, and cannot provide a 

feasible solution in case of congestion. Another study declares 

the same theory, but develops a protocol, which, at the same 

time, provides fairness. Lu et al. [2] model the bandwidth of 

multiple streams as a partial second order polynomial, which 

requires two throughput measurements with different stream 

numbers to predict all of the others. However, the overall 

accuracy of this model is very low, and it cannot predict the 

optimal number of parallel streams necessary to achieve the 

best transfer throughput. In another model [6], the total 

throughput always shows the same characteristics depending 

on the capacity of the link as the number of streams increases, 

and three streams are sufficient to get 90 percent utilization.  

All of the models presented have either poor accuracy or they 

need a lot of information to be collected from the network or 

from the user. In most cases, it is impractical to provide the 

models with all of these necessary information. The users 

generally prefer to achieve a prediction of their data transfer 
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throughput with least input from them possible. In some 

cases, mathematical models completely depend on historical 

data, which can cause two issues: 1) historical data may not be 

available for all transfers; 2) the network traffic characteristics 

may have significantly changed over time. Especially for 

individual data transfers, instead of relying on historical 

information, the transfers should be optimized based on 

instant feedback. However, an optimization technique not 

relying on historical data should not bring too much overhead 

of gathering instant data.  

According to Hacker et al. [7], an application opening n 
connections can gain n times the throughput of a single 
connection, assuming all connections experiencing equal 
packet losses. Also, the RTTs of all connections are 
equivalent, since they most likely follow the same path.  

Lu et al. [20] model the relation between n, RTT, and p as a 

partial second order polynomial by using throughput 

measurements of two different parallelism levels. This 

approach fails to predict the optimal number of parallel 

streams necessary to achieve the best transfer throughput. 

Instead of modeling the throughput with a partial second order 

polynomial, we increase the sampling number to three and 

either uses a full second order polynomial or a polynomial 

where the order is determined dynamically. 

After we calculate the optimal number of parallel streams 

using one of these models, we can easily calculate the 

maximum throughput corresponding to that number. The 

optimization server presented in this paper uses the Full 
Second Order model and needs to get at least three suitable 

throughput values of different parallelism levels through real-

time sampling to apply the model. There are also other 

services and tools that try to give an estimate of the available 

bandwidth and optimize the protocol parameters to improve 

the throughput. However, these services require constant 

probing, installation privileges as root, or making changes at 

the protocol level to the TCP AIMD properties.  

In Dunigan et al. [7], a service based on Web100 tool is 

presented, which aims to provide an optimal buffer setting by 

using the information collected by Web100. It divides the 

buffer size by the number of streams to optimize it, but the 

authors mention that their results were inconclusive. Also, it is 

stated in the paper that parallel streams should give better 

performance than buffer tuning. Jin et al. [30] present a 

service that collects information from every node in the data 

transfer path with constant probing and make an estimation of 

the available bandwidth to tune the buffer size. The study in 

only makes an estimation on the available bandwidth and 

capacity. Our service provides an end-to-end optimization 

throughput via use of parallel streams in the application level 

with realtime sampling without constant probing. In our 

approach, no changes in the transport protocol layer are 

required. We propose to use Iperf  and GridFTP to gather the 

sampling information to be fed into our mathematical models. 

Both of these tools are widely adopted by the distributed 

computing community, and they are convenient for our 

service since they both support parallel streams. With 

GridFTP, it is also very convenient to perform third-party 

transfers. By using our mathematical models and the realtime 

sampling information, we provide a service that estimates the 

number of optimal parallel streams with a negligible 

prediction cost. 

 

 

 

 

 

 

3. DESIGN ISSUES OF THE 

OPTIMIZATION SERVICE 
The optimization service presented in this study takes a 

snapshot of the network throughput for parallel streams 

through sampling. The sampling data could be generated by 

using a performance prediction tool or an actual data transfer 

protocol. 

 

3.1 Sketch of the Optimization Service 

Fig. 1 demonstrates the structure of our design and presents 

two scenarios based on both, GridFTP and Iperf versions of 

the service. Sites A and B represent two hosts between which 

the user wants to transfer data. For the GridFTP version, these 

hosts would have GridFTP servers and GSI certificates 

installed. When a user wants to transfer data between sites A 

and B, the user will first send a request that consists of source 

and destination addresses, file size, and an optional buffer size 

parameter to the optimization server, which process the 

request and respond to the user with the optimal parallel 

stream number to do the transfer. The buffer size parameter is 

an optional parameter, which is given to the GridFTP protocol 

to set the buffer size to a different value than the 

system set buffer size. At the same time, the optimization 

server will estimate the optimal throughput that can be 

achieved, and the time needed to finish the specified transfer 

between sites A and B. This information is then 

returned back to the User/Client making the request. 

 

 

 
 

Fig.1 Overview of the EOS. 

 

3.2 Integration with Stork Data Scheduler 

Stork is a batch scheduler, specialized in data placement and 

movement [18]. Optimization of end-to-end data transfer 

throughput is an important problem for schedulers like Stork, 

especially when moving large-scale data sets across wide-area 

networks.  

In this implementation, Stork is extended to support both 

estimation and optimization tasks. A task is categorized as an 

estimation task, if only estimated information regarding to the 

specific data movement is reported without the actual transfer. 

On the other hand, a task is categorized as optimization, if the 

specific data movement is performed, according to the 

optimized estimation results.  

Stork inherits ClassAds from Condor batch schedulers which 

are used for submission of data placement jobs. We extend 

ClassAds with more fields and classify them as transfer or 

estimation by specifying the data type field. If it is an 

estimation type, it will be submitted directly to an estimation 

and optimization service (EOS), otherwise, it will be 

submitted to the Stork server, which, in turn, performs the 

data transfer with or without optimization. Since an estimation 
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task takes much shorter time than an optimization task, 

distinguishing the submission path by different task types 

enables an immediate response to the estimation tasks. 

Optimization field is added to ClassAds in order to determine 

whether the specified transfer will adopt the optimization 

strategy supplied by EOS. If optimization is specified as YES, 

then the transfer is performed by using the optimized 

parameters acquired from EOS, otherwise, it will use the 

default values. 

 

4. IMPLEMENTATION TECHNIQUES 
We present the implementation details of our EOS. 

Depending on whether we choose to use GridFTP or Iperf, the 

implementation slightly differs because GridFTP supports 

third-party transfers, whereas Iperf works as a client/server 

model.  

 

4.1 Optimization Server Module 

The server should support multiple connections from 

thousands of clients simultaneously. The processing time for 

each client should be less than a threshold. Otherwise, the user 

would prefer to perform the data transfer using the default 

configurations, since the time saved by using optimized 

parameters cannot compensate the time waiting for the 

response from the optimization server. 

 

4.2 Quantity Control of Sampling Data Transfers 

The time interval between the arrivals of requests from the 

client until an optimized decision is made for the 

corresponding request, mainly depends on the time consumed 

on the sampling data transfers. The cost of application of the 

mathematical model on the sampling data and derivation of 

optimal parameters is negligible around several milliseconds 

on a 2.4 Ghz CPU. However, each sampling data transfer 

takes nearly 1 second based on the sampling size. At least 

three sampling data transfers are required because of the 

property of the mathematical model we propose. However, 

relying only on three measurements makes the model 

susceptible to the correct selection of the three parallelism 

levels. 

5. EXPERIMENTAL RESULTS 
Our experiments have two categories: 1) in the first category, 

we measured the accuracy of the optimization service as a 

stand-alone application and test in various environments by 

changing parameters, such as the sampling and file sizes; 2) in 

the second category, we decided to measure the scalability of 

our approach in terms of many-task computing and conducted 

the experiments in the form of job submissions to the Stork 

data scheduler. 

 

5.1 Optimization Service as a Stand-Alone 

Application 

In these experiments, requests are sent to the optimization 

service, and the optimized results based on the prediction of 

the service are compared to actual data transfers performed 

with GridFTP. 

 

5.1.1 Analysis of Number of Streams 

The average number of streams is an important comparison 

metric to understand the characteristics and behavior of the 

service, depending on the different network and machine 

configurations. 

 

 
 

Fig 2. Average number of streams used per transfer. 

 

5.2 Optimization Service as Part of the Stork Data 

Scheduler 

In this section, we designed our experiments to measure the 

efficiency of the optimization service when it is embedded to 

a data-aware scheduler and the requests are done by the jobs 

submitted and the actual transfers are done by the scheduler 

itself. Four LONI clusters with 1 and 10 Gbps interfaces are 

used for this experiment. The optimization service is able to 

make prediction by either doing immediate sampling or by 

using the history information over past transfers. That option 

is left to the user to be specified in the job submission file. 

6. CONCLUSION 
The design and implementation of a network throughput 

prediction and optimization service for many-task computing 

in widely distributed environments. This involves the 

selection of prediction models, the quantity control of 

sampling and the algorithms applied using the mathematical 

models. We have improved an existing prediction model by 

using three prediction points and adapting a full second order 

equation or an equation where the order is determined 

dynamically. We have designed an exponentially increasing 

sampling strategy to get the data pairs for prediction. The 

algorithm to instantiate the throughput function with respect 

to the number of parallel streams can avoid the ineffectiveness 

of the prediction models due to some unexpected sampling 

data pairs. Implement this new service in the Stork Data 

Scheduler, where the prediction points can be obtained using 

Iperf and GridFTP samplings. The experimental results justify 

our improved models. When used within the Stork Data 

Scheduler, the optimization service decreases the total transfer 

time for a large number of data transfer jobs submitted to the 

scheduler significantly compared to the non optimized Stork 

transfers. 
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