
National Conference on Advances in Computer Science and

Applications with International Journal of Computer Applications (NCACSA 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

13

Data Scheduler Throughput Prediction using Estimation
and Optimization Server for Mtc

 CH. Mohana Bindu (M.E) N. Sri Priya

 CSE dept, PITAM Lecturer / Dept. of Computer Science, PITAM

ABSTRACT
 Design and implementation of an application-layer data

throughput prediction and optimization service for many-task

computing in widely distributed environments. This service

uses multiple parallel TCP streams to improve the end-to-end

throughput of data transfers. A novel mathematical model is

developed to determine the number of parallel streams,

required to achieve the best network performance. This model

can predict the optimal number of parallel streams with as few

as three prediction points. We implement this new service in

the Stork Data Scheduler. We propose Stork data transfer jobs

with optimization service can be completed much earlier

compared to non-optimized data transfer jobs.

Keywords
Many task Computing, Scheduling.

1. INTRODUCTION
Many-Task Computing can play a significant role in making

such predictions feasible. In a widely distributed many-task

computing environment, data communication between

participating clusters may become a major performance

bottleneck. Provide high speed network connectivity to their

users. Majority of the users fail to obtain even a fraction of the

theoretical speeds promised by these networks due to issues,

such as suboptimal TCP tuning, disk performance bottleneck

on the sending and/or receiving ends, and server processor

limitations. This implies that having high-speed networks in

place is important, but not sufficient. Being able to effectively

use these high speed interconnects is becoming increasingly

important to achieve high-performance many-task computing

in widely distributed setting.

The end-to-end performance of a data transfer over the

network depends heavily on the underlying network transport

protocol used. TCP is the most widely adopted transport

protocol, however, its AIMD behavior to maintain fairness

among streams sharing the network prevents TCP to fully

utilize the available network bandwidth. This becomes a

major bottleneck, especially in wide-area high speed

networks, where both bandwidth and delay properties are too

large, which, in turn, results in a large delay before the

bandwidth is fully saturated. There have been different

implementation techniques, both at the transport and

application layers, to overcome the inefficient network

utilization of the TCP protocol. At the transport layer,

different variations of TCP have been implemented to more

efficiently utilize high-speed networks. At the application

layer, other improvements are proposed on top of the regular

TCP, such as opening multiple parallel streams or tuning the

buffer size. When applications use the obvious round robin

scheduling algorithm for multiplexing data blocks, differences

in transmission rate between individual TCP streams can lead

to significant data block reordering. This forces the de-

multiplexing receiver to buffer out-of-order data blocks,

consuming memory and potentially causing the receiving

application to stall.

TCP is the most widely adopted transport protocol; however,

its AIMD behavior to maintain fairness among streams

sharing the network prevents TCP to fully utilize the available

network bandwidth. This becomes a major bottleneck,

especially in wide-area high speed networks, where both

bandwidth and delay properties are too large, which, in turn,

results in a large delay before the bandwidth is fully saturated.

Using too many streams can bring the network to a congestion

point very easily, especially for low bandwidth networks, and

after that point, it will only cause a drop in the performance.

For high-speed networks, use of parallel streams may

decrease the time to reach optimal saturation of the network.

Not to cause additional processing overhead, we still need to

find the optimal parallelism level, where the achievable

throughput becomes stable. Unfortunately, it is difficult to

predict this optimal point, and it is variable over some

parameters, which are unique in both time and domain.

Hence, the prediction of the optimal number of streams is

very difficult and cannot be done without obtaining some

parameters regarding the network environment, such as

available bandwidth, RTT, packet loss rate, bottleneck link

capacity, and the data size.

Design and implementation of a service that will provide the

user with the optimal number of parallel TCP streams as well

as a provision of the estimated time and throughput for a

specific data transfer. The optimal number of TCP streams is

calculated, using the mathematical models. A user of this

service only needs to provide the source and destination

addresses and the size of the transfer. None of the existing

models and tools can give as accurate results as ours with a

comparable prediction overhead.

2. RELATED WORK
Hacker et al. claim that multiple number of TCP streams

behave like one giant stream equal to the capacity of sum of

each streams’ achievable throughput . However, this model

only works for uncongested networks, and cannot provide a

feasible solution in case of congestion. Another study declares

the same theory, but develops a protocol, which, at the same

time, provides fairness. Lu et al. [2] model the bandwidth of

multiple streams as a partial second order polynomial, which

requires two throughput measurements with different stream

numbers to predict all of the others. However, the overall

accuracy of this model is very low, and it cannot predict the

optimal number of parallel streams necessary to achieve the

best transfer throughput. In another model [6], the total

throughput always shows the same characteristics depending

on the capacity of the link as the number of streams increases,

and three streams are sufficient to get 90 percent utilization.

All of the models presented have either poor accuracy or they

need a lot of information to be collected from the network or

from the user. In most cases, it is impractical to provide the

models with all of these necessary information. The users

generally prefer to achieve a prediction of their data transfer

National Conference on Advances in Computer Science and

Applications with International Journal of Computer Applications (NCACSA 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

14

throughput with least input from them possible. In some

cases, mathematical models completely depend on historical

data, which can cause two issues: 1) historical data may not be

available for all transfers; 2) the network traffic characteristics

may have significantly changed over time. Especially for

individual data transfers, instead of relying on historical

information, the transfers should be optimized based on

instant feedback. However, an optimization technique not

relying on historical data should not bring too much overhead

of gathering instant data.

According to Hacker et al. [7], an application opening n
connections can gain n times the throughput of a single
connection, assuming all connections experiencing equal
packet losses. Also, the RTTs of all connections are
equivalent, since they most likely follow the same path.

Lu et al. [20] model the relation between n, RTT, and p as a

partial second order polynomial by using throughput

measurements of two different parallelism levels. This

approach fails to predict the optimal number of parallel

streams necessary to achieve the best transfer throughput.

Instead of modeling the throughput with a partial second order

polynomial, we increase the sampling number to three and

either uses a full second order polynomial or a polynomial

where the order is determined dynamically.

After we calculate the optimal number of parallel streams

using one of these models, we can easily calculate the

maximum throughput corresponding to that number. The

optimization server presented in this paper uses the Full
Second Order model and needs to get at least three suitable

throughput values of different parallelism levels through real-

time sampling to apply the model. There are also other

services and tools that try to give an estimate of the available

bandwidth and optimize the protocol parameters to improve

the throughput. However, these services require constant

probing, installation privileges as root, or making changes at

the protocol level to the TCP AIMD properties.

In Dunigan et al. [7], a service based on Web100 tool is

presented, which aims to provide an optimal buffer setting by

using the information collected by Web100. It divides the

buffer size by the number of streams to optimize it, but the

authors mention that their results were inconclusive. Also, it is

stated in the paper that parallel streams should give better

performance than buffer tuning. Jin et al. [30] present a

service that collects information from every node in the data

transfer path with constant probing and make an estimation of

the available bandwidth to tune the buffer size. The study in

only makes an estimation on the available bandwidth and

capacity. Our service provides an end-to-end optimization

throughput via use of parallel streams in the application level

with realtime sampling without constant probing. In our

approach, no changes in the transport protocol layer are

required. We propose to use Iperf and GridFTP to gather the

sampling information to be fed into our mathematical models.

Both of these tools are widely adopted by the distributed

computing community, and they are convenient for our

service since they both support parallel streams. With

GridFTP, it is also very convenient to perform third-party

transfers. By using our mathematical models and the realtime

sampling information, we provide a service that estimates the

number of optimal parallel streams with a negligible

prediction cost.

3. DESIGN ISSUES OF THE

OPTIMIZATION SERVICE
The optimization service presented in this study takes a

snapshot of the network throughput for parallel streams

through sampling. The sampling data could be generated by

using a performance prediction tool or an actual data transfer

protocol.

3.1 Sketch of the Optimization Service

Fig. 1 demonstrates the structure of our design and presents

two scenarios based on both, GridFTP and Iperf versions of

the service. Sites A and B represent two hosts between which

the user wants to transfer data. For the GridFTP version, these

hosts would have GridFTP servers and GSI certificates

installed. When a user wants to transfer data between sites A

and B, the user will first send a request that consists of source

and destination addresses, file size, and an optional buffer size

parameter to the optimization server, which process the

request and respond to the user with the optimal parallel

stream number to do the transfer. The buffer size parameter is

an optional parameter, which is given to the GridFTP protocol

to set the buffer size to a different value than the

system set buffer size. At the same time, the optimization

server will estimate the optimal throughput that can be

achieved, and the time needed to finish the specified transfer

between sites A and B. This information is then

returned back to the User/Client making the request.

Fig.1 Overview of the EOS.

3.2 Integration with Stork Data Scheduler

Stork is a batch scheduler, specialized in data placement and

movement [18]. Optimization of end-to-end data transfer

throughput is an important problem for schedulers like Stork,

especially when moving large-scale data sets across wide-area

networks.

In this implementation, Stork is extended to support both

estimation and optimization tasks. A task is categorized as an

estimation task, if only estimated information regarding to the

specific data movement is reported without the actual transfer.

On the other hand, a task is categorized as optimization, if the

specific data movement is performed, according to the

optimized estimation results.

Stork inherits ClassAds from Condor batch schedulers which

are used for submission of data placement jobs. We extend

ClassAds with more fields and classify them as transfer or

estimation by specifying the data type field. If it is an

estimation type, it will be submitted directly to an estimation

and optimization service (EOS), otherwise, it will be

submitted to the Stork server, which, in turn, performs the

data transfer with or without optimization. Since an estimation

National Conference on Advances in Computer Science and

Applications with International Journal of Computer Applications (NCACSA 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

15

task takes much shorter time than an optimization task,

distinguishing the submission path by different task types

enables an immediate response to the estimation tasks.

Optimization field is added to ClassAds in order to determine

whether the specified transfer will adopt the optimization

strategy supplied by EOS. If optimization is specified as YES,

then the transfer is performed by using the optimized

parameters acquired from EOS, otherwise, it will use the

default values.

4. IMPLEMENTATION TECHNIQUES
We present the implementation details of our EOS.

Depending on whether we choose to use GridFTP or Iperf, the

implementation slightly differs because GridFTP supports

third-party transfers, whereas Iperf works as a client/server

model.

4.1 Optimization Server Module

The server should support multiple connections from

thousands of clients simultaneously. The processing time for

each client should be less than a threshold. Otherwise, the user

would prefer to perform the data transfer using the default

configurations, since the time saved by using optimized

parameters cannot compensate the time waiting for the

response from the optimization server.

4.2 Quantity Control of Sampling Data Transfers

The time interval between the arrivals of requests from the

client until an optimized decision is made for the

corresponding request, mainly depends on the time consumed

on the sampling data transfers. The cost of application of the

mathematical model on the sampling data and derivation of

optimal parameters is negligible around several milliseconds

on a 2.4 Ghz CPU. However, each sampling data transfer

takes nearly 1 second based on the sampling size. At least

three sampling data transfers are required because of the

property of the mathematical model we propose. However,

relying only on three measurements makes the model

susceptible to the correct selection of the three parallelism

levels.

5. EXPERIMENTAL RESULTS
Our experiments have two categories: 1) in the first category,

we measured the accuracy of the optimization service as a

stand-alone application and test in various environments by

changing parameters, such as the sampling and file sizes; 2) in

the second category, we decided to measure the scalability of

our approach in terms of many-task computing and conducted

the experiments in the form of job submissions to the Stork

data scheduler.

5.1 Optimization Service as a Stand-Alone

Application

In these experiments, requests are sent to the optimization

service, and the optimized results based on the prediction of

the service are compared to actual data transfers performed

with GridFTP.

5.1.1 Analysis of Number of Streams

The average number of streams is an important comparison

metric to understand the characteristics and behavior of the

service, depending on the different network and machine

configurations.

Fig 2. Average number of streams used per transfer.

5.2 Optimization Service as Part of the Stork Data

Scheduler

In this section, we designed our experiments to measure the

efficiency of the optimization service when it is embedded to

a data-aware scheduler and the requests are done by the jobs

submitted and the actual transfers are done by the scheduler

itself. Four LONI clusters with 1 and 10 Gbps interfaces are

used for this experiment. The optimization service is able to

make prediction by either doing immediate sampling or by

using the history information over past transfers. That option

is left to the user to be specified in the job submission file.

6. CONCLUSION
The design and implementation of a network throughput

prediction and optimization service for many-task computing

in widely distributed environments. This involves the

selection of prediction models, the quantity control of

sampling and the algorithms applied using the mathematical

models. We have improved an existing prediction model by

using three prediction points and adapting a full second order

equation or an equation where the order is determined

dynamically. We have designed an exponentially increasing

sampling strategy to get the data pairs for prediction. The

algorithm to instantiate the throughput function with respect

to the number of parallel streams can avoid the ineffectiveness

of the prediction models due to some unexpected sampling

data pairs. Implement this new service in the Stork Data

Scheduler, where the prediction points can be obtained using

Iperf and GridFTP samplings. The experimental results justify

our improved models. When used within the Stork Data

Scheduler, the optimization service decreases the total transfer

time for a large number of data transfer jobs submitted to the

scheduler significantly compared to the non optimized Stork

transfers.

7. REFERENCES
[1] Allcock .W, Bresnahan .J, Kettimuthu .R, Link .M,

Dumitrescu .C, Raicu .I, and Foster .I, “The Globus

Striped Gridftp Framework and Server,” Proc. 2005

ACM/IEEE Conf. Supercomputing (SC’05), p. 54,

2005.

[2] Altman .E, Barman .D, Tuffin .B, and Vojnovic .M,

“Parallel TCP Sockets: Simple Model, Throughput and

Validation,” Proc. IEEE INFOCOM ’06, pp. 1-12,

Apr. 2006.

[3] Karrer .R.P, Park .J, and Kim .J, “TCP-ROME:

Performance and Fairness in Parallel Downloads for

Web and Real Time Multimedia treaming Applications,”

technical report, Deutsche Telekom Labs,2006.

National Conference on Advances in Computer Science and

Applications with International Journal of Computer Applications (NCACSA 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

16

[4] Kosar .T and Livny .M, “Stork: Making Data Placement a

First Class Citizen in the Grid,” Proc. IEEE Int’l Conf.

Distributed Computing Systems (ICDCS ’04), pp. 342-

349, 2004.

[5] Raicu .I, Foster .I , and Zhao .Y, “Many-Task Computing

for Grids and Supercomputers,” Proc. IEEE Workshop

Many-Task Computing on Grids and Supercomputers

(MTAGS), 2008.

[6] Timothy G. Armstrong, ”Scheduling Many-Task

Workloads on

 Supercomputers: Dealing with Trailing Tasks,” Zhao

Zhang Department of Computer Science University of

Chicago.

[7] Yildirim .E, Yin .D, and Kosar .T, “Prediction of Optimal

 Parallelism Level in Wide Area Data Transfers,” to be

published in IEEE Trans. Parallel and Distributed

Systems, 2010

.

