
International Journal of Computer Applications (0975 – 8887)

National Conference on Advancements in Computer & Information Technology (NCACIT-2016)

1

Meta-App A Pull-based Approach

Tushar Badgu
Department of Computer

Engineering
Pune Institute of Computer

Technology, Pune

Omkar Patil
Department of Computer

Engineering
Pune Institute of Computer

Technology, Pune

Abhidnya Patil,
 Snehal Rasakar

Department of Computer
Engineering

Pune Institute of Computer
Technology, Pune

ABSTRACT
Now-a-days Smartphone has become common and are used

by millions of people. As these Smartphone provide a facility

of custom built apps, many of the businesses are moving

towards building apps. A lot of time and capital is being

invested in developing these kinds of apps. However in order

to reach out customers these apps are being built hap

hazardously. Poorly written apps pose the risk of exposing

user data and breaching privacy. Development and

maintenance of these apps is also required. Furthermore some

apps are being built only because everyone is moving app-

only. All this has made it difficult for a Smartphone user to

keep track of different apps on his devices. This paper aims at

creating a Meta-App which would act as supplant to all the

redundant applications and will be based on intent publishing.

A solution to provide fine control to the user over his data that

is shared with the service providers and implement a Pull-

based Approach.

General Terms

Content Delivery Systems, User Privacy, Intent Publishing,

Security.

Keywords
Public key cryptosystems, standards, Query Processing,

Content Analysis and Indexing, Commercial services,

Data sharing, Natural language interfaces, Language parsing

and understanding, Text analysis

1. INTRODUCTION
Nowadays, we can find an android application developed by

every other service provider to enable the user’s easy access

to their products simply by a click of a button on their phones.

However, this necessitates the users to download the

applications provided by each of these providers. Thus the

user spends a lot of time compare the prices and offers by

looking into each of these applications and find the best

available deal. Also many of these applications are poorly

written and thus exploit unnecessary personal information of

the user [1].

For example, Amazon , Flipkart , Myntra are all leading

providers in providing products ranging from home

appliances to electronic items , from clothing to footwear and

even super market products. Uber, Ola, Meru are all the

providers of taxi services to the user .Similarly, make my trip,

yatra.com, travel advisor are useful when planning a trip and

includes everything from transport bookings and hotel

reservations. If a user thinks of buying shoes, he tends to

check the prices offered by each of the providers to get the

cheapest deal for him. Keeping this in mind, we design a tool

which just asks the user to specify his search. The service

providers will be provided with API’s which can be used to

publish their services to the users. We will be developing an

efficient ranking strategy to order the search. And the best

possible deal will be provided to the user without the need of

installing so many apps and without even compromising the

security of his personal information. A security layer will be

developed over normal android security to give the user a

complete control of sharing of his personal data.

Also everyone is moving app only so there is trend in today’s

market for having app for their product [2]. Development and

maintenance of these apps is also a major problem only few

people are concern about it. Some apps required basic

information of users such as name, email, phone number, etc.

which is not required actually. Because of this app going trend

everyone is developing app but no one is concern about fine

UI, security and privacy so this poorly written apps harms the

operating system. That is where this Meta-App comes. It is

basically considers the need of security and privacy of user

while using app. If we are going to ask for some product, the

server will give us information about various products on

various apps with the help of various APIs so it is kind of pull

based approach.

A person in the future may only just check Meta-App to check

which provider giving him fast and best services. Some

features might achieve this implicitly and some might be

explicitly built for the same.

2. BACKGROUND
When a user installs or uses any free app there is a strong

possibility that it may send sensitive user data to third parties

[3], [4]. As these apps are very popular on Smartphone, app

users worry about the amount of personal information shared

by the app. In a survey by Pew Research Centre regarding this

topic it was found that 54% of the people refused to install a

particular app after they found out how much personal

information they needed to share to use it. Also 30% opted to

uninstall the app when they learnt that it shared information

they did not want to share.

Why this concerns the user?

 One of the reasons is that it may share unique ID's

related to devices like IMEI, MAC address, IMSI,

etc.

 An app can also try to access device functions and

personal data by requesting user permission for

access to network, phone calls, location or even at

times hardware control. this can lead to over

privileging (access more data than required for

advertising and data collection)

 Third parties like advertisers can be sold this data

collected by the app.

Wall Street Journal (WSJ) conducted a survey of 101 popular

Android and iOS apps in 2010 and examined the data they

transmitted. It found that 56 sent device's unique ID, 47 sent

International Journal of Computer Applications (0975 – 8887)

National Conference on Advancements in Computer & Information Technology (NCACIT-2016)

2

device location, 5 sent age, gender and other personal details

without user's awareness or consent.

Given these conditions we tried to study the kind of personal

data shared by the apps and to whom. There are three

approaches to survey the data shared by apps

 Permission analysis

It involves the analysis of the permission

requirements disclosed to user before app

installation or use. It helps review thousands of app

efficiently but the review is only 'high-level' i.e. we

can’t know whether the app actually collects the

data it requests permission for. One study found a

correlation between the numbers of downloads and

the number of permissions requested. Also a

number of “look-alike” apps to popular apps request

more permissions that the original app [5].

 Static code analysis

It involved decompiling an app to identify the data

it sends by understanding the design .it provides

more detailed insight and is relatively easy to

automate. In one review of 114,000 apps it was

found that on an average every app had at least one

ad library which requested access to services like

Wi-Fi network, Camera, SD card, etc. It can also be

used to find over privileging and uncover potential

malware and adware [6].

 Dynamic analysis

It involves capturing the data transmitted when an

app is actually used. In one study, it found 97 out of

the 145 apps tested sent potentially private

information such as phone information, device IDs,

or geo-coordinates to primary or third-party servers.

We can also use a Virtual Private Network (VPN) to

monitor the traffic from the device.

In a survey [7], 110 free apps were tested of various

categories like Business, Games, health & fitness, etc. Many

mobile apps transmitted potentially sensitive user data to

third-party domains, especially a user’s current location,

email, and name. In general, iOS apps were less likely to

share sensitive data of nearly every type with third-party

domains than were Android apps, except for location data

.The average Android app sent sensitive data to 3.1 third-party

domains, and the average iOS app connected to 2.6 third-party

domains. The top domains that received sensitive data from

the most apps belonged to Google and Apple.

3. EXISTING SYSTEMS
There are two approaches which have been explored and are

used currently:

1) Mobile Native Apps

A mobile native app is built keeping in consideration a

particular device and its operating system. These native apps

are downloaded from a web store and installed on the device

in contrast to a web-app that is directly accessed directly over

the internet.

The disadvantages of using native apps are as follows:

 Publishers are usually not willing to share

information about their subscribers to the app store

which is a necessity if they intend to deploy their

app on the store.

 The publishers have to deploy their apps for a wide

range of devices. Separate versions of the app need

to be developed, and tested for different

environments like Android, IOS, and Windows.

Along with the development cost this introduces

additional maintenance costs. Even though cross

platform frameworks have eased the efforts needed

for such development, it usually compromises on

the time factor and ease of development.

 For updating these applications, different teams

need to be allocated for making necessary changes

for every platform the app is deployed on. Not only

does this increase the amount of work but also

causes a bit of inconsistency in the working of apps

on different platforms.

2) Mobile Web Apps/Website based approach

A mobile web app is a web application accessed through the

web browsers of mobile devices like tablets, Smartphone. It is

built with three core technologies:- HTML, CSS and

JavaScript. Unlike the mobile apps mentioned above, these

websites are independent of the platform and devices which it

needs to be run on.

The disadvantages are as follows:

 Mobile browsers have less functionalities as

compared to traditional desktop browsers. It is

usually similar for the more popular Platforms but it

varies greatly for other ones. So the web apps are

developed such that they support the lowest

common framework in order to make it available to

every user. This however gives the website a

clumsy look. If this has to be avoided, the

publishers will have to customize these web apps

for various browser version which is time

consuming.

 Web apps generally cannot access the mobile

hardware and software. The use cases which require

the web apps to access mobile hardware like camera

control, GPS control, and onboard sensors are

directly ruled out. Because of this limitation,

development of complex graphics such as motion

control in gaming cannot be supported.

 The running of web app requires a continuous web

connection to function unlike mobile apps. Thus,

the cost of accessing these web apps requires to be

paid to the network operators. Thus costs can be

completely avoided in case of mobile apps which

requires no internet connectivity which poses to be a

great disadvantage in case of web apps.

4. PROPOSED SOLUTION
The proposed solution in this paper is an entire new

Framework based on Pull-based approach rather than existing

Push-based approach. This framework can be thought of as a

service which will forward user intents to sellers and their

responses back to user [8].

4.1.Architecture
The system consists of four modules:-

1) User application 2) Server 3) Multiple proxies 4)

Sellers SDK

4.1.1. User application.

International Journal of Computer Applications (0975 – 8887)

National Conference on Advancements in Computer & Information Technology (NCACIT-2016)

3

This component will be deployed on the user side. It can be a

web app or any android, IOS, windows app. It will act as the

point of communication from the user perspective. For a user

to use this service he must first register to it and perform an

initial setup Installation and registration. The framework uses

a multi-level encryption mechanism to transfer data between

the entities. It will use a two way public-private key

encryption algorithm based on TLS. During writing the client

application the public key of the service server will be saved

in it. The demo application uses an RSA algorithm to generate

this key.

Whenever the user registers on the application it will perform

following:-

1) The server will have its own pair of RSA public-

private key. The server public key will be saved in

the app to encrypt all outgoing data from the app to

server.

2) Whenever a user registers he will get his unique

UUID from the server. Along with it an RSA

algorithm will run on the app to generate a user

specific Public-Private key.

3) The User-Public key will be stored in the server to

create a downlink encryption channel.

4) However time required for data encryption and

decryption is large for RSA. So we propose a

session channel.

5) We propose creating session for data exchange of

fixed time-frame which can be decided by the user.

RSA will be used to manage establishment of these

session.

6) The client public key and UUID will be given to an

AES algorithm to generate a cipher text.

7) The seed value of AES which will be used to

generate the cipher text will then be encrypted using

server-public key to generate a cipher-seed and sent

to server.

8) The server can then decrypt the seed value from the

cipher-seed using server-private key and use it to

decrypt the data sent by the client.

9) This seed-value will vary from session to session

and would thus reduce overheads.

10) The UUID generated will be used for identifying

user requests and categorization of the same.

Fig 1. Communication Module

Publishing intent:

Whenever user wants to publish intent, he will browse

through the app. The services will be listed in the form of tree

which will contain multiple children containing sub-

categories. When user selects a particular service intent will

be generated. The selected service which user wants to avail

will be then divided into topic and subtopic. For example, if

user asks for Indian wear in clothing category, the query will

get separated into topic as clothing and subtopic as Indian.

The necessity of using such sub-division is because ZMQ

used fixed string topic filter, however the subtopic filtering

will be done using our own APIs. The problem faced in using

ZMQ filtering for the whole content is that the order in which

the query arrives should match with the format the service

provider specifies, if not matched the interested subscriber

won’t get the relevant queries only because of an

inconsistency in the order. For example, the service provider

specifies the topic filter as traditional clothing however our

topic filter specifies clothing traditional, there will be a

discrepancy and the purpose of the filter will not be served.

This intent will consist of the UUID and a request-id which

will be unique for each request made by the user. The

combination of UUID and request-id will be used to uniquely

identify the request on the server and proxies. The intent will

then be encrypted using the server public key and sent to the

server. The message will be of JSON format with the keys

being as follows:

UUID: Unique user identity which will be provided to the

every user when he registers.

Request-id: request-id is a unique id provided for every

request.

Deadline: deadline is the time in which request should

process.

Subtopic: Subtopics are the more detail information of the

category of topic.

Description: The user will describe his needs, specification

he wants as well as subscriber information.

Displaying the responses:

Whenever a seller response is received the app will first

decrypt it using the users own private key as the data it

receives will be encrypted by users public key. It will then be

stored locally on the device and wait for users’ action. A user

can decide what he wants to do then.

Subscriber Namespaces:

The user can regulate the data which will be available to the

subscriber using these namespaces. User will be given an

option to decide which of his data he wants to make public to

a subscriber. Only this data can be accessed by the subscriber

through the service. Additionally the user may also be

provided functionality to create multiple namespaces for

different subscribers. This facility can be used in a variety of

services like a taxi service should only know your current

location or the location you intend to have the taxi. Another

example can be of an e-commerce service which should only

be able to access those text messages having certain

extensions like VZ, IM, etc. and not the entire message log.

4.1.2. Server.
The server will perform the following tasks

1) Updating user databases

Whenever a new user registers a UUID will be generated and

this UUID will act as an index to locate the details of user.

International Journal of Computer Applications (0975 – 8887)

National Conference on Advancements in Computer & Information Technology (NCACIT-2016)

4

These details will include his username, password and the

public key of that user which will be generated by the

application when the user registers. This key is necessary to

encrypt the data which will be sent to the app.

2) Managing Seller APIs

The sellers will be provided with APIs which they can

implement to get the user requests. These APIs can be a set of

SDK developed for the service. For a seller to implement

these APIs we propose seller registration. All the sellers who

want to implement the API's will need to register. This is

specifically needed to prevent other sellers who have not

registered for a specific service from getting offers of those

services. Also it would help in ranking of the sellers in the

next phase. When a seller registers he will specify the services

he will provide. This list of services would be used during

filtering to identify the topics for which the seller has

subscribed. ZMQ doesn't provide any way of smartly filtering

the data so this mechanism will ensure it.

3) Forwarding intents

The user intent received from the app will be decrypted using

the encryption-decryption model and then will be broadcasted

to the sellers using Publisher-Subscriber Framework along

with the intent information. ZEROMQ distributed messaging

framework is used to implement the communication between

server and dealers. In particular, the Pub/Sub pattern is used

of ZMQ framework. Publish/Subscribe is a classic pattern in

which the sender entity is called publisher and the receiving

entity is called subscriber. Unlike the usual networking

communication, the publisher is not programmed to send the

message to a particular subscriber. Instead, Messages are

published without the knowledge of if there exists any

subscriber interested in that particular topic or not. Messages

published will have a topic set by the publishers which are

then eventually used by the subscriber as a filter for topics of

interest. Pub/Sub communication model is asynchronous and

independent of when the publisher and subscriber is started.

Hence, the subscriber will not receive the messages which the

publisher had sent before the subscriber was started.

The Intent description provided by the user will be in textual

form hence not much useful. So, extraction of metadata from

the description is performed which can be queried by the

seller in order to provide responses for the request. In the

supervised approach, a maximum entropy (MAXENT)

classifier is used to determine whether a unigram word is a

keyword (binary classification). Each candidate word is

represented by a variety of features such as TFIDF, Position

features, Stop-word features, Sentence features, Lexical

features, Summary features and speaker features. One way for

model training and testing in this supervised approach is to

simply use all the words as instances. In addition, we

introduced a bigram expansion module which aims at

extracting “entity bigrams” using Web resources.

4) Managing Proxies

The intent information received by the server will also be

forwarded to the proxies for further management.

Additionally it would also involve the load balancing of all

the requests managed by the proxies.

4.1.3. Proxy.
This can be thought as the regular and anti-spamming filter of

the service. Whenever the seller will put an offer to a user it

will pass through this proxy. The proxy will check the validity

of the Request-id. All the valid responses will then be grouped

and ranked according to certain criteria. This will ensure only

the best of the offers will reach the user. The criteria can be

defined by the user or could use heuristics.

1) Invalidation of Offers

Any seller which was not sent a Request-id will be blocked

from responding to the intent. Also a particular time limit will

be issued to each request. If any response occurs after this

time limit it will be blocked. Responses to completed intents

will be blocked. The proxy will be instrumental in filtering the

unwanted responses from all the responses.

2) Ranking

Ranking will involve assigning a benefit value to all the offers

which will be received by the proxies from the sellers. These

benefit value will then are used to grade the offers and filter

out all the ineffective or non-beneficial offers.

The traditional approach for ranking was based on evaluation

of specifics parameters like response time, security, price etc.

based on public information released by service providers or

test results from repeatedly invoking a service. However the

authenticity of the information provided by sellers needs to be

verified which is practically impossible. Also it lacks an

effective way of identifying quality features that users are

actually interested in when choosing a service [9].

One of the approaches for ranking can be based on First Come

First Serve basis with a user feedback. Whenever a particular

transaction is completed the users can rate the seller of the

service based on parameters like time to complete, QOS, etc.

This grading can be a basis for the ranking of the sellers. This

technique can be effective in conditions where a seller is

quick to respond but lacks the service; such a seller would be

ranked lower. This will ensure that only those sellers who

provide good service will have a chance to reach user if they

reply a bit late but before the deadline.

Another approach for ranking is based on sentiment analysis

of user reviews. The user reviews are first evaluated by

ignoring the sentences in the reviews which are not related to

the quality of service. Such sentences can just be a description

of the service which has no relevance to the features of the

service. The users’ reviews are then evaluated to find the

interestingness of the feature by the users’ perspective. Some

features are more popular among the users than others and the

ranking should be based on such more popular users. Logistic

Regression can be used to determine these impacts. Finally

the sentiment analysis is done for ranking by classifying each

feature as positive or negative and this classifier is learned

through a supervised learning process [10].

Transferring offers in a secure way to the user it is particularly

important that whatever offers are being sent to the user must

be provided required security as it may contain sensitive data

which may reveal user's identity or certain details. To avoid

this same session mechanism user in server can also be used

at the proxy. This would ensure that even if the messages are

intercepted they will not be readable.

4.1.4. Sellers SDK
All the functionalities to be used by the sellers are exposed as

an API by the server. Now to make use of such APIs, the

seller needs to implement the functions provided within the

SDK. Various functions that will be provided within the SDK

will be

1) Registration of the seller

2) Fetch user intents

3) Send responses for the intents

International Journal of Computer Applications (0975 – 8887)

National Conference on Advancements in Computer & Information Technology (NCACIT-2016)

5

4) Create a new namespace

5) Store data in the namespace

6) Fetch data from the namespace

4.2.Architecture Diagram

Fig 2. Architecture Diagram

4.3.Flow of System
Flow Diagram for the system is as follows:

Fig 3. System Flow Diagram

5. EXPECTED OUTCOMES
The chances that users’ sensitive data will get compromised is

reduced by the fact that none of the data is being stored

anywhere apart from the app itself. While registering for the

service minimal amount of user information will be requested.

A user will never be identified by any information which can

be used to reach him in the future like his phone number. This

framework can help reduce the need of user engagement type

of services thus reducing the need for a user to install these

types of applications on his phone. The seller APIs can

provide means to go digital cheaply without investing in the

development of an entire end-to-end application service.

6. CONCLUSION AND FUTURE WORK
Meta-App is a step towards making the user aware about their

privacy and also protect it. Meta-App is a project with two

fronts. One is to encounter the problem of everybody moving

towards the App-only approach. To make use of any service

the user has to install an application for that service provider

and with this comes the exposing of user private data to

outsiders for their own advantage. Thus Meta-App introduces

the concept of One-App approach in which only a single app

has the power of all such apps combined. The other front is to

develop a mechanism to provide a pull-based notification

service to users and also put the privacy of users’ data in its

own hands. The user has the power to choose what to share

and what not.

Thus, we conclude by completing a thorough study of current

systems it is necessary to design a system which can provide a

more fine grained control to the user data and also provide a

platform to the user to replace the most of the redundant

applications on the phone. We would conclude that by doing

this project we can put the next step in protecting user

privacy.

7. ACKNOWLEDGEMENTS
We would also like to show our gratitude to Prof. Kalyani

Waghmare, PICT and Mr. Abhijit Gadgil who provided

insight and expertise that greatly assisted the research. We are

immensely grateful to them for their comments on an earlier

version of the manuscript, although any errors are our own

and should not tarnish the reputations of these esteemed

persons.

8. REFERENCES
[1] Taenam Cho, Seung-Hyun Seo, Vulnerabilities of

Android Data Sharing and Malicious Application to

Leaking Private Information, 2013.

[2] Nai-Wei Lo, Kuo-Hui Yeh, Leakage Detection and Risk

Assessment on Privacy for Android Applications:

LRPdroid, 2014.

[3] Hongliang Liang, Dongyang Wu, Jiuyun Xu, Hengtai

Ma, Suvery on Privacy Protection of Android Devices,

2015.

[4] Kuo-Hui Yeh ,Nai-Wei Lo, Chuan-Yen Fan An Analysis

Framework for Information Loss and Privacy Leakage

on Android Applications,2014

[5] Muneer Ahmad Dar, Javed Parvez, Enhancing Security of

Android & IOS by Implementing Need-Based Security

(NBS), 2014.

[6] ZheMin Yang, Min Yang, LeakMiner: Detect information

leakage on Android with static taint analysis, 2012.

[7] Zang J, Dummit K, Graves J, Lisker P, Sweeney L. Who

Knows What About Me? A Survey of Behind the Scenes

Personal Data Sharing to Third Parties by Mobile Apps.

Technology Science. 2015103001. October 30, 2015.

http://techscience.org/a/2015103001

[8] Thejovardhana S. Kote and S. R. Jeyashankher, A large

scale publish subscribe platform for information delivery

to mobile phones, 2006.

[9] Keke Chen, Ya Zhang, Zhaohui Zheng, Adapting

Ranking functions to User Preference, 2008.

[10] Xumin Liu, Arpeet Kale, Javed Wasani, Extracting,

Ranking, and Evaluating Quality features of web services

through User Review Sentiment Analysis, 2015.

IJCATM : www.ijcaonline.org

http://techscience.org/a/2015103001

