
International Journal of Computer Applications (0975 – 8887)

National Conference on Advancements in Computer & Information Technology (NCACIT-2016)

18

Parallelization and Optimization of Pedestrian Detection

Software on NVIDIA GPGPU using CUDA-C

A.D. Londhe
K.V. Bhosale
Pune Institute of

Computer Technology,
S. No.27, Dhankawdi, Pune

Sayli Zope
Roshani Rode

student

Rasika Waichal
Rajat Toshniwal

student

ABSTRACT
The future of the computation is the Graphical Processing

Unit, i.e. the GPU. The graphics cards have been shown in the

pasture of image processing and accelerated interpretation of

3D scenes, and computational capability that these GPUs

acquire, they are rising into immense parallel computing units.

It is quite simple to program any graphics processor to

execute universal parallel tasks. But after understanding the

various architectural features of the graphics processor, it can

be used to execute other demanding tasks as well. In this

paper, the use CUDA (Compute Unified Device Architecture)

can fully utilize most tremendous power of these GPUs.

CUDA is most popular parallel computing architecture of

NVIDIA. It enables dramatic increases in computing

performance, by harnessing the power of the GPU. In this, the

sequential software of the famous image processing problem,

the pedestrian detection[1] and parallelize it to run on GPUs

and increase the performance of that software. We have

presented a new pedestrian detector that improves in speed

and quality of the pedestrian detection. By efficiently

handling different scales and transferring computation from

the test time to training time, detection speed is improved.

General Terms
GPU Computing, Histograms of Oriented Gradients(HOG)

algorithm

Keywords
Pedestrians Detection, Compute Unified Device

Architecture(CUDA), Object Detection, Graphics processing

units (GPUs), Parallel Architectures,SVM Classifier.

1. INTRODUCTION
Graphics cards are mainly used to accelerate the gaming and

the 3D graphics applications. The GPU of a graphics card is

built for to compute intensive and highly parallelized

computations. With the prevalence of high level APIs

(CUDA), the power of GPU is being leveraged to hasten more

general purpose and soaring performance applications. It has

been used in the accelerating database operations, solving

differential equations, and geometric computations. Image

processing is well-known and most established research field.

It is the form of signal processing in which the image is an

input, and the output can be an image or anything else that

will be some meaningful processing for work. [2][1]Altering

an image to be brightens, or darker is an paradigm of a regular

image processing tool that is available with basic image

editors. Often, processing happens on the complete image,

and the similar steps are useful to every pixel of the image.

There is a lot of reputation of the same work. Newer

technologies allow better quality images to be taken. This

equates to bigger

files and longer processing time. With the advancement of the

CUDA, programming to the GPU is simplified[4]. The

technology is ready to be used as a problem solving tool in the

field of image processing.

Among the Advanced Driver Assistance Systems i.e ADAS

system, pedestrian detection is the common issue due to the

vulnerability of the pedestrians in the event of accidents.

Pedestrian is nothing a person walking rather than traveling in

a vehicle. Pedestrian detection is a very essential and

significant task in any intellectual video examination system,

as it provides the essential information or semantic

understanding of the capture footages. It has an noticeable

expansion to automotive applications for improving safety

systems for use. Pedestrian detection is a important part of

object detection. Because of its direct applications in car

safety, surveillance, and robotics, it has fascinated much

concentration in the last years..

2. OVERVIEW

2.1 Related Work
There is an extensive literature on object detection, but here

we mention a relevant paper on human detection. Of the

several approaches that has been proposed for detecting

pedestrians, one common method uses a pre-trained classifier

within a sliding window to scan the complete image looking

for community at all locations and scales[2]. High quality

implementation of this is a major challenge today and the

computer industries struggle with how to efficiently engineer

this. There is need to work on humanizing uncovering speed

(with no trading-off quality) exploits one or more of the

following ideas:

2.1.1.1 Object features
Having cheap to compute the features that capture best the

input image information, is the crucial for fast and good

detections[1].

2.1.1.2 Object classification
For a given set of features, the choice of classifier has impact

on the resulting speed and the quality, often requiring the

great trade-off between these two. Non-linear classifiers will

provide the best quality,[1] but suffer from low speed. As a

result, linear classifiers such as the Adaboost, then linear

SVMs, or Random/Hough Forests are more commonly used.

2.1.1.3 Better prior knowledge
In general, image processing is greatly benefits from the prior

knowledge. For pedestrian detection the presence of a single

International Journal of Computer Applications (0975 – 8887)

National Conference on Advancements in Computer & Information Technology (NCACIT-2016)

19

dominant ground plane has regularly been used as prior

information to recover both speed and quality.[1][2][6]

As the above techniques are implemented sequentially, these

are not best suited for real-time applications. To make it

suitable for real-time usage, these techniques need to be

parallelized. Implementing such systems raise complex

parallelism and scheduling issues. Also when using GPUs for

obtaining parallelism, optimization remains an open problem.

Fig.1 shows the process of pedestrian detection.

Fig 1:

Pedestrian Detection Process

2.2 Pedestrian Detection
The evolution from the baseline CPU detector running at 0.08

Hz up to GPU detections at 135 Hz. Speed-wise results will

be more faster than that reported earlier. Also our result will

be the more than 10 times faster than the cudaHOG results

reported from the GPU implementation. Fig.2 shows the

pedestrian detection in image.

2.2.1.1 Speed measurement
We measure the speed taken by the CPU+GPU starting when

the image frames are available both to the CPU and the GPU.

[4]The measured time,does include all the CPU and GPU

computations and the time[5] to download the GPU results

and to run the non-maximum suppression on the CPU. As

previously indicated our desktop computer is equipped with

an Intel Core i7 and an NVIDIA GTX Titan X.

In this, the GPU based implementation contained in the

OpenCV library ([2]) to speed up the feature computation

process, and an own GPU implementation of the sliding-

window SVM classification, where we took care that the

entire feature computation and classification tool-chain is

conducted in GPU memory.

1) Pedestrian detection: While common approaches use

linear SVMs for detection, our approach makes use of

more powerful (but slower) non-linear SVMs as well,

arranging in the form of a detection cascade. This allows

us to circumvent the speed disadvantage of non-linear

SVMs as they are only applied to the (few) detections

given by the linear SVM stage.

2) Pose classification: Hypotheses who have been approved

both by linear and non-linear SVMs are subjected to pose

classification using a set of K pose-specific non-linear

SVMs. After training, pose classification is conducted

using pedestrian images provided by the real-time

system.

Fig 2: Pedestrian Detection

2.3 GPU Implementation
2.3.1.1 Basic Understanding
In GPU programming, mostly the GPU code and the input

data typically need to be copied from the host to the device

memory before we launch it on the GPU kernel, [5]on the

GPU. The output data will also be copied back from the

device to the host memory, so that the CPU can read them

efficiently. Hence the GPU computation[4] comes at the huge

expense of the offloading overhead on code. Another

shortcoming of the GPU is it has relatively low operating

frequency.

We use CUDA mostly for GPU programming. A unit of code

that is independently launch on the GPU is called as a kernel.

The kernel is made of multiple threads that execute the code

in the parallel. [4][5]A unit of threads that are scheduled by

the hardware is called a block, while a compilation of blocks

for the analogous kernel is called as a grid. The maximum

number of threads that can be contained by an individual

block is defined by the GPU architecture.

2.3.1.2 Program Analysis
The usage of the GPU is depends highly on the program

structure. If the program does not contain data-parallel and

compute-intensive blocks, the GPU is not that much effective

at all. Therefore it is important to analyze the program prior to

the coding and the[1] implementation. The following is the

summary of the program sequence for HOG-based object

detection using the available deformable models used. The

detailed procedure and algorithm description are:

1) Load an input as image.

2) Load the pre-defined object models of that image.

3) Calculate HOG features for all resized variants of

the input image, often referred to as a HOG

pyramid.

4) Calculate the similarity scores for every set of the

root or the part of the filters and the resized HOG

images.

5) Detect the object region based on a summation of

the similarity scores.

6) Recognize the object which is based on the

detection of result.

7) Output the recognition result.

“Support Vector Machine” (SVM) is the supervised machine

learning algorithm. SVM algorithm which can be used for

both the classification or regression challenges. In this

International Journal of Computer Applications (0975 – 8887)

National Conference on Advancements in Computer & Information Technology (NCACIT-2016)

20

algorithm, we plot every data item will point in n-dimensional

space where n is number of the features [9]6][you have by

way of the value of each feature being the assessment of the

exacting organize. Then, we perform the classification by

judgment the hyper-plane that discriminate the two classes in

very well (look at the snapshot).Support Vectors are the

coordinates of an individual observation. Support Vector

Machine is the frontier which is the best segregate the two

modules (hyper-plane/ line).

Fig 3: Wrong object detection algorithm

3. CONCLUSION
 We have presented GPU implementations of

pedestrian detection using parallel HOG and SVM algorithms.

Given that this performance improvement is obtained from the

entire program execution rather than a particular algorithm

within the program, this is the significant contribution for the

real-world applications.

In future work, we plan to achieve high level optimization.

Although our current HOG and simple linear SVM detector is

reasonably efficient processing in less than a second, there is

still room for optimization and to further speed up detections.

It would be useful to develop a coarse-to-fine or rejection

chain style detector based on HOG descriptors. We are also

working on HOG-based detectors that incorporate motion

information using block matching or optical flow fields.

4. ACKNOWLEDGMENTS
We are grateful to our internal guide Prof.A.D.Londhe and

Prof.K.V.Bhosale for giving us all the help for project and

guidance we needed. We are really grateful to them for their

kind support. Their valuable suggestions and guidance was

very helpful.

We are also grateful to Prof. G.P.Potdar, Head of Computer

Engineering Department, PICT for his indispensable support,

suggestions. In the end our special thanks to Lab Teachers for

providing various devices and resources such as laboratory

with all needed software platforms, continuous Internet

connection, for Our Project.

5. REFERENCES
[1] N. Dalal and B. Triggs. Histograms of Oriented

Gradients for Human Detection. In Proc. of the IEEE

Conference on Compute Vision and Pattern Recognition,

pages 886–893, 2005.

[2] S. H. U. Chang, D. Xiaoqing, and F. Chi, Histogram of

the Oriented Gradient for Face Recognition , Tsinghua

Science and Technology, vol. 16, 2011, no. 2, pp. 216-

224.

[3] R. Benensonetal. Pedestrian detection at 100 frames per

second. In CVPR, 2012. P. F. Felzenszwalb, R. B.

Girshick, D. McAllester, and D. Ramanan. Object

detection with discriminately trained part-based models.

Pattern Analysis and Ma-chine Learning (PAMI), Sept.

2010.

[4] NVIDIA. NVIDIA’s next generation CUDA computer

architecture:Kepler GK110. http://www.nvidia.com/,

2012.

[5] A. Danalis, G . Marin, C. McCurdy, J.K. Spafford, V.

Tipparaju, and J.S. Meredith, P. C. Roth, S. Vetter. T he

Scalable Heterogeneous Computing (S H O C)

benchmark suitings of the 3rd In Proceed Workshop o n

General-Purpose Computation on Graphics Processing

Units, GPGPU ' 1 0, pages 63-74, New York, NY, USA,

Mar. 2 0 1 0 . ACM

[6] K. Mizunoetal. Architectural Study of HOG Feature

Extraction Processor for Real-Time Object Detection. In

SiPS, 2012.

[7] P. Viola, M. J. Jones, and D. Snow. Detecting

pedestriansusing patterns of motion and appearance. The

9th ICCV, Nice, France, volume 1, pages 734–741, 2003.

[8] Z. Song, M. Wang, X. Hua, and S. Yan. Predicting

occupation via human clothing and contexts. In ICCV,

2011.

[9] P. Dollár, C. Wojek, B. Schiele, and P. Perona.

Pedestrian detection: An evaluation ofthe state of the art.

PAMI, 34(4):743–761, 2012.

IJCATM : www.ijcaonline.org

