
International Journal of Computer Applications (0975 – 8887)

National Conference on Advancements in Computer & Information Technology (NCACIT-2016)

25

Survey on Different Approaches for Mutation Testing

Jyoti J. Danawale
PG Student

D.Y.Patil College of Engineering,
Ambi, Talegaon

Sandeep Kadam
Head of Department

D.Y.Patil College of Engineering,
Ambi, Talegaon

ABSTRACT

One of the effective techniques for testing is mutation testing.

Mutant can be created by changing the syntax of a program.

To distinguish the mutant from the original program, an

effective test suite is required. The Mutation testing is a

testing method aimed at improving the adequacy of test suites

and estimating the number of faults present in systems under

test. The mutations can be applied to the source code and the

semantics of the language. The mutations of the semantics of

the language signify possible misunderstandings of the

description language and thus capture a different class of

faults. As the possiblemisunderstandings are highly context

reliant, this context should be used to determine which

semantic mutants should be formed. The approach is

illustrated through examples and code in php. In addition, a

semantic mutation testing tool for Php is proposed.

Keywords

Mutation Testing, Semantic Mutation Testing, Scripting

Language PHP

1. INTRODUCTION
Software testing is the process of execution of a program or

application with the intent of finding the bugs in the software.

Software testing can also be specified as the process

ofvalidation and verification that a software program or

application or product is working as expected or not. Testing

is the process of evaluating a system or its component with

the intent of finding whether it satisfies the specified

requirement or not. Testing is the execution of a system to

recognize any gaps, errors, or missing requirements in

opposing to the actual requirements [2]. Testing performed by

a developer on completion of the code is also considered as

testing. There are two classes of troubles in Computer

Software: faults or failures. Fault is a condition that causes

software to fail to perform its required function. The error is

the difference between Actual and the Expected output.

Failure is the in ability of a system or a part of a system to

perform required function as per its specification.Testing a

software helps in comparing the application or product against

user and business requirements. It is most important to have

good test coverage to test the software application completely

and to ensure that it performs well and according to the SRS.If

the test case coverage of the code is high, the test cases have

to be very strong with maximum cases of detecting the faults.

This objective can be calculated by taking into consideration

the count of defects reported per test case. More the number

of defects, it means the test cases were made very strong.

2. MUTATION TESTING
Mutation testing is a type of testing aimed at locating and

exposing the weakness in test suites. The main motivation for

Mutation testing is to make strong test cases in contrast of

finding faults in the source code. Mutation testing aims on

strength of test suites which is used for checking the source

code it falls under the category of white box testing sincethe

source code is available to us for testing [9]. Mutation testing

is also referred as fault based testing. Any small change that

differentiates the program from the original program is a

mutant. There are various types of mutants: stillborn, trivial,

equivalent.The prerequisite is the source code and a test case

for testing that source code. To create amutant, only thing that

is required is to vary the original program by inserting a

smallfault in it. The mutants are checked by running the

original test data. Differences refer themutant are killed. In

case the mutant remains live, the possibility arises either ifthe

mutant and the native program are equivalent or the mutant

could not be killed as thetest set was inadequate. Traditional

mutation testing consists of operators for a mutationthat

represent syntactically small errors like replacing + by – in an

arithmetic expression.There are several drawbacks of

traditional mutation testing. Some of the drawbacks arelisted:

for a small program, the number of mutants produced is large,

whichincreases the chances of equivalent mutants. To deal

with equivalent mutants, the extraamount of manual work is

required. This extra effort increases the cost of

testing.Mutation operators do not consider the

misunderstandings related to semantic changes;the only

concern is syntactic level.Mutation testing is based on two

premises. The first one amongst them is the competent

programmer hypothesis. Most of the faults which occur in the

application code are due to syntactic errors. This is the agenda

on which competent programmer hypothesis is based upon.

Coupling effect is the second hypothesis. The coupling effect

says that the test data or the test case which is able to detect

simple type of bugs are good enough for detection of complex

defects. When more than a single change is made in the code

we get higher order mutants. Mutation testing is accomplished

by first making theOperators. These operators are known as

mutation operators. Then the test case is given input against

the original and the varied code. After that the results are

compared for the both of them. If the output comes out to be

different from the original one, then the mutant is said to be

killed.

3. SEMANTIC MUTATION TESTING
To deal with several specific types of mistakes, Semantic

Mutation Testing was proposed [18]. The semantics can even

be changed by a small change in the syntax. For introducing

the semantic mistakes, different ways are available. For SMT-

P, change in the syntax of description has been chosen in

orderto simulate semantic mutation. Three types of MT can be

studied under SMT-P i.e. weak MT, Firm MT and strong MT.

In case of strong mutation testing, the program, and the

mutant can be separatelyidentified, if they produce different

outputs for a same test case. On the other hand, inweak

mutation testing, if the program and the mutant reflect a value

which is not same for a variable immediately after the

particular point at which the program was mutated are said to

be distinguished.With the help of Firm MT we can in general

International Journal of Computer Applications (0975 – 8887)

National Conference on Advancements in Computer & Information Technology (NCACIT-2016)

26

allow the quality tester or the debugger to select the position

at which the value of a variable can be changed. In SMT the

semantics of that particular language is denoted with the

symbol „L‟, and in totality the behavior is described by the use

of pair i.e. (N,L). If there is any change in the traditional form

of MT then the description of mutant will be changed to (N‟,

L). But in case we alter the semantics of the given language

the description would be given as (N,L‟).

4. RELATED WORK
Mutation testing Research focuses on three kinds of activities

such as defining mutation operators, conducting tests and

implementing tools. The first activity involves designing new

mutation operators for differentlanguages. The second

research activity is testing with mutations. Empirical studies

have supported the efficiency of mutation testing. Mutation

testing more powerful than statement and branch coverage

and more efficient in finding faults than data flow. Offutt et

al. and Wong and Mathur[4] evaluated the idea of selective

mutation that identifies the critical mutation operators and

provide almost the same testing coverage as non-selective

mutation. Using this approach considerably decreases the

number of mutants generated and hence reduces

computational cost. The third activity in mutation testing

research is implementing mutation tools. Mothra and Proteum

were developed for Fortran and C, respectively. Jester, Jumble

and MuJava, as well as the tool presented in this paper,

arecommitted to the Scripting language. An important feature

of mutation testing tools is the mutation operators supported

by a tool. Here the work has been done with two types of

mutation operators: (1) traditional mutation operators tailored

from procedural languages and (2) Semantic mutation

operators designed.

5. TECHNIQUES TO OVERCOME

MUTATION TESTING PROBLEMS

5.1 Techniques to reduce number of

mutants
Four mutant reduction techniques have been proposed that

willfit Mutation Testing into a practical testing technique.

A) Mutant Sampling: Mutant Sampling is a simple technique

that randomly chooses a small subset of mutants from the

entire set. In this approach, all possible mutants are

generated[17]. Some of these mutants are then selected

randomly for mutation analysis and the remaining mutants are

thrown away.

B) Mutant Clustering: Mutant Clustering takes a subset of

mutants using clustering algorithms.Mutation

clusteringtechnique generates first order mutants. A clustering

algorithm is then appliedon first order mutants to classify

them into different clusters and there is guarantee that each

mutant of the same cluster is killed by the related set of test

cases. Only a small number of mutants are chosen from each

cluster to be used in Mutation Testing, the left over mutants

are excluded.

C) Selective Mutation: Number of mutants can also be

reduced by reducing applied mutation operators. Selective

Mutation finds a small set of mutation operators that generates

a subset of all possible mutants without major loss of test

efficiency.

D)Higher Order Mutation: Higher Order Mutation is a

somewhat new form of Mutation Testing [11]. The objective

of this technique is to find out respected higher order mutants.

First Order Mutants are produced by applying a mutation

operator only once. Higher Order Mutants are created by

applying mutation operators more than once.

5.2 Cost Reduction Techniques
The computational cost can be reduced by improving the

mutant execution process. Two cost reduction techniques are

proposed.

A) Strong, Weak and Firm Mutation: Strong Mutation Testing

is also known as traditional mutation testing and it is proposed

by DeMilo et al. In Strong Mutation, for a given program p, a

mutant m of program p is supposed to be destroyed or killed

only if mutant m gives a dissimilar output from the original

program p. Weak Mutation is proposed to optimize the

execution of strong mutation. In weak mutation it is assumed

that a program p is constructed using a set of components

C={c1,c2,c3,….,cn}. Suppose mutant m is made by changing

component cm then mutant m is said to be killed if execution

of component cm is dissimilar from mutant m. In weak

mutation the mutants arechecked immediately after the

execution point of mutant instead of checking mutants after

execution of whole program.Previous work is carried out in

Firm Mutation by Woodward and Halewood. Woodward and

Halewoodhave suggested techniques to minimize the

drawbacks of both weak and strong mutation. For this they

have used the concept of continuum of intermediate

possibilities.

B)Run-Time Optimization Techniques: Interpreter-based

technique is used by the first generation of Mutation Testing

tools to optimize the mutation. The result of a mutant is

interpreted from its source code directly. Compiler-based

technique was proposed to reduce the cost of interpretation as

the execution of compiled binary code is faster than

interpretation. In compiler-based technique, the mutant

program is compiled first and then numbers of test cases are

applied to the mutant program.

6. PROPOSED SYSTEM
A Mutant Generation Tool is proposed for scripting language

PHP. The tool consists of three modules: Mutant Generator,

Mutant Executor and Run Test cases, Calculate efficiency of

test suite.

A) Mutant Generator: The input to the mutant generator is the

original program and the mutation operators. The mutant

generator will then generate the mutants by using guided

mutation testing algorithm.

B) Mutant Executor: The output from Mutant Generator will

be input to the Mutant Executor. PhpUnit is the unit testing

framework in PHP language. The test cases are generated and

applied to the Mutant Executor. Mutant Executor runs test

cases.

C)Calculate Efficiency of test suite: Mutant Executor runs the

test cases and based on that result, the efficiency of the test

suit is measured. Atest case is said to be killed if it gives

different result when applied to the original program and the

mutant program.If a test case does not pass, it means that the

test case strength is high and the mutant is said to be killed.

International Journal of Computer Applications (0975 – 8887)

National Conference on Advancements in Computer & Information Technology (NCACIT-2016)

27

Fig1. Proposed System Architecture

7. CONCLUSION
One of the effective techniques for testing is mutation testing.

Mutant can be created bychanging the syntax of a program.

To distinguish the mutant from the original program,an

effective test suite is required.A new tool for scripting

language Php is proposed based on semantic mutation. In

semanticmutation, the language is modified to produce the

mutant. There can bemisunderstandings in regard to the

semantics of the description language. When thesyntax of a

description is mutated, it is traditional mutation testing. On

the other hand, when we deal with language, it is semantic

mutation testing. A test case that producesdifferent results

when run on the actual program and its mutant is said to be

failed. Whena test case fails, the mutant is said to be killed. In

future mutation testing can be applied to real time

applications.

8. REFERENCES
[1] Umar M., “An evaluation of Mutation Operators for

Equivalent Mutants”, M.S. thesis, Computer Science,

King‟s College, london, 2006.

[2] Beizer B., “Software testing techniques”, Dreamtech

Press, 2003.

[3] Pressman, Roger S., “Software Engineering: a

practitioner‟s approach”, Pressman and Associates, 2005.

[4] A. J. Offutt, A. lee, G. Rothermel, R. Untch, and C. Zapf.

“An experimental determination of sufficient mutation

operators”. ACM Transactions on SoftwareEngineering

Methodology, 5(2):pp. 99–ll8, April l996.

[5] J. Tuya, M. Suarez-Cabal, and C. de la Riva, “Mutating

database queries,”Information and Software Technology,

vol. 49, no. 4, 2007, pp. 398 – 4l7.

[6] D. Baldwin and F. G. Sayward, “Heuristics for

determining equivalence of program mutations," tech

report 276, Yale University, New Haven, Connecticut,

l979.

[7] sDu Bousquet and M. Delaunay, “Towards mutation

analysis for lustreprograms". Electronic Notes in

Theoretical Computer Science, vol. 203, no. 4, pp. 35-48,

2008

[8] B. J. M. Grun, D. Schuler, and A. Zeller, “The impact of

equivalent mutants," inProceedings of the IEEE

International Conference on Software Testing,

Verification, and Validation Workshops, (Denver,

Colorado, USA), pp. l92-l99, IEEEComputer Society,

2009.

[9] M. Harman, R. Hierons, and S. Danicic, “The

relationship between program dependence and mutation

analysis," in Mutation testing for the new century (W. E.

Wong, ed.), Norwell, MA, USA: Kluwer Academic

Publishers, pp.5-l3, 200l.

[10] M. Woodward and K. Halewood, “From weak to strong,

dead or alive? An analysis of some mutation testing

issues", in Software Testing, Verification, and Analysis,

l988., Proceedings of the Second Workshop on, pp. l52-

l58, Jul l988.

[11] Y. Jia and M. Harman, “Higher order mutation testing,"

Information and Software Technology, vol. 5l, pp. l379-

l393, Oct 2009.

[12] M. Kintis, M. Papadakis, and N. Malevris, “Evaluating

mutation testing alternatives: A collateral experiment," in

Proc. l7th Asia Pacific Software Engineering Conf.

(APSEC), pp.300-309, 20l0.

[13] J. Ofutt and Y.-R. Kwon, “The class-level mutants of

MuJava," in Proceedings of the 2006 international

workshop on Automation of software test - AST '06,AST

'06, (New York, New York, USA), pp. 78-84, ACM

Press, 2006.

[14] M. Papadakis and N. Malevris, “An empirical evaluation

of the first and second order mutation testing strategies,"

in Proceedings of the 20l0 Third InternationalConference

on Software Testing, Verification, and Validation

Program Semantic Mutation Operator

Mutant Generator Tool

Generate

Mutant

Collect Symbol Info Parse Specification

Mutant

Mutant Executor

Calculate Efficiency of Test Suite

Test Suite

International Journal of Computer Applications (0975 – 8887)

National Conference on Advancements in Computer & Information Technology (NCACIT-2016)

28

Workshops, ICSTW 'l0, , IEEE Computer Society pp.

90-99, 20l0.

[15] D. Schuler and A. Zeller, “Uncovering equivalent

mutants," in Proceedings of the 3rd International

Conference on Software Testing Verification and

Validation (ICST'l0), (Paris, France), pp. 45-54, Apr

20l0.

[16] Abdul Azim Abdul Ghani and Reza Meimandi,” Aspect-

Oriented ProgramTesting: An Annotated Bibliography”,

journal of software, vol. 8, no. 6, june20l3.

[17] YueJia and Mark Harman “An Analysis and Survey of

the Development of Mutation Testing”, IEEE

Transactions On Software Engineering, vol. 7, no. 2,

pp.77-84,2006.

[18] J.A. Clark, H.Dan and R.M. Hierons ,” Semantic

mutation testing”, Science of Computer Programming

pp:345-363, 20l3.

[19] Haitao Dan and Robert M. Hierons “SMT-C: A Semantic

Mutation Testing Tool for C” IEEE Fifth International

Conference on Software Testing, Verification and

Validation, 20l2.

[20] M.Patrick, Manuel Oriol and John A. Clark “MESSI:

Mutant Evaluation by Static Semantic Interpretation

IEEE Fifth International Conference on Software

Testing, Verification and Validation” 20l2.

[21] S.Singh and S.Jain “A study on equivalent mutants

detecting technique”, VSRD International Journal of

Computer Science & Information Technology, Vol. 3

No.5 May 20l3.

IJCATM : www.ijcaonline.org

