
International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing (NCAC 2015)

20

Size based Multithreaded Scheduler for Hadoop
Framework

Poonam S. Patil
Department of Computer Engineering

Savitribai Phule Pune University
Pune, India

Rajesh. N. Phursule
Department of Computer Engineering

Savitribai Phule Pune University
Pune, India

ABSTRACT
The majority of large-scale data severe applications executed

by data centers are based on MapReduce or its open-source

implementation i.e. Hadoop. For processing huge sum of data

in parallel Hadoop programming framework provides

Distributed File System (HDFS)[2] and MapReduce

Programming Model[3]. Job scheduling is an imperative

process in Hadoop MapReduce. Hadoop comes with three

types of schedulers namely FIFO, Fair and Capacity

Scheduler. In some processing scenario these traditional

scheduling algorithm of Hadoop cannot meet the performance

requirements and fairness criteria of Big Data Processing. To

address this issue new efficient scheduler is require who can

identify the data size first and processed accordingly for

performance improvement. This new MapReduce scheduling

scheme Will improves MapReduce performance and erasure

high speed data processing.

Proposed system will analyze the data size of individual

DataNode and create threads based on threshold value

decided by proposed scheduler. Processing of the threads is

done parallel on individual DataNode by task tracker which

will ultimately improve the data process performance.

Because of that task Tracker will does the work in less time

than the time required by the traditional Scheduler.

Keyword
 MapReduce, Big Data, Scheduling, HDFS

1. INTRODUCTION

1.1 Big data
the term „Big Data[5] Big data refer to massive data sets that

have larger magnitude(Volume), more range, including

structured, semi structured and unstructured data (variety),

and arriving more rapidly (Velocity) than the traditional

system, For handling this vast data industries require new

technique, approach, tool's & architecture this will solve new

problems very efficiently as well as old problems in the better

way.

The main key enables for the growth of “Big data”[12] are:

 Increase storage capacity

 Increase processing power

 Availability of data

1.2 Apache Hadoop Framework
Hadoop[1] is a software echo system Hadoop is a software

framework that provides a simple programming model to

enable distributed processing of large data sets on clusters of

computers. Hadoop applications are used to process big data

since the traditional systems are incapable of processing such

volume of data.

Hadoop software is a completely open-source framework for

large data analysis. It includes two main components, i.e.

HDFS for parallel Processing and Map Reduce for data

analysis purpose.

1.3 Map Reduce
MapReduce[3] is a data intensive processing with support of

cloud computing technology. It is a convenient programming

interface for working in a cluster environment. MapReduce

can be used for predictive analysis, e.g. it can be used to

identify whether forecasting, earthquake prediction, etc.

MapReduce is the programming backbone to get the

distributed data processed. And the analysis of that data can

be done by using the various front end analytical data tools

like R tool, SAS.

The strengths of MapReduce are fault tolerance[3], an easy

programming structure and high scalability. Map Reduce

Programming framework can be applicable in various

environments like web data processing, scientific analysis,

high-performance computing, etc.

Hadoop MapReduce Framework is Master-slave Architecture

in that job tracker works as Master node while Task Tracker

works as Slave node.

This programming model takes input as key/value pairs, and

produces a set of output key/value pairs. The user of the

MapReduce library expresses the computation as two

functions: map and reduce.

Map, In Hadoop framework data is stored in HDFS the input

data is taken from HDFS in the form of KEY VALUE

PAIRS; Map function processes the input< KEY, VALUE >

to form new< KEY, VALUE > this new value is called

intermediate key I and this key are passes to Reduce function.

Iterator function uses to pass the intermediate value to

Reduce function. Reduce, this function accept intermediate

key pass by Map function and respective set of values for the

key.

Job Tracker

Responsibilities:

 Scheduling Jobs

 Monitoring

progress

 Dealing with Fault.

 Managing Cluster
Resources

Task Tracker

Responsibility:

 Launching parallel

task

 Report Status to Job

Tracker

 Execute either Map

Or Reduce Task

Figure 1: Hadoop Job and Task Tracker Responsibility

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing (NCAC 2015)

21

1.4 HDFS
Hadoop distributed file system[2] is popular because of its

scalability, reliability and capability of storing a very large

file. HDFS is a Master-Slave architecture in that two-

component present name node and data node. Name node

works as Master Node accountable for Storing and managing

of metadata. Name node is unique in the cluster, and it is a

machine in a cluster with a high configuration while in other

hand data node works as a slave node which is responsible for

storing a block of data and serve that data on request over a

network, these data blocks are replicated in the network.

Slave nodes are commodity computers. There is one more

component present in HDFS in secondary name node, which

is responsible for the storing the backup for the name node's

metadata. The important thing about the secondary name node

is it will not work as a backup or standby node to a name

node.

2. BACKGROUND

2.1 Issues in Scheduling
Locality: Locality[9] is defined as the distance between the

input data node and task -assigned node. When the distance

between data node and the computation node is less than the

data transfer cost is less. Locality is a critical issue which can

affect the performance in shared distributed environment;

high locality improves the throughput of the tasks. If the

locality requirement is not fulfilled, data transferring I/O costs

can seriously affect the performance because of the shared

bandwidth of network. Most methods of scheduling of map

reduce jobs follow a policy of attempting to assign tasks to a

place near the input data to save cost of network.

Synchronization: Synchronization[15] is the process of

transferring the intermediate output of the map processes to

the reduce processes as input is also consider as a factor

which affects the performance. Mappers have to wait until all

the map processes are finished to initiate sending intermediate

output. Due to dependency between the map and reduce

phases of processing, a single node can slow down the whole

process, causing the other nodes to wait until it is finished.

There are various factors which results in performance

degradation in the synchronization step, few of them are as

heterogeneity of the cluster, node failures miss-configuration,

and serious overhead of the I/O cost.

Fairness: Various map-reduce jobs are performed in a shared

data warehouses of enterprises like facebook, Amazon,

Google and Yahoo. A map-reduce job with a heavy workload

may dominate utilization of the shared clusters, so some short

computation jobs may not have the desired response time. The

demands of the workload can be elastic, so fair workload to

each job sharing cluster should be considered. Fairness

constraints have tradeoffs between the locality and

dependency between the map and reduce phases. When each

map-reduce job has roughly an equal share of the nodes and

the input files are spread in distributed file system, some map

processes have to load data from the networks. This causes a

great degradation in throughput and response time.

Synchronization overhead could affect the fairness. For

example reduce processes have to wait for the completion of

map processes which leads to idle nodes and starvation of

other jobs. Due to this problem a poor utilization situation

occurs.

2.2 Role of Scheduler in Hadoop
A scheduler plays a very significant role in the big data

processing[5]. Hadoop implements the ability for pluggable

schedulers that assign resources to jobs. However, as we

know from traditional scheduling, not all scheduling

algorithms are the same, and efficiency is workload and

cluster dependent. Apache Hadoop framework should provide

an efficient scheduling mechanism for enhanced utilization in

a shared cluster environment. The problems of scheduling

MapReduce jobs are mostly caused by locality and

synchronization overhead. Also, there is a need to schedule

multiple jobs in a shared cluster with fairness constraints. By

default, Hadoop uses FIFO to schedule jobs. Alternate

scheduler options: capacity and fair scheduler. Each scheduler

having its own advantage and disadvantage according to

volume, verity and velocity of data present in HDFS.

2.3 Scheduler in Hadoop
 First-In First-Out Scheduling
This scheduler is inspire by first come first serve basis it is an

original and default scheduler, In FIFO scheduler each task

are loaded into JOBQUEUE and executed one by one, this

type of scheduler is easy to implement but its main

disadvantage it‟s not consider fair sharing of resources.

 Fair Scheduler:

This scheduler is designed by Facebook. The aim of designing

this scheduler is to obtain fair sharing of cluster resources.

Along with fair sharing priority can be assigned to jobs for

effective execution this type of scheduler is called priority fair

scheduler.

 Capacity scheduler:

This scheduler is designed by Yahoo. This scheduler is

designed in such a scenario where number of users are large

and system needs to analyze the usage of clusters

 Delay Scheduling:

This scheduler is designed to improve the locality rate of the

Hadoop cluster.

3 SIZE BASED MULTITHREADED

SCHEDULER
This section presents the new technique for enhancing the

scheduling mechanism of Hadoop. The main idea behind this

system is to enhance the performance of data processing in

case of big data with parallel processing using thread and

synchronization mechanism. The scheduler which are

provided by Hadoop by default cannot be applicable in some

scenario For example, in FIFO scheduler[15], small jobs have

a problem in waiting large job processing. FIFO also does not

respect data locality for jobs that are needed in Map-Reduce

scheduling framework. Fair share scheduler demands more

time for job scheduling in context switch between jobs.

Capacity scheduler does not respect data locality. And finally

Dynamic priority scheduler interests to achieve special goals.

So, this scheduler does not respect data locality too. Many

other schedulers are also designed now a days for the specific

purpose only so there scope is also limited to their application

only. Most of these schedulers suffer various problems like

data locality, synchronization, fairness etc.

The proposed system is based on the data present on the

DataNode and processing of that data individual thread is

created. So the multithreaded approach for processing the

individual nodes data will definitely improves the system

performance. If the processing data size is less than it can be

done working in one thread and if the processing data size is

more then it will create thread accordingly.

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing (NCAC 2015)

22

3.1 System Architecture
To evaluate data size based multi threaded scheduling

algorithm its results are compared with the Hadoop default

FIFO scheduler. proposed system is tested on private cluster

of 1 master node and 4 slave nodes. It takes in to

consideration of size of the data available in name node and

according to that job tracker will create the treads. In

proposed system input job is submitted to the Task Tracker.

As each task tracker runs on Data Node, according to the data

available in DataNode it divides that data in to blocks using

threshold value.

Figure 2: System Architecture

Example: Suppose any random DataNode in cluster having

20gb of data and threshold value is 3gb then the bocks

splitting is using sizeOfData/thresholdValue, in this scenario

7 blocks will be created out of that 6 will be of size 3gb and

one is of 2gb. For each block processing thread is created

separately that independent thread will perform Map/Reduce

operation on the data block.

3.2 Algorithm

Algorithm 1: Size based multi threaded algorithm

Thread creation:

Tnumbers= Data.size/maximumsizeofdata;

Thread[n] treads =Thread.create(Tnumbers);

for each thread of threads{

 if size!=0{

 size=size-maximumSizeOfData;

 dataToProcess=Data.size;

 process(dataToProcess);

 }

}

process(dataToProcess){

 // pass data to map reduce

 // Process data

 //Store data

synchronize(){//Store result}

}

3.3 Experimental Environment
To evaluate proposed scheduling performance private cluster

of 1 name node and 4 data nodes is used. The respective

hardware environment and configuration of these is shown in

table 1.

Table1: Evaluation Environment

Nodes Quantity Hardware and Hadoop

configuration

Master

Node

1 2 single-core 2.2GHz Optron-64

CPUs, 8GB RAM, 1Gbps Ethernet

Slave

Nodes

4 2 Single core 2.2Ghz Optron-64

CPUs, 4GB RAM, 2 map and 1 reduce

slots per node.

3.4 Associated challenges
A scheduler plays a very important role in the big data

processing, because of big volume of data fast processing of

data becomes the big challenge. System may have to face

Some other challenges like:

 Handling Data Synchronization in critical region

e.g. Banks Sensitive Data or account balance

 Data Locality

 Handling data Dependency

4 SET THEORY
Input: Large data set.

Output: scheduling time require in the form of graphs.

Function: input, split data, scheduling, synchronization, data

processing, result, graphs.

Hadoop function: map, reduce.

Constraints:

1. To observe performance of the proposed system it is

required to use data in high volume.

2. Data set provided should be candidate for parallel

processing i.e. data should not be transactional.

Assumptions & Dependencies: system will enhance the

performance of data processing in case of big data with

parallel processing using thread, synchronization mechanism.

5 RESULTS & DISCUSSION
Screen 1: RUN JOB USING FIFO SCHEDULER

The screen shows the result of job processing, the system

output is shown on the localhost the output screen shows the

user name, job name, job file which is stored on the data

node, host name and address, and the important status i.e. in

the form of SUCCESS and FAILURE status code which

shows the job running status, job starting and finished time is

also shown the output window showing the job finishing time

if the job is running with traditional Hadoop FIFO scheduler

which are compared with proposed systems scheduling time.

Figure 3: Run Job Using Proposed Scheduler

Screen 2: RUN JOB USING FIFO SCHEDULER

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing (NCAC 2015)

23

The output window showing the job finishing time which are

compared with running the same job on traditional Hadoop

FIFO scheduler shown in above figure.

Figure 4: Run Job Using Fifo Scheduler

Proposed scheduler use concept of multithreading where file

data is getting processed in parallel. Number of threads gets

created based on the size of the data and processing logic runs

in parallel. This enables maximum utilization of the resources

and to achieve better result

Figure 5: comparative analysis between traditional FIFO

scheduler and Proposed Scheduler

6 CONCLUSION
Hadoop scheduler resource aware is one of the emerging

research problems that grab the attention of most of the

researchers as the current implementation is based on

statically configured slots. There are various pros and cons of

previous Scheduling policies which are developed by

different communities. Each of the Scheduler considers the

resources like CPU, Memory, Job deadlines and IO etc

proposed system provides gives faire scheduling of task and

give better and fast performance. In proposed scheduler the

concept multithreading is used where file data is getting

processed in parallel. Number of threads gets created based on

the size of the data and processing logic runs in parallel. This

enables maximum utilization of the resources and to achieve

better result.

7 REFERENCES
[1] Apache Hadoop. Available at http://hadoop.apache.org

[2] ApacheHDFS.Available at http://hadoop.apache.org/hdfs

[3] ApacheMapReduceAvailableathttp://hadoop.apache.org/

docs/current/hadoop-mapreduce-client/hadoop-

mapreduce-client-core/MapReduceTutorial.html

[4] Apachefairescheduler.Availableathttp://hadoop.apache.o

rg/docs/r1.2.1/fair_scheduler.html

[5] ApacheCapacityscheduler.Availableathttp://hadoop.apac

he.org/docs/r1.2.1/capacity_schedulerhtmlJournal of

Computational Information Systems 7: 16 (2011) 5769-

5775 Available at http://www.Jofcis.com “Research on

Job Scheduling Algorithm in Hadoop” by Yang XIA, Lei

WANG

[6] A community white paper developed by leading

researchers across the United States “Challenges and

Opportunities with Big Data”

[7] Jeffrey Dean and Sanjay Google, Inc.” MapReduce:

Simplified Data Processing on Large Clusters”

[8] KyuseokShimSeoulNationalUniversityshim@ee.snu.ac.k

r “MapReduce Algorithms for Big Data Analysis”

[9] Vasiliki Kalavri, Vladimir VlassovKTH The Royal

Institute of Technology Stockholm, Sweden

kalavri@kth.se “MapReduce: Limitations, Optimizations

and Open Issues”. TrustCom/ISPA/IUCC,Page1031-

1038,IEEE,(2013)

[10] Yi Yao, Jianzhe Tai, Bo Sheng, Ningfang Mi, “LsPS: A

Job Size-Based Scheduler for Efficient Task

Assignments in Hadoop”, In proceedings of the IEEE

transaction, Copyright (c) 2014 IEEE

[11] Qutaibah Althebyan , Omar ALQudah, Yaser Jararweh

Qussai Yaseen “Multi-Threading Based Map Reduce

Tasks Scheduling”, 2014 5th International Conference

on Information and Communication Systems (ICICS)

[12] Jisha S Manjaly, Varghese S Chooralil Department

“TaskTracker Aware Scheduling for Hadoop

MapReduce” 2014 5th International Conference on

Information and Communication Systems (ICICS)

[13] Runhui Li, Patrick P. C. Lee, Yuchong Hu “Degraded-

First Scheduling for MapReduce in Erasure-Coded

Storage Clusters” AoE/E-02/08 and ECS CUHK419212

from the University Grants Committee of Hong Kong,

IEEE 2013

[14] Bin Ye, Xiaoshe Dong, Pengfei Zheng “A delay

scheduling algorithm based on history time in

heterogeneous environments” 2013 8th Annual

ChinaGrid Conference

[15] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An

analysisof traces from a production mapreduce cluster,”

in CCGRID‟10,2010, pp. 94–103.

IJCATM : www.ijcaonline.org

