
International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2014

28

 A Review on Apache Hadoop Performance
Enhancement by using Network Levitated Merge

Prashant B. Kanhere
M.E student, Dept. of C.E
Dr. D.Y. Patil SOET, Pune

Sathishkumar Penchala
Assistant Professor

Dr. D.Y. Patil SOET,Pune

ABSTRACT

Hadoop is popular large scale open source software

framework which is written in JAVA programming for

securely distributes storage and it is the master

implementation of Map-Reduce programming used for cloud

computation [1]. Now a days, hadoop faces a lot of problems

to obtain the best outcomes from underlying system. The

issue includes a serialization needs to gain quality

performance which setback the aspect. Disk access and

repetitive merges causes to current speedy interconnections

that increases the volume of data sets. To stay with

increasing volume of data sets, Hadoop also requires I/O

ability from the underlying system nodes to process and

examine data. So, for this „HADOOP-A‟ [12] architecture is

formed. Hadoop-A is an enhancement of framework that

minimizes hadoop with peripherals for speedily data

movement and bounding the existing limits to keep updating

the architecture. A novel network algorithm for merging the

data is explained in this paper. In supplementary, a full

pipeline which is designed to overlay the shuffle, minimize

phases and merge. The experimental results which shows

that HADOOP-A is intensely speeds up data processing in

Map – Reduce and extends the hadoop‟s throughput as

double. HADOOP-A is significantly helps to optimize disk

accesses which are caused by intermediate data.

General Terms

Hadoop, Map-Reduce, Hadoop acceleration, cloud

computing, Network Levitated.

Keywords

Serialization, Repetitive Merges, Disk Access, Network

Portability, Network-Levitated Merge, Pipelined Shuffle,

Merge, and Reduce.

1. INTRODUCTION
MapReduce [7],[10] has appeared as a favored and simple-

to-use programming structure for many firms to process

massive size of data, perform massive computation, and

accurate censorious knowledge for business analysis

purposes in Business intelligence (BI). Hadoop is a free and

open source software (FOSS) exertion of Map-Reduce,

presently hold by the Apache Software Foundation (ASF),

and supported by leading IT firms such as Yahoo! and

Facebook [6]. Hadoop expands Map-Reduce framework with

two heading component such as: Job-Tracker and bulk of

Task-Trackers. The Job-Tracker orders Task-Trackers (as

knownas slaves) to process data in parallel over two main

operations: map and reduce. In this progression, the Job-

Tracker is in privilege of scheduling map tasks (MapTasks)

and minimize tasks (ReduceTasks) to Task Trackers. It also

keeps track to their progress, mobilize run-time execution

stats, and stem possible defects and errors through task re-

execution. A reduce tasks requires to fetch a chunk element

of the common or transitional output from all completed

MapTasks. Globally, this tends to shuffling of transitional

data (in segments) from each and every MapTasks to same

ReduceTasks. For many data-demanding MapReduce [7],

[10] programs, data shuffling can accelerated an important

number of disk operations and argue for the finite I/O

bandwidth. A number of experiments [3], [4], [5] have been

carried out to enhance the performance of hadoop

MapReduce framework [9], [10]. Condie et al. [5] has

offered explicit network channels between MapTasks and

ReduceTasks that significantly improve the delivery of data

from MapTasks and ReduceTasks. It remains as a complex

problem to debug the relationship of hadoop MapReduce‟s

[7] three phases of data processing unit i.e. shuffle, merge,

reduce and their conclusion or connotation to the

productivity of hadoop. With an extensive diagnosis of

hadoop MapReduce framework, especially it‟s ReduceTask,

developer confess that the original architecture faces a lot of

challenging problems to accomplish the remarkable

performance from existing system. No ReduceTask can start

cutting down the data as far as data have been merged

closely together that to ensure the accuracy of MapReduce

[10]. This results in serialization faults that constantly delays

the reduce operation of ReduceTask. Generally, the present

merge algorithm in hadoop merges the intermediate data

chunks (a.k.a segments) from MapTasks. Whenever the

numerous availability of chunks (including already merged

segments) goes over the origin. Also whenever the entire size

is hefty than the available memory that time these chunks are

lavished to local disk storage. The data segments are merged

repetitively due to the design of this

Fig. 1 –Hadoop MapReduce Framework for Data

Processing.

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2014

29

Algorithm and therefore, this same data is accessed by

multiple rounds of disk. To resolve these critical problems

for hadoop MapReduce framework [7], authors have

designed „HADOOP-A‟ [12], a portable enhanced

framework which can take the advantage of peripheral (a.k.a

plug-in) components for performance acceleration and

protocol minimization. A numerous improvement are

introduced: 1) to perform the data merging without

repetitive merge and additional disk accesses by ReduceTask

that are enabled by Noval algorithm. 2) To overrun the

shuffle, merge and reduce stages for ReduceTask, a full

pipeline is designed and 3) A compact „Hadoop-A‟ is

implemented to remote direct memory access (RDMA) as

well as for TCP/IP [2].After all by staying the ReduceTask

above the local disk to enable the data merge operation,

Researcher introduced the new algorithm i.e. Network

Levitated Merge (NLM) [13]. Which have been implemented

on the basis of large set of experiments on „HADOOP-A‟ for

enhancing the performance ability. These enhancement

demonstration that the NLM algorithm is capable to remove

the serializationbarrier and gracefully overrun the operations

like merge and reduce for Hadoop ReduceTasks. Normally,

to produce double throughput of hadoop data processing unit,

„Hadoop-A‟ is capable to do that. The rest part of this

paper classified as follows. Section 2 is an overview of data

processing in Hadoop MapReduce Framework [7]. The

currently existing issue in hadoop framework and

acceleration structure of hadoop is discussed in section 3

with that software architecture of „Hadoop-A‟ [12] and

accelerated data shuffling for RDMA are also included.

Section 4 derives a Network levitated merge algorithm.

Finally this paper is concluded in section 5.

2. OVERVIEW OF DATA

PROCESSING IN HADOOP

MAPREDUCE FRAMEWORK
Pipelined data process is one of the great fundamental feature

of Hadoop MapReduce framework [7], [10]. As displayed in

Figure no.1, Framework has three important execution

phases as -> Map, Shuffle/Merge, and Reduce. User‟s input

(jobs) datasets are splits in many data chunks (a.k.a

segments), this is performed by job tracker when user‟s job is

assigned to it. In that divided chunks, user‟s data is

formulated as many records of {„Key‟,‟ Val‟} combination.

To execute the map function, job tracker prefers a numerous

TaskTracker and lineup them for process, this is done in first

phase. Every TaskTracker casts several Map-Tasks as per

chunk of split. The mapping function alters original records

into transitional outputs, which are in the above format

{„key‟, „Val‟} combination. Files which are generated from

splits are named as Map Output Files (MOFs). This Map

Output File is arranged into data segments which are relevant

as one per ReduceTask. Every segment contains a set of

records. If MapTask completes one data split then it needs to

reschedule to process the next split. Whenever the MOFs are

accessible that time job Tracker fetches some TaskTracker to

process ReduceTask. TaskTracker can generate certain

simultaneous ReduceTasks. Every ReduceTask startedup by

obtaining a segment which is expected for it from Map

Output Files (also named as partition).

ReduceTask always requires to fetch the chunk portions from

all Output files (MOFs). Throughout the ReduceTask

whatever the data segments are obtained that will going to

shuffle in next phase. While in the process of shuffling, the

data chunks are merged on the basis of keys order which is

already defined in data records. Now the ReduceTask are

spilled so, need to store some data chunks in order to ease

memory which has loads in local disks. Shuffling, Sorting

and merging of data segments are usually known as „Copy

Phase‟ in Hadoop framework. Generally, this stage is

introduced as ‘Shuffle/Merge’ stage. Now, the ending stage

is Reduce phase. By using the reduction function, every

ReduceTask start to process the merged chunks. When the

final result outs then it is stored in HDFS (Hadoop

Distributed File System) [11]. This is the extension of output

segment which is derived after successfully execution of all

processes.

3. ACCELERATION STRUCTURE OF

HADOOP

First of all there are several issues in existing Hadoop

framework like Serialization in data processing, Repetitive

merges and disk accesses by ReduceTasks, unable to use

RDMA interconnects [8]i.e. unable to support high

capacitive working in high speed networks. So, these issues

are the important factors which plays vital role in

performance enhancement of existing hadoop [9] who

removes all above issues and work with great functionality.

For this purpose it needs to accelerate the functionality of

existing Hadoop. So, for that „Hadoop-A‟ is formed.

Fig. 2 –Software Architecture of Hadoop- A

3.1 Software Architecture Of Hadoop-A
Simple architecture of „Hadoop-A‟ [12] is as shown in figure

2. Two new user configurable peripherals are introduced i.e.

MOFSupplier and Net-Merger which are capable to leverage

RDMA interconnects [8] and enables merge algorithms do to

alternative data merging. MOFSupplier and Net-Merger are

strapped C implementation. To prevent the data processing

by overhead of Java Virtual Machine (JVM) and grant

adaptable choice of new network system such as RDMA,

which is still unavailable in JAVA. A basic demand of

Hadoop-A is to preserve the same setup and maintain

interface for end users. The TaskTracker launches the

MOFSupplier and Net-Merger peripherals (plug-ins) which

are designed and programed in „C‟- language. The

configuration file contains acceleration parameters which

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2014

30

gives the control choice to user for enabling and disabling

the acceleration. Whenever the „Hadoop-A‟ peripheral is

activated, at that time hadoop programs are executed without

any modification.

4. NETWORK - LEVITATED

SHUFFLE, MERGE AND REDUCE

PIPELINE
As mentioned in section (3), One major issue occurs in

hadoop framework as – The barrier of shuffle/merge and

reduce in serialization phase, which is resolved by using new

Network -Levitated merge algorithm [13] as follows;

4.1 Data merging without serialization

Barrier
Due to some certain limitations of memory as compared to

the data size, hadoop resorts to merge repetition. For every

completed Map Output File, it conjures a request i.e. HTTP

GET which firstly makes an inquiry for length of partition

and then pull whole data which will be going to store in

memory or on disks. This provokes many memory related

operations loads/stores, disk I/O etc… Unnecessarily the data

partitions are pulled locally before merging due to the

RDMA interconnects [8] which are comes to close to

memory unwisely. The new algorithm having a key feature

i.e. all the data partitions are merged exactly once and at that

time it remains levitated over local disks. For clear

understanding, just take an overlook on figure no.3, which

shows the new Network – Levitated algorithms working

[13]. New algorithm is derived from hadoop‟s priority queue

based merge sort. The main idea behind this is to keep data

laying on remote disk until the time to merge the expected

data segments. The heading pair<key, Val> will be the

starting point of merge operation for separate segments

known as merge point, which is shown in figure (3). S1, S2

and S3 are the segments which will fetched and merged.

Rather fetching all of them in local disk, it is better to create

small header individually and fetch that header only. So, new

algorithm uses this kind of ideology. Each header contain

offset, partition length and the first combination of record

<key, Val>. This <key, Val> combination is enough to

compose a priority queue (PQ) to formulate these segments.

Algorithm merges available data records <key, Val>

combination in the same manner which is done in hadoop

also. Algorithm contains four phase to get successes. First

phase contain Header fetching, Priority Queue setup is

derived in second phase, Fetch and merge operation are

concurrently goes on, Last fourth phase is towards the

completion.

5. DISCUSSIONS AND CONCLUSION
Cloud computing is the backbone of currently leading I.T

firms and one of the vast issue in cloud computing is big data

process which will going to rule on technology keyword at

least for 10 future years. Hadoop is the master piece design

of technology, which process a large data sets just in time.

So, on the basis of brief study of architecture, functionality

and working nature of hadoop, this review paper is

designed.Wheneverbig data processing comes in

consideration program need this approach and should work

efficiently. Above Described Hadoop –A architecture has

wide future scope as compare other processing frameworks

who has low efficiency power to process. Also Hadoop –A

will grow and take the advantage of working in

heterogeneous cloud and distributed environment which

leads that will deploy the improved MapReduce framework

in heterogonous over homogenous environment with

adaptive task tuning.This paper also describe and helps to

understand Hadoop MapReduce [10] framework from basic

level and up

Fig.3 Algorithm for Network –Levitated Merge

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2014

31

To its working functionality level. This review paper contains

the appropriate figures which gives a blunt ideology of

hadoop framework and other working features.

6. ACKNOWLEDGMENTS
Any accomplishment requires work or any effort of many

people. This paper is noDifferent. Working on this paper was

a source of immense knowledge to us. Authors would like to

express sincere gratitude to Assistant. Prof. Roshani Ade for

her valuable support thought out this paper design. Authors

acknowledge with a deep sense of gratitude and inspiration

earned from faculty members and colleagues. Last but not the

least heartily thanks to Kedarnath Dixit and Pritish Mehtre for

encouraging to carry forward this work.

7. REFERENCES
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” Proc. Sixth Symp.

Operating.

[2] Test-TCP. http://www.pcausa.com/Utilities/pcattcp.htm.

[3] D. Jiang, B.C. Ooi, L. Shi, and S. Wu, “The Performance

of MapReduce: An In-Depth Study,” Proc. VLDB

Endowment,

[4] System Design and Implementation (OSDI ‟04), pp. 137-

150, Dec. 2004.vol. 3, no. 1, pp. 472-483, 2010.M.

Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, and I.

Stoica, “Improving MapReduce Performance in

Heterogeneous Environments,” Proc. Eighth USENIX

Symp. Operating Systems Design and Implementation

(OSDI ‟08), Dec. 2008.

[5] T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K.

Elmeleegy, and R. Sears, “MapReduce Online,” Proc.

Seventh USENIX Symp. Networked Systems Design and

Implementation (NSDI), pp. 312-328, Apr. 2010.

[6] Apache Hadoop Project, http://hadoop.apache.org/, 2013.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified data

processing on large clusters. Sixth Symp. On Operating

System Design and Implementation (OSDI), pages 137–

150, December 2004.

[8] InfinibandTradeAssociation.http://www.infinibandta.org.

[9] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The

performance of MapReduce: An in-depth study. In

Proceedings of the 36th International Conference on

Very Large Data Bases (VLDB), volume 3, pages 472–

483, 2010.

[10] Yandong Mao, Robert Morris, and Frans Kaashoek.

Optimizing MapReduce for multicore architectures.

Technical Report MIT-CSAIL-TR-2010-020, MIT, May

2010.

[11] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and

Robert Chansler. The hadoop distributed file system. In

Proceedings of the 2010 IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST), pages 1–10,

Washington, DC, USA, 2010. IEEE Computer Society.

[12] Yandong Wang, Xinyu Que, Weikuan Yu. Hadoop

Acceleration through Network Levitated Merge, pages 3

12,http://mmc.geofisica.unam.mx/acl/edp/SC11/src/pdf/p

apers/tp50.

[13] Weikuan Yu, Member, IEEE, Yandong Wang, and

Xinyu Que. Design and Evaluation of Network-Levitated

Merge for Hadoop Acceleration: IEEE

TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH

2014.

IJCATM : www.ijcaonline.org

