
International Journal of Computer Applications (0975 – 8887)  

International Conference on Microelectronics, Circuits and System –Micro 2016 

31 

Multiresolution Transform based Denoising in Direction 

Finding 

K.Gowri1, P. Palnisamy2 

Department of Electronics and Communication Engineering, 
National Institute of Technology, Tiruchirappalli- 620 015 

 

 

ABSTRACT 

In this paper, multi-resolution transforms based denoising 

followed by an improved method of Direction of Arrival 

(DOA) estimation is investigated. The predominant subspace 

method, Multiple Signal Classification (MUSIC) algorithm is 

very practical and efficient for direction of arrival estimation, 

but it fails to determine the direction at low Signal to Noise 

Ratio (SNR).  The pre-eminence of MUSIC algorithm is used 

to upgrade the resolution of direction of arrival under adverse 

noisy situations. The noise is suppressed and thereby the gain 

of the received signal from sensors is improved by ridgelet 

transform and GHM (Geronimo J.S, Hardin D.P and 

Massopust P.R) multiwavelet transform based denoising. The 

simulation results of denoising and pseudo spectrum of the 

algorithm delivers improved performance in terms of root 

mean square error (RMSE), spectrum function, bias and gain. 

SNR, snapshots, array elements are the input parameters. 

General Terms 

Direction of arrival, multiresolution transform based 

denoising 

Keywords 

Multiresolution transform, ridgelet transform, GHM 

multiwavelet transform, DOA estimation, denoising, subspace 

methods 

1. INTRODUCTION 
Direction of Arrival (DOA) estimation has been a long-

established problem in the field of sensor array processing. An 

achievement of accuracy is being an important issue in 

estimation. The applications of DOA estimation have received 

an attention in biomedical signal processing, target detection 

and so on [1]. Although the number of sensor elements and 

the samples of received signals, snapshots are less [4], the 

exploitation of subspace methods, Multiple Signal 

Classification (MUSIC) [2] and Estimation of Signal 

Parameters via Rotational Invariance Techniques (ESPRIT) 

[3] algorithm fail to resolve the signal efficiently. These 

algorithms depend on eigen value decomposition of the spatial 

covariance matrix. There are small angle errors in DOA 

estimation of ESPRIT than MUSIC was studied by Ottersten 

et al [5]. There should be a compromise between the trade-off 

factors such as accuracy, complexity, low SNR, coherence of 

sources, the number of sensors and the number of snapshots to 

obtain an efficient DOA estimation. 

The detection and estimation of signals from noisy 

environment is a difficult process since many signals get 

impinged at sensors with unknown directions and amplitudes 

[6]. In this paper, an improved DOA estimation method for 

low SNR signal is proposed by denoising the signal array 

output using by 2D ridgelet transform and 2D-GHM 

multiwavelet transform. The SNR of the signals from the 

sensors are thus improved by multiresolution transforms. 

Wavelet Transform (WT) acts as the space-time localization 

of the signal and time-frequency coefficients are back 

transformed for denoising [7].  

Wavelets are powerful tool to extract the information from 

noise with point singularities. The ridgelet transform is 

obtained by mapping point singularities using Radon 

transform and then the wavelet transform is applied, since 

wavelet transform fails to process line singularities [8]. One of 

the advantages of ridgelet transform is the original data can be 

processed to various scales and orientations [9]. Furthermore 

orthogonality, symmetry and a high order of approximation is 

preserved in multiwavelet with perfect reconstruction. The 

performance of multiwavelet bases is superior to other 

wavelet bases [10], [11]. Thresholding the multiresolution 

transformed coefficients using hard thresholding method gives 

denoising with better SNR. 

In this paper, direction of arrival is estimated with accuracy is 

proposed using multiwavelet denoising since it gives 

preferred SNR improvement than other multiwavelet 

transforms. It achieves better in low SNR up to -30 dB 

whereas the method in [12] operates only up to -20dB. The 

performance of multiwavelet denoising outplays the ridgelet 

transform based denoising and is reported in literature [8]-

[11]. In this study, the simulation results of DOA estimation 

using multiwavelet transform based denoising are compared 

with ridgelet transform based denoising. Denoising process 

supports the MUSIC algorithm to work in low SNR. 

The organization of the paper is as follows. Section II outlines 

the data model. Section III describes the multiresolution 

transforms: ridgelet and multiwavelet transforms. In section 

IV, denoising technique is provided. Section V explains the 

MUSIC algorithm. Section VI describes the proposed work. 

Section VII illustrates the simulation results followed by a 

brief conclusion and future work.  
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Fig. 1.  Block diagram of ridglet transform using 2D-FFT 

2. DATA MODEL 
Consider an Uniform Linear Array (ULA) with sensors and 

they are equally spaced at 2/d . The number of sensors 

used for this problem formulation is M and if any narrow 

band sources k , )( kM  with wavelength  impinging 

on the sensors at angles ),...,,( 21 k . Then the received 

signal in vector notation is given by  

,,...,2,1)()()()( LtfortNtStAtX               (1) 

where L is the snapshots, )(tN refers to an additive 

1M  white Gaussian noise vector and it is assumed to be 

an uncorrelated and zero mean, )(tS denotes the complex  

1k signal snapshots vector. 

where A  is the steering matrix can be written as, 
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        Also assume that the signals and noise are uncorrelated 

with each other )0][;( ,  jiji NSE .The estimated 

covariance matrix, through snapshots can be obtained by, 
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where ])()([ H

SS tStSER  represents spatial co-variance 

matrix and IRNN

2 , denotes variance of noise, 
2  

denotes the Gaussian noise vector variance, [.]E  stands for 

statistical expectation and (.) denotes conjugate 

transposition. 

3. MULTIRESOLUTION TRANSFORM 
Multiresolution transform is an analysis tool to decompose the 

signal into space (time) - frequency domain. It performs onto 

the signal and it suits for different applications. It 

approximates the signals using inner product computation and 

scale and translation. It operates with the discrete set of 

samples of the signal and uses the dyadic wavelet sets. 

3.1 RIDGELET TRANSFORM 
The ridgelet transform decomposes the original signal to 

various scales and orientations, which represent different time 

frequency coefficients of the corresponding signal [13]. It 

compromises well with the line coefficients than point 

coefficients. This section reviews the Continuous Ridgelet 

Transform (CRT). Also it explains its similarity with other 

continuous transforms. The CRT of 1-D function )(xf in

2 is defined in [9], 





2

)()(),,( ,, dxxfxCRT f       (5) 

The mother wavelet is denoted by )(,, x , where  and  

b  is the scaling function and the translation function 

respectively.  Ridgelet function is oriented at an angle , 

where )2,0[   and is constant along the line

constxx   sincos 21 . 1-D wavelet transform is 

applied to the signal in radon domain to obtain ridgelet 

transform.  It is defined from 1-D wavelet type function 

)(x as, 

)/)sincos((
1

)( 21,, 


  bxxx   

(6)    If point specifications ),( b  are replaced by 

)2,1( bb , then Continuous ridgelet transform is related to 2-

D continuous wavelet transform The relationship between 

points and lines are dealt by 2D Radon transform and it is 

defined by, 

212121 )sincos(),(),( dxdxtxxxxftR f   

    

               (7) 

where  is the Dirac distribution. The radon transform also 

satisfy the property, 

               ),(),( tRtR ff                                   (8) 

Applying 1-D wavelet transform to the radon coefficients is 

the ridgelet transform. This is also known as projections.  
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Fig. 2.  Flow chart for the proposed method 

The continuous ridgelet transform can be defined by, 

dttRtCRT f

R

baf ),()(),,( ,           (9) 

ridgelet’s cross section is like a mother wavelet. This makes 

ridgelet able to deal well with the line singularities [14]. 

Exploiting the projection slice theorem ridgelet transform can 

also obtained using Fourier transform instead of wavelet 

transform and is shown in fig.1 

3.2 MULTIWAVELET TRANSFORM 
GHM Multiwavelets are constructed by Geronimo et. al. and 

provide exceptional results in signal compression and 

denoising is given in the literature [15], [16].  The scaling 

function and the wavelet function in multiwavelets ought to 

be greater than one for analysis and synthesis of the signal 

[17]. The important properties such as orthogonality, compact 

support and so on can never more hold by uni-wavelets (with 

only one scaling and wavelet function, )(t  and )(t
simultaneously) [18]. 

Multiwavelets have w number of scaling functions and 

commonly w = 2 for multiwavelets. The scaling function and 

the wavelet function can be defined by vector notation as, 

Tttt )]()([)( 21                      (10) 

Initialize M, d, k, L 

Noisy input X (t) obtained from the sensors 
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If sub-
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Tttt )]()([)( 21                  (11) 

where )(t and )(t  is the multi-scaling function and 

multiwavelet function respectively. If 1w , it matches to 

discrete or scalar wavelet [19]. The scaling and wavelet 

function for the scalar wavelet is given by, 

)2(2)( mtHt
m
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               (12)
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For multiwavelets,  the filters given in (12) and  (13), mH

and mG are ww )22(   matrices of low pass and high 

pass filter coefficients are given by,  
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where the scaling filter sequence and the wavelet filter 

sequence are denoted by mh and mg  respectively. They 

should satisfy 1)(2  nh
m

m  and 1)(2  nh
m

m  for

1,0m .  

 A multiwavelet can preserve all the advantages of the 

wavelet [10]. Both the scaling and multiwavelet functions are 

symmetric and it offers superior performance compared with 

scalar wavelets in 2-D [20]. 

4. DENOISING USING UNIVERSAL 

THRESHOLD 
Denoising is employed to recover the original signal from the 

noise corrupted signal. It smooths the signal by removing the 

high frequency components in the signal. In this paper, noise 

is assumed to be an additive Gaussian, which is uniformly 

distributed over the signal. Denoising can be done effectively 

through multiresolution transforms to eliminate additive noise 

is given in literature [12, 21, 22]. Denoising is done by 

applying the transform to the noisy signal which converts to 

orthogonal space, followed by thresholding and inverse 

transform to obtain the original domain. This is the estimate 

of the original signal.  

    The universal threshold proposed by Donoho [21] is given 

by, 

)log(2 TsNT               (16) 

where TsN  is the total number of coefficients  in 

decomposition level and   denotes the standard deviation of 

Gaussian noise. The median of finest level transformed 

coefficients is denoted by xm .  Subsequently the standard 

deviation of Gaussian noise can be calculated from data X
can be given by, 

6745.0
ˆ xm
              (17)  

Calculation of standard deviation using (17) gives 

better estimate of the original signal for the hard threshold, if 

the number of samples is large. Thresholding must be done 

after decomposition of the input signal. Hard thresholding is 

used to denoised the signal in this paper and it is given by, 
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where 
vuC ,

ˆ are the high frequency coefficients of transformed 

signal. When 
vuC ,

ˆ is less than threshold T it is replaced by 

zero, when it is greater than or equal to threshold T , it is 

contracted to zero according to fixed value. Then inverse 

transform is applied to obtain denoised estimate and is given 

by,  

for Wavelet denoising, 
1ˆ ˆ ,f W X            (19) 

for Ridgelet denoising, 
1 ˆˆ .g CRT X            (20) 

 At low signal to noise ratio, the universal threshold 

performs well for additive Gaussian noise. The energy 

compaction is high in ridgelet transform than wavelet 

transform, because ridgelet transform provides small number 

of coefficients at every level of decomposing. 

5. MUSIC ALGORITHM FOR DOA 

ESTIMATION 
Schmidt [2] proposed MUSIC algorithm for DOA estimation. 

To estimate the direction of arrival for multiple and 

uncorrelated multiple sources, MUSIC algorithm was 

introduced. Assume that the noise covariance matrix,     has 

a uniform power on its diagonal and the incident sources are 

uncorrelated. The spatial covariance matrix can be rewritten 

as, 

IAARtXtXER H

SS

H 2])()([                (21) 

 where SSR  is nonsingular and full rank matrix of MM 

.MUSIC algorithm aids to estimate the desired arrival 

direction from ),...,,( 21 k  sources. The algorithm 

depends on eigen structure of the spatial covariance matrix. 

Signal and noise subspace matrices are obtained by 

decomposing covariance matrix and they are orthogonal to 

each other. The eigen decomposition is given by,  
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where ],...,,,...,,[ 121 Mkk vvvvvV   are eigen vectors, 

SV is signal subspace, NV is noise subspace and 

],...,,,...,,[ 121 Mkkdiag   . The spectrum is 

maximized where noise and steering matrix are orthogonal to 

each other. Therefore MUSIC algorithm is the squares 

Euclidean norm of this vector. The MUSIC pseudo spectrum 

is,
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Fig. 3.  Decomposition of GHM multiwavelet transform 

6. THE PROPOSED DOA ESTIMATION 

USING MULTIWAVELET TRANSFORM 

BASED DENOISING 
In this section, the description of the proposed method is 

provided. Firstly, the denoising of the received signal using 

ridgelet transform and GHM multiwavelet transform is 

discussed. The performance of denoising is analysed by gain. 

Secondly the denoised signal is used for DOA estimation. 

MUSIC algorithm is adopted for estimating sources and the 

results are provided in the next section. Consider an ULA of 

)7( MM  number of sensors, which are point sources. 

The signal through the sensors is deteriorated by Gaussian 

white noise )(tN . Using (1), (2) and (3), the signal )(tX is 

given by, 
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Ltfor ,...,2,1 . The signal )(tX  is a two-dimensional 

array and thereby used for multiresolution based denoising. 

The data is partitioned into pieces of dyadic blocks 

),( qpX nb where nb is the number of blocks.  

6.1 Ridgelet transform based denoising 
1D-wavelet transform is applied to the Radon coefficients to 

obtain ridgelet transform. It is applied to the dyadic blocks 

),( qpX nb using (7) and (9). Ridgelet transform can be 

performed for the input array, studied in [22]. Apply 2D-FFT 

to input dyadic blocks ),( qpX nb  to polar, where the points 

fall on lines on a lattice going through the origin. Apply 1D-

FFT on each line. Then apply 1D-wavelet transform to the 

slices of radon transform. Denoising is done with the output 

of the ridgelet transform, ),,( XR and hard 

thresholding in (18) is used to denoise the dyadic blocks. 

Compute inverse ridgelet transform to the denoised dyadic 

blocks and is written as, 


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The flow chart diagram for the proposed method is shown in 

fig.2. 

6.2 GHM based denoising 
The 2D-GHM multiwavelet transform is calculated by 

decomposing the noisy data using wavelet transform is 

obtained by applying either scaling or wavelet function in 

horizontal and vertical direction. After pre-filtering, the noisy 

2D-dyadic data ),( qpX nb  is replaced by four blocks. The 

approximate signal with coarsest level 0J at resolution 
m2

is given by, 

))()(),,((),( ,,,,,,  qpqpXnqnpS nqlmnplmnbklm       

                (26) 

The horizontal, vertical and diagonal details are given by, 

))()(),,((),( ,,,,,,  qpqpXnqnpD nqlmnplmnb

H

klm         

                            (27) 

))()(),,((),( ,,,,,,  qpqpXnqnpD nqlmnplmnb

V

klm       

           (28) 

))()(),,((),( ,,,,,,  qpqpXnqnpD nqlmnplmnb

D

klm       

                 (29) 

Sixteen sub-matrices of one level 2D-multiwavelet 

decomposition using (12) and (13) is shown in fig.3. The sub-

matrices obtained by multiwavelet transform are denoised 

using Donoho’s universal thresholding. This keeps the same 

coefficient value when coefficient greater than T and kills 

when less than T  using (16) - (18). Reconstructed 2D data is 

obtained by applying inverse transformation of sub-bands and 

post filtering of the dyadic blocks. Collection of the dyadic 

blocks give denoised signal MWTX , which can be used for 

DOA estimation. 



International Journal of Computer Applications (0975 – 8887)  

International Conference on Microelectronics, Circuits and System –Micro 2016 

36 

 

Fig 4. DOA estimation at      , SNR= -30dB and 

L=640 

 

Fig 5. DOA estimation at       , SNR= -20dB and 

L=640 

6.3 DOA estimation 
Compare the performance of the denoising using metric gain. 

Compute MM   correlation matrix using denoised signal

MWTX , assuming sources are independent and noise is 

uncorrelated. If kM  the matrix 
H

SS AAR  is singular

)0](det[ H

SS AAR . M Dimensional vector subspace is 

partitioned into signal subspace SV  and noise subspace NV

using eigen decomposition. MUSIC algorithm searches 

through all angles and when kii ,...,2,1,  it 

exhibits a peak value. The spatial spectrum is plotted using 

(23).  

7. RESULTS AND DISCUSSION 
DOA estimations are simulated using MATLAB tool. In this 

section we describe about DOA estimation using ridgelet and 

multiwavelet transform based denoising. The proposed 

method describes the DOA estimation of the noisy input 

signal received at the sensor output by removing the noisy to 

obtain the accurate and high resolution performance. To 

accomplish this, multi-resolution transforms: 2D-multiwavelet 

and 2D-ridgelet transform is used and simulation results are 

noted in this paper. 

 

Fig 6. RMSE versus SNR 

 

Fig 7. Bias versus SNR 

        The performance measures like Gain and Root Mean 

Square Error (RMSE) are studied for various values of input 

SNR, angles and inter-element spacing, d . A uniform linear 

array of 7M sensors at 2/d and the number of 

narrow band signals 1k is considered in our simulation 

results. The noise assumed in this proposed work is zero 

mean, additive white Gaussian. The empirical SNR gain 

function XG  [12], is defined as, 

OIX SNRSNRG )()(                (30) 

The input SNR is, 
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The output SNR is, 
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Where S  is the original signal, X is noise corrupted signal 

at sensors, Ŝ  is the denoised signal using multiresolution 

transform. 
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Fig 8. RMSE versus snapshots 

 

Fig 9. RMSE versus sensors 

    The Gain value 3.0515dB is calculated by averaging over 

500 Monte-Carlo simulations for different values of SNR. 

    To calculate the performance of the proposed method, the 

angle of arrival is set to 
045 , the input signal to noise ratio is 

dB30 . The inter element spacing is set as half a 

wavelength for all experiments. The noise is additive white 

Gaussian noise with snapshots, 640L . Fig. 4shows the 

DOA estimation of angle 
045  for 7  sensors. The evaluation 

is done by comparing the performance of the proposed GHM 

multiwavelet transform based denoising method with ridgelet 

transform and undenoised signal based DOA. Fig. 4 

illustrates, in the low SNR environment the DOA estimation 

by GHM based denoising is accurate with high resolution. 

Fig. 5 displays the simulation result for the case of 
015  , with 640  snapshots at input

dBSNR 20 . Thus DOA estimation by GHM based 

denoising performs well when compared with the 

performance of RT based denoising. This simulation result 

also provides high accuracy and is done with 7 numbers of 

sensors. It distinguishes well and provides satisfactory result 

on DOA estimation. 

The performance benchmark, Root Mean Square Error 

(RMSE) is calculated with respect to 
030 and

063 . The 

number of snapshots used in this simulations is 640 , the 

SNR ranges from dB30  to dB0  and 7M . The 

average RMSE of the signal impinged on the sensors is used 

for statistical DOA estimation precision evaluation is defined 

by, 





SN

iSN
RMSE

1

2)ˆ(
1

             (33) 

where SN  is the number of trials,   is true angle and 
i̂  is 

the estimate DOA of 
thi sample. Fig. 6 evaluates the 

denoising performance in terms of RMSE of DOA estimation 

by simulation. The snapshots of received data are 640 and 

the number of independent trials is 500 . The angle   was 

fixed at 
030 and furthermore SNR varies from dB30 to

dB0 . Fig. 7 shows the corresponding bias result.  From Fig. 

6 and 7, GHM based denoising exhibits superior performance 

than RT based denoising and undenoised received signal. For 

reference, Cramer Rao Lower Bound (CRLB) is provided in 

this simulation. 

        The performance of the proposed method shown in Fig. 8 

is evaluated by RMSE versus number of snapshots. The 

snapshots are varied with a step size of 16  from 112  to 

1200  at dBSNR 20 . The number of independent 

trials used is 500 . Again, the proposed method shows the 

better performance than other methods. 

 The RMSE of DOA estimation by GHM based denoising 

outperforms RT based denoising and undenoised signal and is 

shown in Fig. 9. This simulation was done via 500  

snapshots and the input SNR is dB17 . The angle was 

fixed at 12  along with 500  independent trials. Fig. 9 

interprets the performance of the proposed method through 

RMSE versus sensors. 

The resolving capablity of the proposed approach was verified 

with two sources (k=2) through simulations. Simulations 

acheive excellent results as input SNR varies upto 29dB , 

moreover sources were fixed at 10  and 30  . 

GHM based estimation performs good for low SNR. This is 

reported in figure 10 and the input SNR used for this 

simulation is 29dB . 

 

Fig 9. DOA estimation of two sources at       , 

     , L=640, SNR= -19dB 
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8. CONCLUSION 
This paper investigated the accuracy of available Direction of 

Arrival algorithms. To increase the performance, multi- 

resolution transforms- multiwavelet Transform and ridgelet 

transform are proposed for denoising. The simulation results 

demonstrate in low SNR ( dBSNR 30 ), GHM based 

denoising estimates accurate DOA, where ridgelet transform 

based denoising fails. It is shown that, especially in low SNR, 

GHM based DOA estimation increases the accuracy and 

reduces the RMSE of the DOA estimates when compared to 

ridgelet based estimation. The future work will include 

denoising using Multi-resolution transform to reduce the 

number of sensors, complexity and resolve more and close 

signals. It is believed that further improvements in 

performance will be achieved by selecting an appropriate 

estimating algorithm. Simulation results support the 

effectiveness of the proposed method. 
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