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ABSTRACT 

The advancements in multi processors based computers with 

parallel computing has  increased the computational speed . 

The multi processors consists of hundreds of processor cores 

or graphics processing units are designed for multimedia 

applications to improve the pixel resolution .These processors 

are also used for general computations are  called as General 

Processing GPU (GP-GPU) . The exploration of multi cores in   

CUDA (Compute Unified Device Architecture) led to parallel 

computation . CUDA C is a high level programming language 

released by NVIDIA in 2006 for its NVIDIA GPUs. In this 

paper a high speed convolution algorithm is implemented  on 

CUDA based graphics processing unit. The implemented 

algorithm is evaluated based on computational speed. 

Simulation results shows that   computational speed by GPU 

has been increased by many folds when compared with CPU.  
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1. INTRODUCTION 
The single core processor has the limitations of limited 

performance speed for large computations in real time 

multimedia applications. Multi core CPUS are used to 

increase the speed as depicted in Figure 1. Though Multi core 

processors are capable of executing (MIPS) Millions 

Instructions per Second on a large database, there are some 

computational problems that still remain to be addressed by 

the processor designers. Building high performing multi 

processors require an expensive and intense design cycle. 

Computations with  the  more powerful   microprocessor   for  

processing real time multimedia applications, Internet of 

Things (IoT), Cloud and Mobile Computing, Big Data 

Analytics requires more computational speed as complex 

algorithms and huge database  is involved. The programmers 

in the past have developed a different concept called parallel 

processing. Parallel processing involves two or more 

processors and a task is divided into number of subtasks by a 

special function of the operating system and processed by a 

processor.  

 These sub-tasks are then scheduled for execution into a 

number of cores for parallel execution. Each core then 

executes its part of total task. After the completion of 

execution of individual tasks, the Operating System 

reassembles the final result by integrating the individual sub-

task result. 

 
(a)      (b)  

Figure 1: (a) CPU    (b) GPU 

The computational speed, complexity and power consumption 

of these CPU-based parallel processors are limited by the 

number of processor cores that can reside on a single 

processor.For floating point operations CPU based multi-core 

processors lag behind the GPUs in terms of speed . This is 

because CPUs has large portion of die space for control logic 

circuitry and cache memory, whereas GPU allocates large die 

space to accommodate large number of floating-point 

Arithmetic and Logic Units called cores. This architectural 

feature in GPUs enables splitting of a task into a number of 

threads. These threads are then executed in parallel by 

scheduling each thread into an independent core and hence 

improving the performance speed.  

Many of signal processing applications commonly used by 

engineers and scientists need a specialized parallel 

architecture as available in GPUs in order to carry out 

specialized algorithms. These algorithms include Linear and 

Circular Convolutions, Multiply-And-Accumulate (MAC) 

operations, Discrete Fourier transform (DFT). The parallel 

architectures available in GPUs are best suited for this type of 

algorithms, as the same operation is applied independently to 

different modules of data and software development tools. 

This   simplifies the process of parallelizing   code   without   

the need for additional   work   by programmer.  

The DFT and Convolution are the most sought after 

algorithms in signal and image processing applications, which 

require a large number of MAC operations on a large volume 

of sampled data. In this paper, the implementation of DFT and 

convolution algorithms using a parallel architecture called 

CUDA, which was conceptualized by NVIDIA, is presented. 

2. BACKGROUND OF DFT AND 

CONVOLUTION  

2.1 Discrete Fourier Transform (DFT)  
The Discrete Fourier transform is very powerful 

computational basis for the spectral analysis of discrete data 

in frequency domain. Spectral analysis is the process of 

identifying various frequency components present in data 

along with their amplitude and phase values .The DFT 
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transforms time or space domain data into frequency domain 

data. The DFT is one of the most important mathematical 

tools in Digital Signal Processing that provides a basis for 

computing on digital computer or special purpose processor. 

The DFT has wide spread applications in determining system 

frequency response, speech, image and video processing areas 

and so on. The N-point DFT of a time domain signal x(n) is 

denoted by X (K) which is periodic with a period of N. The 

N- point DFT X(K) is obtained by finding N equally spaced 

samples of Fourier transform of the discrete signal x(n) over a 

period of 2π. In addition to determining the frequency content 

of a signal, DFT is also useful in performing linear filtering 

operations in the frequency domain. The Discrete Fourier 

Transform is a numerical variant of the Fourier Transform. 

Specifically, for a given discrete data of n input amplitudes 

such as {x0, x1, x2... xn-2, xn-1}, the Discrete Fourier 

Transform yields a set of n frequency components. 

The DFT of a signal x (n) is defined as: 

               
     

   ,   k= 0, 1, ---, N-1. 

Where      
    

  

The inverse discrete flourier transform (IDFT), which 

recovers back the original signal x(n) in time domain 

                   
     

   , for n= 0, 1,--, N-1. 

Here K denotes the frequency domain ordinal, and n 

represents the time-domain ordinal. The "N" is the length of 

the DFT.  

2.2 Convolution 
Convolution is another powerful important mathematical tool 

useful in finding the response of a Linear-Time Invariant 

(LTI) system. It has many applications in various research 

areas like telecommunications, optical communications, Bio-

medical imaging, speech and image processing, electrical 

engineering, computer graphics and radio astronomy etc. The 

huge amount of data involved in all these applications 

possesses a big challenge in data storage, classifying, 

processing and retrieving of information [1]. All thee 

challenges reduce the execution speed of the convolution. The 

execution speed can be improved drastically by performing 

the MAC operations on individual parts of the data on the 

multiple parallel-cores available in GPUs. GPUs have many 

small processing elements, called cores and, therefore, are 

well-suited for computing MAC operations in convolution. 

Convolution of two sequences x (n) and h(n) is defined as: 

                      (4)  

Where, x (n) is a discrete-time input signal, h(n) is an impulse 

response of an LTI system, y(n) is the output or response of 

LTI system. The convolution summation can be easily 

implemented using a direct form of Finite Impulse Response 

(FIR) filter. Convolving in the time domain mentioned in 

above equation has no inherent latency at the output y(n).  

However, the computational cost of convolution depends on 

the number of multiply-add operations per output sample. It 

can easily be verified that with increasing the length of the 

filter coefficients results in increase in the computational cost. 

Consequently, this direct computation method cannot be best 

suited in evaluating convolutions in real time for long 

sequences. Some efficient methods are available in frequency 

domain when compared to that in time domain. By using 

Discrete Time Fourier Transform (DTFT) of a discrete 

sequence, a signal can be converted into corresponding 

frequency domain. The DTFT of a discrete sequence is a 

continuous periodic function of frequency. In general, the 

sequence x(n) is of finite duration sequence and the DTFT of 

it being continuous, can be sampled at uniformly spaced 

intervals over a period of    with sampling interval of      . 

This sampling enables a new type of transformation technique 

known as N point Discrete Fourier Transform (DFT).  The 

linear convolution of two signals or sequences in time domain 

leads to multiplication of their DTFTs. But in the case of DFT 

domain, Inverse DFT (IDFT) of multiplication of the DFTs of 

two sequences does not produce linear convolution but results 

in circular convolution of the two sequences. This circular 

convolution is denoted by, X (k) and H (k), which are the N-

point DFTs of x(n) and h(n), respectively. Thus, the inverse 

DFT of product of X (k) and H (k) is not useful to find the 

linear convolution of x(n) with h(n), which means   

IDFT{X(k) H (k)}≠x(n) * h(n). However, the linear 

convolution of two sequences can be computed by using DFT 

and IDFT if the two sequences are properly padded with 

zeros.  

3. CUDA ARCHITECTURE  
CUDA, shown in Figure 2 provides a parallel computing 

platform wherein the task assigned to a processing unit is 

divided into a number of threads and then executed in parallel 

among the multiple-cores available. The programming model 

using CUDA C had been invented by NVIDIA, which enables 

drastic increases in computing speed. With CUDA-enabled 

GPUs, software developers, scientists and researchers are 

finding broad-ranging uses for GPU computing with CUDA. 

The convolution algorithm is one of the powerful and most 

commonly used algorithms to characterize and obtain the 

frequency spectrum of the given system that applies to a set of 

data samples. The CUDA provides a computing platform for 

intensive and big volume of data, we proposed the Graphics 

Processing Units (GPU) based Convolution algorithm which 

can be the cost effective solution. The GPU can execute the 

Convolution application in parallel using the mode of Single 

Instruction Multiple Data (SIMD). GPU is now becoming a 

hot research topic that works in image processing, video and 

multimedia applications. For this reason, it is chosen to 

develop the compute and to reduce the Convolution and DFT 

calculation time. To execute this transform on GPU, we used 

a specific architecture that's CUDA. 

A. Programming with CUDA 

The CUDA computing engine virtualizes graphics hardware 

available to the programmer through the use of uniquely 

numbered threads that are organized into 1D, 2D, or 3D 

blocks of arbitrary size. 

B. Processing flow of CUDA  

Figure 3 illustrates the Processing flow of CUDA.  

Step 1. Copy the data set for processing from CPU memory 

to GPU memory.  

Step 2. CPU instructs the GPU to perform the given 

operation in the form of Kernel. 

Step 3. Load GPU program and execute 

Step 4. Copy and store the results from GPU memory to 

CPU memory. 
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Figure 2: GPU Device memory Hierarchy 

 

Figure 3: Processing flow of CUDA 

C. Programming Model 

CUDA C is the language that supports heterogeneous 

computing on a GPU platform. The CUDA environment 

consists of both host device and target device. A CUDA 

program is a unified source code on the host, which consists 

of both host code and device code. The CPU acts as a host, 

fetching and decoding the instructions and exhibits little or no 

parallelism. The CPU can schedule the device code 

(instruction/program) to get executed in the target GPU which 

supports parallel programming. NVIDIA C compiler separates 

host code and device code during the compilation process. 

The host code is a simple C code, which is compiled further 

by regular C compilers, and the device code is NVIDIA C 

extensions, for device parallelism, which can be launched by 

special device functions called “kernels“. The device code 

further compiled by NVCC (NVIDIA C Compiler) and 

executed on the GPU (device).  

The CUDA program calls parallel kernels executing a set of 

parallel threads. The CUDA programming model, as shown in 

Figure 4 consists of thread blocks and grids of thread blocks. 

A group of threads is called Thread Block and a group of such 

Thread Blocks is known as a Grid. The threads in a thread 

block are aligned in one-dimensional, two-dimensional, or 

three-dimensional form. In a similar way, thread blocks in a 

grid are aligned in a one-dimensional, two-dimensional or 

three-dimensional form. This provides a natural way to invoke 

computations across the elements in a domain such as a 

vector, matrix, or volume. The programmer or compiler 

organizes these threads in the number of specified thread 

blocks and grids of thread blocks.  

The kernel can be invoked indicating the number of threads 

by using the execution syntax shown below:  

Kernel Name  <<< Number of Threads >>> Parameters  

Each thread has a unique “thread index“, which can be 

accessible using “threadIdx”. 

The thread ID can be calculated based on its index of thread. 

For a one dimensional block they are the same. For a two 

dimensional block of size (Dx,Dy), if the thread index is (x, y) 

then its thread ID is (x+y·Dx). For a three dimensional block 

of size (Dx,Dy,Dz), if the thread index is (x, y, z) then its 

thread ID is (x + y · Dx + z · Dx · Dy) . 

The number of blocks per grid (nB) and the number of threads 

per block (nT) are specified in a kernel launch as  

Kernel name <<< nB, nT >>> (parameters)  

Where nB = (4,2), represents a two dimensional blocks by 4 

columns and 2 rows and a total of 4 · 2 = 8 blocks. Each block 

has 10 numbers of threads. Each thread in a thread block and 

each block in a grid has unique thread index and block index. 

 

Figure 4: CUDA Programming Model 

4. IMPLEMENTATION OF 

CONVOLUTION ON GPU  
As discussed in section 2, the convolution of two signals x(n) 

and h(n) shall be calculated in three steps 

Step 1: Make the lengths of both x(n) and h(n) equal to N= l 

+m-1 by suitable zero padding , where l ,m  being lengths of 

x(n) and h(n) respectively.  

Step 2: Calculate N-Point DFT of both the sequences, i.e., 

X(K) and H(K).  

Step 3: Evaluate N-point DFT Y(K) by multiplying  X(K) and 

H(K). 

Step 4: Compute N-Point IDFT of Y(K) to obtain convolved 

sequence y(n) 

The procedure to implement the convolution algorithm on 

GP-GPU is depicted in the flowchart shown in Figure 5. 
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Figure 5: Flowchart for implementing Convolution on CUDA 

5. RESULTS AND ANALYSIS 
A Simulation setup with NVIDA's GeForce GT 610 Graphics 

Card was used for implementing DFT and Convolution. The 

GPU, whose specifications are shown in Table 1, is based on 

the Fermi architecture with 48 CUDA cores and clock 

frequency of 1.62 GHz. The CUDA was interfaced with Intel 

dual core CPU, whose specifications are shown in Table 2, 

having a clock frequency of 2.60 GHz. 

Table 1: GPU Device configuration and specifications 

Features Specifications 

Name GeForce GT610 

Compute capability 2.1 

Global Memory 2 GB 

Multi-processors 1 

Number of CUDA cores 48 

Total Constant Memory 64 KB 

Threads per Block 1024 

Shared memory per Block 48 KB 

Registers per Block 32768 

Blocks per Block 8 

Wraps per Multiprocessors 48 

Block Dimensions 1024*1024*64 

Grid Dimension 65535*65535*65535 

Threads per Wrap 32 

Clock rate 1.62 GHz 

 

Table 2: Host Machine Specifications 

Features Specifications 

Processor Intel Pentium Dual-Core 

Operating System Windows 10 

Clock Speed 2.6 GHz 

Memory 2 GB RAM 

 



International Journal of Computer Applications (0975 – 8887)  

International Conference on Microelectronics, Circuits and System –Micro 2016 

 

30 

For parallel computation of DFT/ Convolution on GPU, the 

recursive programming is performed on the group or block of 

threads in kernel execution. Convolution is implemented by 

launching the kernel by specifying the number of threads and 

thread blocks for real and imaginary values of DFT and then 

launching the real and imaginary kernels of convolution. The 

number of blocks and threads per block depends on size of 

DFT. The output of the kernel is then copied to the CPU using 

function cudaMemcpy(). Then output of the DFT is printed on 

the console in CPU. 

The GPU is configured to the host Intel Pentium Dual-Core 

System. CUDA toolkit v6.5 which mainly consists of 

compiler (nvcc), the required libraries, the visual profiler and 

the debugger is used for parallel computing. The execution 

time of the convolution algorithm on both CPU and GPU is 

calculated and compared. The comparison result, shown in 

Table 3 demonstrates the increase in speed improvement with 

increased N. 

Table 3:  Execution speed comparison of Convolution 

N CPU(us) GPU(us) 
Speed Improvement 

Factor 

4 22055.3 301.3 73 

8 27569.2 316.06 87 

16 60258.4 317.86 190 

 

 

Figure 6: Speed comparison of convolution 

6. CONCLUSION AND FUTURE SCOPE 
This paper is aimed to implement Convolution using N-point 

DFT on CPU and CUDA based GPU. The results obtained are 

compared with respective to execution time. The vast 

parallelism in GPU has improved the computational speed by 

many folds by reducing the execution time. The CUDA 

architecture allows massive parallelism of computations for 

faster processing on a large data set and recursive operations. 

The present work implements DFT and Convolution 

operations which are being widely used for many signal 

processing applications.  

The current work is implemented on 48-core GPU (GeForce 

GT610), the speed can further be improved by using GPUs 

having more number of cores. The CUDA architecture thus 

finds many applications on real-time signal, image, video 

processing, artificial intelligence and machine learning 

applications which involves computations on a large set of 

data and more number of repetitive operations.Our thanks to 

the experts who have contributed towards development of the 

template. 
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