
International Journal of Computer Applications (0975 – 8887)

International Conference on Microelectronics, Circuits and System –Micro 2016

26

Implementation of High Speed Convolution Algorithm on

CUDA based Graphics Processing Unit

G. Prasad Acharya

Department of Electronics and
Communication Engineering,

Sreenidhi Institute of Science and
Technology, Hyderabad, TS,

India

N. Srinivasa Reddy
Department of Electronics and
Communication Engineering,

Sreenidhi Institute of Science and
Technology, Hyderabad, TS,

India

S.P.V. Subba Rao
Department of Electronics and
Communication Engineering,

Sreenidhi Institute of Science and
Technology, Hyderabad, TS,

India

ABSTRACT

The advancements in multi processors based computers with

parallel computing has increased the computational speed .

The multi processors consists of hundreds of processor cores

or graphics processing units are designed for multimedia

applications to improve the pixel resolution .These processors

are also used for general computations are called as General

Processing GPU (GP-GPU) . The exploration of multi cores in

CUDA (Compute Unified Device Architecture) led to parallel

computation . CUDA C is a high level programming language

released by NVIDIA in 2006 for its NVIDIA GPUs. In this

paper a high speed convolution algorithm is implemented on

CUDA based graphics processing unit. The implemented

algorithm is evaluated based on computational speed.

Simulation results shows that computational speed by GPU

has been increased by many folds when compared with CPU.

Keywords

CUDA, GP-GPU,DFT,Convolution, CUDA C

1. INTRODUCTION
The single core processor has the limitations of limited

performance speed for large computations in real time

multimedia applications. Multi core CPUS are used to

increase the speed as depicted in Figure 1. Though Multi core

processors are capable of executing (MIPS) Millions

Instructions per Second on a large database, there are some

computational problems that still remain to be addressed by

the processor designers. Building high performing multi

processors require an expensive and intense design cycle.

Computations with the more powerful microprocessor for

processing real time multimedia applications, Internet of

Things (IoT), Cloud and Mobile Computing, Big Data

Analytics requires more computational speed as complex

algorithms and huge database is involved. The programmers

in the past have developed a different concept called parallel

processing. Parallel processing involves two or more

processors and a task is divided into number of subtasks by a

special function of the operating system and processed by a

processor.

 These sub-tasks are then scheduled for execution into a

number of cores for parallel execution. Each core then

executes its part of total task. After the completion of

execution of individual tasks, the Operating System

reassembles the final result by integrating the individual sub-

task result.

(a) (b)

Figure 1: (a) CPU (b) GPU

The computational speed, complexity and power consumption

of these CPU-based parallel processors are limited by the

number of processor cores that can reside on a single

processor.For floating point operations CPU based multi-core

processors lag behind the GPUs in terms of speed . This is

because CPUs has large portion of die space for control logic

circuitry and cache memory, whereas GPU allocates large die

space to accommodate large number of floating-point

Arithmetic and Logic Units called cores. This architectural

feature in GPUs enables splitting of a task into a number of

threads. These threads are then executed in parallel by

scheduling each thread into an independent core and hence

improving the performance speed.

Many of signal processing applications commonly used by

engineers and scientists need a specialized parallel

architecture as available in GPUs in order to carry out

specialized algorithms. These algorithms include Linear and

Circular Convolutions, Multiply-And-Accumulate (MAC)

operations, Discrete Fourier transform (DFT). The parallel

architectures available in GPUs are best suited for this type of

algorithms, as the same operation is applied independently to

different modules of data and software development tools.

This simplifies the process of parallelizing code without

the need for additional work by programmer.

The DFT and Convolution are the most sought after

algorithms in signal and image processing applications, which

require a large number of MAC operations on a large volume

of sampled data. In this paper, the implementation of DFT and

convolution algorithms using a parallel architecture called

CUDA, which was conceptualized by NVIDIA, is presented.

2. BACKGROUND OF DFT AND

CONVOLUTION

2.1 Discrete Fourier Transform (DFT)
The Discrete Fourier transform is very powerful

computational basis for the spectral analysis of discrete data

in frequency domain. Spectral analysis is the process of

identifying various frequency components present in data

along with their amplitude and phase values .The DFT

International Journal of Computer Applications (0975 – 8887)

International Conference on Microelectronics, Circuits and System –Micro 2016

27

transforms time or space domain data into frequency domain

data. The DFT is one of the most important mathematical

tools in Digital Signal Processing that provides a basis for

computing on digital computer or special purpose processor.

The DFT has wide spread applications in determining system

frequency response, speech, image and video processing areas

and so on. The N-point DFT of a time domain signal x(n) is

denoted by X (K) which is periodic with a period of N. The

N- point DFT X(K) is obtained by finding N equally spaced

samples of Fourier transform of the discrete signal x(n) over a

period of 2π. In addition to determining the frequency content

of a signal, DFT is also useful in performing linear filtering

operations in the frequency domain. The Discrete Fourier

Transform is a numerical variant of the Fourier Transform.

Specifically, for a given discrete data of n input amplitudes

such as {x0, x1, x2... xn-2, xn-1}, the Discrete Fourier

Transform yields a set of n frequency components.

The DFT of a signal x (n) is defined as:

 , k= 0, 1, ---, N-1.

Where

The inverse discrete flourier transform (IDFT), which

recovers back the original signal x(n) in time domain

 , for n= 0, 1,--, N-1.

Here K denotes the frequency domain ordinal, and n

represents the time-domain ordinal. The "N" is the length of

the DFT.

2.2 Convolution
Convolution is another powerful important mathematical tool

useful in finding the response of a Linear-Time Invariant

(LTI) system. It has many applications in various research

areas like telecommunications, optical communications, Bio-

medical imaging, speech and image processing, electrical

engineering, computer graphics and radio astronomy etc. The

huge amount of data involved in all these applications

possesses a big challenge in data storage, classifying,

processing and retrieving of information [1]. All thee

challenges reduce the execution speed of the convolution. The

execution speed can be improved drastically by performing

the MAC operations on individual parts of the data on the

multiple parallel-cores available in GPUs. GPUs have many

small processing elements, called cores and, therefore, are

well-suited for computing MAC operations in convolution.

Convolution of two sequences x (n) and h(n) is defined as:

 (4)

Where, x (n) is a discrete-time input signal, h(n) is an impulse

response of an LTI system, y(n) is the output or response of

LTI system. The convolution summation can be easily

implemented using a direct form of Finite Impulse Response

(FIR) filter. Convolving in the time domain mentioned in

above equation has no inherent latency at the output y(n).

However, the computational cost of convolution depends on

the number of multiply-add operations per output sample. It

can easily be verified that with increasing the length of the

filter coefficients results in increase in the computational cost.

Consequently, this direct computation method cannot be best

suited in evaluating convolutions in real time for long

sequences. Some efficient methods are available in frequency

domain when compared to that in time domain. By using

Discrete Time Fourier Transform (DTFT) of a discrete

sequence, a signal can be converted into corresponding

frequency domain. The DTFT of a discrete sequence is a

continuous periodic function of frequency. In general, the

sequence x(n) is of finite duration sequence and the DTFT of

it being continuous, can be sampled at uniformly spaced

intervals over a period of with sampling interval of .

This sampling enables a new type of transformation technique

known as N point Discrete Fourier Transform (DFT). The

linear convolution of two signals or sequences in time domain

leads to multiplication of their DTFTs. But in the case of DFT

domain, Inverse DFT (IDFT) of multiplication of the DFTs of

two sequences does not produce linear convolution but results

in circular convolution of the two sequences. This circular

convolution is denoted by, X (k) and H (k), which are the N-

point DFTs of x(n) and h(n), respectively. Thus, the inverse

DFT of product of X (k) and H (k) is not useful to find the

linear convolution of x(n) with h(n), which means

IDFT{X(k) H (k)}≠x(n) * h(n). However, the linear

convolution of two sequences can be computed by using DFT

and IDFT if the two sequences are properly padded with

zeros.

3. CUDA ARCHITECTURE
CUDA, shown in Figure 2 provides a parallel computing

platform wherein the task assigned to a processing unit is

divided into a number of threads and then executed in parallel

among the multiple-cores available. The programming model

using CUDA C had been invented by NVIDIA, which enables

drastic increases in computing speed. With CUDA-enabled

GPUs, software developers, scientists and researchers are

finding broad-ranging uses for GPU computing with CUDA.

The convolution algorithm is one of the powerful and most

commonly used algorithms to characterize and obtain the

frequency spectrum of the given system that applies to a set of

data samples. The CUDA provides a computing platform for

intensive and big volume of data, we proposed the Graphics

Processing Units (GPU) based Convolution algorithm which

can be the cost effective solution. The GPU can execute the

Convolution application in parallel using the mode of Single

Instruction Multiple Data (SIMD). GPU is now becoming a

hot research topic that works in image processing, video and

multimedia applications. For this reason, it is chosen to

develop the compute and to reduce the Convolution and DFT

calculation time. To execute this transform on GPU, we used

a specific architecture that's CUDA.

A. Programming with CUDA

The CUDA computing engine virtualizes graphics hardware

available to the programmer through the use of uniquely

numbered threads that are organized into 1D, 2D, or 3D

blocks of arbitrary size.

B. Processing flow of CUDA

Figure 3 illustrates the Processing flow of CUDA.

Step 1. Copy the data set for processing from CPU memory

to GPU memory.

Step 2. CPU instructs the GPU to perform the given

operation in the form of Kernel.

Step 3. Load GPU program and execute

Step 4. Copy and store the results from GPU memory to

CPU memory.

International Journal of Computer Applications (0975 – 8887)

International Conference on Microelectronics, Circuits and System –Micro 2016

28

Figure 2: GPU Device memory Hierarchy

Figure 3: Processing flow of CUDA

C. Programming Model

CUDA C is the language that supports heterogeneous

computing on a GPU platform. The CUDA environment

consists of both host device and target device. A CUDA

program is a unified source code on the host, which consists

of both host code and device code. The CPU acts as a host,

fetching and decoding the instructions and exhibits little or no

parallelism. The CPU can schedule the device code

(instruction/program) to get executed in the target GPU which

supports parallel programming. NVIDIA C compiler separates

host code and device code during the compilation process.

The host code is a simple C code, which is compiled further

by regular C compilers, and the device code is NVIDIA C

extensions, for device parallelism, which can be launched by

special device functions called “kernels“. The device code

further compiled by NVCC (NVIDIA C Compiler) and

executed on the GPU (device).

The CUDA program calls parallel kernels executing a set of

parallel threads. The CUDA programming model, as shown in

Figure 4 consists of thread blocks and grids of thread blocks.

A group of threads is called Thread Block and a group of such

Thread Blocks is known as a Grid. The threads in a thread

block are aligned in one-dimensional, two-dimensional, or

three-dimensional form. In a similar way, thread blocks in a

grid are aligned in a one-dimensional, two-dimensional or

three-dimensional form. This provides a natural way to invoke

computations across the elements in a domain such as a

vector, matrix, or volume. The programmer or compiler

organizes these threads in the number of specified thread

blocks and grids of thread blocks.

The kernel can be invoked indicating the number of threads

by using the execution syntax shown below:

Kernel Name <<< Number of Threads >>> Parameters

Each thread has a unique “thread index“, which can be

accessible using “threadIdx”.

The thread ID can be calculated based on its index of thread.

For a one dimensional block they are the same. For a two

dimensional block of size (Dx,Dy), if the thread index is (x, y)

then its thread ID is (x+y·Dx). For a three dimensional block

of size (Dx,Dy,Dz), if the thread index is (x, y, z) then its

thread ID is (x + y · Dx + z · Dx · Dy) .

The number of blocks per grid (nB) and the number of threads

per block (nT) are specified in a kernel launch as

Kernel name <<< nB, nT >>> (parameters)

Where nB = (4,2), represents a two dimensional blocks by 4

columns and 2 rows and a total of 4 · 2 = 8 blocks. Each block

has 10 numbers of threads. Each thread in a thread block and

each block in a grid has unique thread index and block index.

Figure 4: CUDA Programming Model

4. IMPLEMENTATION OF

CONVOLUTION ON GPU
As discussed in section 2, the convolution of two signals x(n)

and h(n) shall be calculated in three steps

Step 1: Make the lengths of both x(n) and h(n) equal to N= l

+m-1 by suitable zero padding , where l ,m being lengths of

x(n) and h(n) respectively.

Step 2: Calculate N-Point DFT of both the sequences, i.e.,

X(K) and H(K).

Step 3: Evaluate N-point DFT Y(K) by multiplying X(K) and

H(K).

Step 4: Compute N-Point IDFT of Y(K) to obtain convolved

sequence y(n)

The procedure to implement the convolution algorithm on

GP-GPU is depicted in the flowchart shown in Figure 5.

International Journal of Computer Applications (0975 – 8887)

International Conference on Microelectronics, Circuits and System –Micro 2016

29

Figure 5: Flowchart for implementing Convolution on CUDA

5. RESULTS AND ANALYSIS
A Simulation setup with NVIDA's GeForce GT 610 Graphics

Card was used for implementing DFT and Convolution. The

GPU, whose specifications are shown in Table 1, is based on

the Fermi architecture with 48 CUDA cores and clock

frequency of 1.62 GHz. The CUDA was interfaced with Intel

dual core CPU, whose specifications are shown in Table 2,

having a clock frequency of 2.60 GHz.

Table 1: GPU Device configuration and specifications

Features Specifications

Name GeForce GT610

Compute capability 2.1

Global Memory 2 GB

Multi-processors 1

Number of CUDA cores 48

Total Constant Memory 64 KB

Threads per Block 1024

Shared memory per Block 48 KB

Registers per Block 32768

Blocks per Block 8

Wraps per Multiprocessors 48

Block Dimensions 1024*1024*64

Grid Dimension 65535*65535*65535

Threads per Wrap 32

Clock rate 1.62 GHz

Table 2: Host Machine Specifications

Features Specifications

Processor Intel Pentium Dual-Core

Operating System Windows 10

Clock Speed 2.6 GHz

Memory 2 GB RAM

International Journal of Computer Applications (0975 – 8887)

International Conference on Microelectronics, Circuits and System –Micro 2016

30

For parallel computation of DFT/ Convolution on GPU, the

recursive programming is performed on the group or block of

threads in kernel execution. Convolution is implemented by

launching the kernel by specifying the number of threads and

thread blocks for real and imaginary values of DFT and then

launching the real and imaginary kernels of convolution. The

number of blocks and threads per block depends on size of

DFT. The output of the kernel is then copied to the CPU using

function cudaMemcpy(). Then output of the DFT is printed on

the console in CPU.

The GPU is configured to the host Intel Pentium Dual-Core

System. CUDA toolkit v6.5 which mainly consists of

compiler (nvcc), the required libraries, the visual profiler and

the debugger is used for parallel computing. The execution

time of the convolution algorithm on both CPU and GPU is

calculated and compared. The comparison result, shown in

Table 3 demonstrates the increase in speed improvement with

increased N.

Table 3: Execution speed comparison of Convolution

N CPU(us) GPU(us)
Speed Improvement

Factor

4 22055.3 301.3 73

8 27569.2 316.06 87

16 60258.4 317.86 190

Figure 6: Speed comparison of convolution

6. CONCLUSION AND FUTURE SCOPE
This paper is aimed to implement Convolution using N-point

DFT on CPU and CUDA based GPU. The results obtained are

compared with respective to execution time. The vast

parallelism in GPU has improved the computational speed by

many folds by reducing the execution time. The CUDA

architecture allows massive parallelism of computations for

faster processing on a large data set and recursive operations.

The present work implements DFT and Convolution

operations which are being widely used for many signal

processing applications.

The current work is implemented on 48-core GPU (GeForce

GT610), the speed can further be improved by using GPUs

having more number of cores. The CUDA architecture thus

finds many applications on real-time signal, image, video

processing, artificial intelligence and machine learning

applications which involves computations on a large set of

data and more number of repetitive operations.Our thanks to

the experts who have contributed towards development of the

template.

7. REFERENCES
[1] Bahri Hayt hem, Hallek Mohamed, Chouchene Marwa,

Sayadi Fatma, Atri Mohamed,” Fast Generalized Fourier

Descriptor for object recognition of image using CUDA”

978-1-4799-2806-4/14 ©2014 IEEE

[2] Meirui Ren, Meihui Ren, Wei ping Zhang1t, Tao Wang,

Ning Tian, linbao Li, Longjiang Guo,”An

Implementation of the QR Iterations for Finding

Eigenvalues of Matrices with CUDA on GPU”,2013

International Conference on Mechatronic Sciences,

Electric Engineering and Computer (MEC) Dec 20-22,

2013, Shenyang, China

[3] Xiaoxia Qi, Xiao Ma, Dou Li, Yuping Zhao.

”Implementation of Accelerated BCH Decoders on

GPU”, 978-1-4799-0308-5/13/$31.00 © 2013 IEEE.

[4] Mirgita Frasheri, Betim “The use of GPUs in image

processing”,2nd Mediterranean Coriference on

Embedded Computing MECO – 2013.

[5] Yue Zhao and Francis C.M. Lau,” Implementation of

Decoders for LDPC Block Codes and LDPC

Convolutional Codes Based on GPUs”, IEEE

transactions on parallel and distributed systems.

[6] Alexandros Papakonstantinou1,Karthik Gururaj , John A.

Stratton1, Deming Chen1, Jason Cong ,Wen-Mei W.

Hwu,”FCUDA: Enabling Efficient Compilation of

CUDA Kernels onto FPGAs”,2009 IEEE 7th Symposium

on Application Specific Processors (SASP).

[7] Mohammad Nazmul Haque,Mohammad Shorif

,”Accelerating Fast Fourier Transformation for Image

Processing using Graphics Processing Unit”,Journal of

Emerging Trends in Computing and Information

Sciences Volume 2 No.8, AUGUST 2011.

[8] Jing Wu, Joseph JaJa, Elias Balaras ,”An Optimized

FFT-Based Direct Poisson Solver on CUDA GPUs”.

IEEE transactions on parallel and distributed systems,

vol. 25, no. 3, march 2014.

[9] Ke Yan, Junming shan, Eryan Yang,”cuda-based

acceleration of the jpeg decoder”, 2013 Ninth

International Conference on Natural Computation -

(ICNC).

0

10000

20000

30000

40000

50000

60000

70000

N=4 N=8 N=16

CPU (us)

GPU (us)

Length of DFT

C
o

m
p

u
ta

ti
o

n
al

 s
p

ee
d

IJCATM : www.ijcaonline.org

