
International Journal of Computer Applications (0975 – 8887)

International Conference on Microelectronics, Circuits and Systems (MICRO-2014)

29

A Critical Analysis on Security Aspects of Software

Development Lifecycle

Arghya Kusum Das

Department of Computer Science Engineering
Techno India College of Technology

Sandip Rakshit
School of Computing Science

Kaziranga University

ABSTRACT

This paper focuses on the security aspects of software. It

analyses the various loopholes that can exist in the

development of a software or the various damages that can be

incorporated by malicious users, and also the remedies that

when carefully undertaken can remove the vulnerabilities.

This is an overview or study of security problems of different

nature and the proper and systematic tackling methodology

adopted to eradicate them and thereby also add value to its

quality.

General Terms

Software Development Lifecycle. Software Security, Software

Threat. Software Risk, Software Vulnerability

Keywords

Software Security, Software Threat. Software Risk

1. INTRODUCTION
Software usually caters to some specific requirement of the

user implementation. However in today’s world, where pace

of change is rapid, it may not do so at all times. At all times it

may not function or produce results as per the user’s

specifications. This may be due to some maintenance needs of

the software that must be adhered from time to time. It might

also be due to corruption by malicious users or destructive

programmers. Hence, mere development of software alone is

not sufficient. The overall development should be done

keeping in mind the different faults or vulnerabilities that it

might be exposed to or incorporated externally. This paper in

short does an overall study of the different types of security

faults that the software might face. Also to encounter, the

different steps that needs to be undertaken to overcome or

avoid those defects are also discussed.

2. PROPERTIES OF SECURE

SOFTWARE
For any software to be secure it must adhere to five main

properties ,three primary properties like Confidentiality,

Integrity and Availability and additionally two secondary

properties associated with human users like Accountability

and Non-repudiation [1] .Availability states that the software

must be accessible and operational to the intended authorized

users whenever they want to access and use. Integrity states

that the software must be protected from changes made by

unauthorized person in an improper way which is also called

as sub-version .Sub-version is achieved by unauthorized

changes by authorized and unauthorized elements like

overwriting, corruption, tampering, and destruction, insertion

of destructive logic or simple deletion. Integrity of the

software should be maintained in development and execution.
Confidentiality states that the content, characteristics or

behavior and existence should be hidden and obscured from

unauthorized entities, most often prevent from learning about

them. These primary properties are system-centric. However,

additionally there are main two properties that are user-centric

as it is related and dependent on human users. One such is

Accountability, which requires all security relevant actions of

the user in the software must be tracked and recorded in some

log files and may be referred by an unauthorized user or

hacker in future. Finally, Non-Repudiation is the ability to

prevent users from denying or disapproving responsibility for

actions it has performed like send or receive data, message or

e-mail. The software would be consistent, stable and could be

stated as threat-proof, if the above five mentioned properties

are reserved and maintained

3. SCOPE OF SOFTWARE

VULNERABILITIES & RISKS
The software that is produced as a product by the developers

may not behave exactly in an expected manner giving proper

and desired output to the user at all times after it is deployed.

The software can behave in an irrational manner thereby

giving undesired output at any stage after it is deployed .The

abnormal behavior needs to be anticipated using case studies .
This is due to the different cases in which the input to the

program varies. The software should be checked for its

functionality using extreme values. Boundary Value Analysis

is an important aspect of functionality testing. Hence security

engineer should create use cases to reduce the mis-use cases

i.e. the abnormal behavior. This uneven behavior might be

due to some fault, defect or bug in the software that might be

created or externally injected or trapped [2]. The domain of

these defects is vast. Defects refer to implementation errors

and design errors of the developed software. A bug is usually

a low- level implementation software error that can be

captured by code-analysis of the external environment. A flaw

is a defect into a much deeper level. Risk is the probability

that a defect bug or flaw that may exist in the system that may

affect the proper functioning of the software or make it prone

to failure. The discussed fault, defect or bug primarily arises

due to various reasons like buffer overflows, unauthorized

access, malformed input, symbolic links, pathnames used,

resource leaks format bugs and other miscellaneous causes.

These unwanted elements might exist or arise in the

underlying operating system, programming language used,

network protocols ,size limits of variables used, access

specifier,or cryptography also. Let us analyze this one by one

by considering the common major causes [3].

International Journal of Computer Applications (0975 – 8887)

International Conference on Microelectronics, Circuits and Systems (MICRO-2014)

30

Table I Primary causes of Software vulnerabilities

Serial No. Cause Occurrence (%)

1 Buffer Overflow 19

2 Unauthorized Access 16

3 Malformed Input 16

4 Symbolic Links 11

5 Pathnames 10

6 Resource Leak 6

7 Format Bugs 6

8 Others 16

3.1 Operating System
To start with, the software might be vulnerable depending on

the nature or type of operating system used [4]. For example,

there may be buffer overflows in Stack, Heap, Null Pointer,

deadlock over resources. A buffer overflow may be caused

when the program writes past the end of a buffer, resulting in

corruption of adjacent memory contents. In some instances,

this may result in overwriting the contents of the stack or heap

in ways that allow an attacker to subvert the normal operation

of the system and, ultimately, take over the flow of control

from the program. At first, the attacker sends valid requests

that result in allocating many chunks of memory based on the

size of his input. Then by knowing that some memory once

allocated can never be freed. Hence hard leaks occur, when

the program forgets to free memory that was acquired during

life-time. Defects like integer and buffer overflows, use of

previously freed pointers, and use of scalars (for example,

integers) that are not properly bounds-checked (sanitized)

before being used as array or pointer indexes, loop

boundaries, or function arguments are possible primitives for

code execution. The Linux kernel is prone to local privilege-

escalation vulnerability. Local attackers can exploit this issue

to gain elevated privileges on affected computers or to cause a

denial-of-service condition.

3.2 Database Level
Again depending on the programming language used there

may be undesired conditions like exceptions encountered. The

choice of the data-type and subsequently data size may also

lead to errors like invalid data type. There may be

vulnerabilities caused in the database level by SQL injections

[5]. Using the SQL injections the hacker or programmer with

destructive mentality may give as input some expert SQL

commands which would make the SELECT statement use-

less and not working specifically for a single authorized user ,

but may work universally i.e. though working does not serve

the purpose for which it is written. For example let us

consider a case with a simple login page where a authorised

user would enter his username and password combination to

enter his/her secure area to view his/her personal details or

upload his comments in a common discussion forum. When

this authorised user submits his details, an SQL query is

generated from these details and gets submitted to the

database for verification. If it is found to be valid, the user is

allowed access. In other words, the web application namely

the controller which may be a servlet or a jsp file or any other

similar page that controls the login page will communicate

this with the database through a sequence of planned

commands so as to verify the username and password

combination. On verification, the authorised user is granted

appropriate access. Now, consider the query

SELECT * FROM users WHERE name = '' OR '1'='1';

As the second part i.e. after the OR clause is always true,

hence the unauthorised-user may actually pass into the

verification page and might get the unauthorised access of the

authorised user profile and other details.

3.3 Network Level
Similarly, in the network level, privacy may be compromised

as loop-holes might occur in awarding privileges. Pseudo

anonymity in the internet is not secure and might be

compromised. Let us think, in certain cases we want to visit

certain sites for our reference or work, but at the same time

we do not want our identities to get revealed. But as the IP

address can be tracked hence our physical identity comprising

of our locations gets revealed. In cryptography, management

of keys is a sensitive area which if misused can cause a

breakthrough in the system. For consideration, the Open SSL

is prone to security by-pass attack, denial-of-service attack

because it fails to properly process certain maliciously crafted

S/MIME messages. Also while communication between

parties, non-repudiation breakthrough can occur if

technologies such as digital signatures are not used.

3.4 Application Level or Web-Level
XSS stands for cross-site scripting,is a type of vulnerability

that is injection of active scripting data into scripting-

enabled application screens.XSS targets script interpreting

web-clients like web-browser, escalation of user-rights, code

injection and client hijacking .Sometimes there might be

security based vulnerabilities in the webmail, which tries to

overwrite the security configuration settings of the user or

manipulate the custom settings and preferences of the user.

Again, PHPExcel is prone to information-disclosure

vulnerability.

4. REMEDIES OR APPROACH

ADOPTED
As it can be seen that the software developed might be

exposed to a variety of security threats of different domain,

hence to protect the software against these vulnerabilities

software development following any of the classical model

like waterfall, spiral or prototyping itself is not enough.

Development of the model in these cases should be creative in

anticipating the threats encountered and thereby taking

appropriate steps at the different phases of the development

lifecycle. The cost of corrective measures taken in the

lifecycle of software development varies in direct proportional

to the phase of its development; however the growth rate is

different. This means that the cost of correction or other

adoptive remedial measures is far less in the earlier stages of

software development in comparison to the later stages of

error detection and subsequent correction as shown in Figure

1[6].

International Journal of Computer Applications (0975 – 8887)

International Conference on Microelectronics, Circuits and Systems (MICRO-2014)

31

Fig.1: Phases of Software Development

4.1 Threat Modeling
Sometimes it is difficult for analysis tools to identify potential

insecure areas of the software as the tools lack knowledge of

the executing operation environment. In those cases, Threat

Modeling is a useful tool to identify the risks and address the

threats that has the potential to cause damage to the software.

Here the system’s data flow is analyzed to check for security

loopholes. It identifies before the level of source-code

implementation. Threat modeling tries to figure out the

insecure business logic or work-flow .Thus, it is very

beneficial to use Threat Modeling early in the life-cycle to
optimize its effect [5].There are different approaches to the

task of categorize threats which are as follows:-

4.1.1 STRIDE:-
 Spoofing, Tampering, Repudiation, Information Disclosure,

Denial of Service &Elevation of privilege. With using

STRIDE, threat reduction tables can be used to figure out

mechanisms to reduce threats.

4.1.2 MisUse Cases

It helps to understand how attackers might attack a system,

and it is derived from the system requirement and reveals how

the protective steps can be sidelined and security can be

breached.

4.1.3 Threat Library

It is a template or library that makes threat identification

accessible to non-security users. As the threat is identified it is

checked and reduced or eliminated using the Common

Vulnerability Scoring System (CVSS v2). There are tools that

are useful in automated analysis of designs and relevant

reduction steps, issue-trapping integration and communication

related to process.

4.2 Security based Model of SDLC

Security based software development life-cycle is a defined

methodology of software development where focus is on

security of the software product created. Initially two security

based models of software development were proposed. The

first was Microsoft SDL as part of its Trustworthy Computing

Initiative and the other was McGraw SDL [7]. Security was a

major concern in both the SDLs in the requirement

engineering phase. Microsoft promoted the concept of using a

separate security assessment team to engineer and evaluate the

security of its products. It is the responsibility of the software

development team to identify all functional requirements

including the security functional requirements. Each team has

a security engineer who reviews the product plan, functional

requirements and determines security milestones and exit

criteria. These requirements are well documented. On the

other hand, McGraw focussed on the use of abuse case in

requirement engineering phase.

 4.3 Security Enhanced SDLC

Methodologies

An SDLC methodology identifies the set of activities to be

performed at each phase of SDLC, and in some cases also

what artefacts should be produced as a result. There are

mainly two defined methodology, CLASP and TSP which are

discussed as follows:-

4.3.1 CLASP
The Comprehensive, Lightweight Application Security

Process (CLASP) is a collection of methods and practices that

can be used collectively to identify and take suitable actions

for appropriate application security concerns before any

sourcecode is written for the system. CLASP is the first

defined life cycle process with the specific aim of enhancing

the security (versus safety, correctness, or high-quality) of the

early stages of the software development life cycle. As a

formal process emphasizing accuracy and quality assurance,

CLASP shares objective traits native to more industry-driven

CMM based life cycle process models. CLASP includes

instructions, guidance, and checklists, for activities that

comprise its structured process. Thirty (30) specific activities

are expressed in CLASP which can be used to increase

security awareness across the development team. These

activities are assigned to the typical roles found throughout

the life cycle comprising of both owners and participants.

CLASP assigns responsibility and suggests accountability for

each activity, and create two different paths: one that supports

new system development using an iterative, or “spiral”,

methodology, and one that supports

maintenance/enhancement of legacy systems with the focus

on management of the current development effort. Both

roadmaps include consistent testing and analysis of the

application’s security posture through any upgrades or

enhancements. CLASP is available as a plug-in to the

Rational Unified Process (RUP) development methodology.

The CLASP plug-in to RUP is available free-of-charge but

requires a RUP license to install.

4.3.2 TSP-Secure
Software Engineering Institute (SEI) and CERT/CC jointly

developed the Team Software Process for Secure Software

Development The aim of TSP-Secure is to reduce the

vulnerabilities that can exist in the design and also to predict

the probability of security concern areas in the delivered

product. TSP-Secure provides methods for analyzing the

defect type, design patterns for common vulnerabilities

removal of threat prone areas in legacy systems.

4.4 Process based Model of SDLC
Capability Maturity Models are kinds of process model that

provides guidelines to improve the process and evaluate the

capability of operations. Currently there exist three CMMs

that address security, the Capability Maturity Model

Integration

(CMMI), the integrated Capability Maturity Model

(iCMM), and the Systems Security Engineering Capability

Maturity Model (SSE-CMM) [8]. A common Safety and

Security Assurance Application Area is currently under

review for the iCMM and CMMI, along with a new process

area for work environment, and the proposed goals and

practices have been piloted for use. All of these CMMs are

based on the Capability Maturity Model (CMM).

0 0.8 2
3.5

5.5
8.5

12

0
2
4
6
8

10
12
14

C
o

st

Phases of Software Development

Cost Analysis

International Journal of Computer Applications (0975 – 8887)

International Conference on Microelectronics, Circuits and Systems (MICRO-2014)

32

4.5 Design Based Secure Approach of

SDLC
UMLSec an extended version of UML is a designing tool

that is used for implementing security in the software lifecycle

[9] . Here, possible security threats or loopholes are checked

and subsequent actions are taken in the design level.UML Sec

is a reveals security related information with the specification

diagram such as various interaction diagrams and deployment

diagrams. UMLSec is formed as a UML profile which mainly

uses stereotypes, tagged values and constraints. The profile

has some related fixed set of stereotypes. Every stereotypes

have variables where tag is the real life object of the variable.

Once the stereotype is formed, tag, constraints and threat

specification can be chalked out. Following the model,

security requirements can be found and threat specification

steps needed can be specified. UMLSec also supports

cryptographic fundamentals like encryption, decryption,

digital signature. Apart from UMLSec , there are other types

of UML, like CORAL UML that introduces a meta model by

defining stereotypes. The focus of the CORAS UML profile is

the modeling of threats, such as buffer overflow exploits and

remedies undertaken. Another version of UML, SecureUML,

is a UML-based modeling language is used for expressing

Role Based Access Control (RBAC) and authorization

constraints in the overall design of software systems.

4.6 Defined Standards for Software Project

Lifecycle Process
IEEE 1074-2006 supports proper implementation of levels of

security controls into software and systems. The aim of both

IEEE Std. 1074-1997 and ISO/IEC 12207 is to chalk out a

quality-driven SDLC process, for that reason, neither standard

contains specific security guidance, though ISO/IEC 12207

does suggest the need for security activities, or provides

references to security-specific standards . IEEE 1074-2006 is

an improvement on ISO/IEC 12207 in particular in that it

generates the security information needed to document

security risks and solutions throughout the SDLC.

5. CONCLUSION & FUTURE SCOPE
This paper is a study of the different possible innumerous

vulnerabilities that may exist or arise in the different levels of

software deployment. These may be unintentional or

intentionally trapped by destructive programmers and hackers

that may be able to trap and capture the loop-holes as

discussed in section 3. Also, the different measures that can be

taken to prevent these unwanted situations are also discussed

in section 4. Though discussed the section 4 may not be

sufficient alone, and hence there is a huge scope of work in

implementing the security aspects either in the different

phases of software development lifecycle or in the different

levels of software deployment and maintenance once it is

deployed and made online .Security aspects can also be

embedded in the existing software development process

models to make it more complete and make it a

comprehensive attractive package for customers buying the

software.

6. ACKNOWLEDGMENT
We would like to take this opportunity to thank Professor

Pranab Ray of School of VLSI,IIEST, Shibpur and also the

staff members from my institution without whom this work

would not had progressed and would have been incomplete.

7. REFERENCES
[1] Karen Mercedes Goertzel, Theodore Winograd, Holly

Lynne McKinley,Patrick Holley, Booz Allen Hamilton ,

“Security in Software Lifecycle Making Software

Development Processes and Software Produced by

Them- More Secure”, Department of Homeland Security

, Draft Version 1.2- August 2006 .

[2] Jayaram K R andAditya P Mathur ,” Software

Engineering For Secure Software - State Of The Art: A

Survey” , CERIAS Tech Report 2005-67

[3] Ansar-Ul-Haque Yasar ,Davy Preuveneers ,Yolande

Berbers ,Ghasan Bhatti, ”Best Practices for Software

Security : An Overview”, In Proceedings of the 12th

IEEE International Multitopic Conference, December

2008.

[4] Malik Imran Daud,” Secure Software Development

Model: A Guide for Secure Software Life Cycle”, In

Proceedings of the International MultiConference of

Engineers and Computer Scientists 2010 Vol. I, Hong

Kong.

[5] Mark Belk, Matt Coles, Cassio Goldschmidt,

 Michael Howard, Kyle Randolph,” Fundamental

Practises for Secure Software Development”, February

2011.

[6] J. Christopher Westland “ The Cost of Errors in Software

Development :Evidence From Industry “,The Journal of

Systems and Software, 62,2002,pp. 1-9.

[7] Hossein Keramati, Seyed-Hassan Mirian-Hosseinabadi ,”

Integrating Software Development Security Activities

with Agile Methodologies “ .

[8] Noopur Davis ,”Secure Software Development Life

Cycle Processes: A Technology Scouting Report”,

December 2005.

[9] Golnaz Elahi ,” Security Requirements Engineering:

State of the Art and Practice and Challenges”

