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ABSTRACT 

In this study, we performed local sensitivity analysis on a 

large-scale kinetic dynamic metabolic network. Time profile 

for sensitivity indices has been calculated for each kinetic 

parameters based on highest variance. The dynamic model of 

E. coli used in this study contain Glycolysis, Pentose 

Phosphate, TCA cycle, Gluconeogenesis and Glycoxylate 

pathways in addition to Acetate formation PTS system. The 

model implicates twenty-four dynamic mass balance for 

extracellular glucose and intracellular, thirty kinetic rate 

expressions. We test all the kinetics in 10% and 20 % 

increasing one by one at steady state condition. The former 

analysis in 20%, has allowed identification of eight kinetic 

parameters as the most effective on this model.   

Keywords 
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1. INTRODUCTION 
In the last a few years, there has been increasing in developing 

or exploring new products and process depend on the 

available data that using renewable resource. In this way, 

metabolic engineering is development of targeted methods to 

improve the metabolic capabilities through the measurement 

and understanding the control of flux in vivo [1]; for that is 

required to develop and verify a mathematical model which 

can describe the dynamic behavior of the cell in response to 

the changes in the culture environment to how match the 

model are really build correspond to the behavior of the 

system represented by real experiments through software 

programing [2]. 

There have been several models describing the dynamic 

behavior of the cells [3] [4] [5] [6]; moreover large-scale 

integration has been performed, glycolysis and PP pathways 

[7] integrated with TCA cycle [2]. However the kinetic 

modeling of E. coli contains a large number of parameters 

inclusive kinetic constants and initial metabolites and 

enzymes concentration.The huge number of kinetics need to 

be reduced for optimization task, for that sensitivity analysis is 

best methods to reduce the kinetic numbers, which allows us 

to assess the effect of the changes in a certain parameters will 

have on the model conclusion. In contrast, many authors have 

been working in the sensitivity analysis methods, such as [8] 

the proposed a new method that combing the dynamic flux 

control coefficients and concentration control coefficients for 

determine the steady-state and time independent control 

coefficients to be obtained from dynamic models. In [7] 

applied a Stepwise Internalization method through analytical 

function to fit the time course of unbalanced metabolites 

concentrations. [6] the analysis of diauxic growth in E. coli is 

achieved by extend FBA using two formulations for dynamic 

FBA through Glycolysis, pentose phosphate pathways, TCA 

cycle with the Glyoxulate bypass, anapleurotic reaction, and 

redox metabolism. [9] The method of reoder-able matrix is 

applied into glycolysis and PP pathways for the visual 

exploration of the time varying matrix. [10] A variance-based 

method is applied to achieve a new steady state after glucose 

pulse injection in Embden-Meyerof-Paranas, PP pathways and 

PTS system. [11] The metabolic control analysis is used for 

calculating the time-dependent to simplified alternative 

kinetics of large-scale of E. coli. [12] They scaling all the 

kinetic parameters individually into their allowable range 

from 0.0 up to 2.0. 

In the present work, therefor we investigate [2010] model 

which contain 194 kinetic parameters by increasing each 

kinetic parameters in 10% and 20% and quantify the changes 

using the highest variance between the actual model and the 

simulation, was found eight kinetic parameters are sensitive in 

the model output.    

2. METHODES  
In this work, we consider the main metabolic pathway of E. 

coli formulated byKadir [2010] as a benchmark. This model, 

describe the dynamic metabolic behavior of five pathways in 

addition to Acetate formation and PTS system, the model 

input are thirty enzymatic reactions with ten co-factors (e.g., 

nad, coa, atp) and the outputs are twenty four metabolites. The 

corresponding metabolic network is shown in Figure (1). The 

general mass balance for extracellular glucose and 

intracellular metabolites based on the following equation: 
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𝑑𝐶𝑖

𝑑𝑡
=  𝑅𝑖𝑗𝑉𝑗 − 𝜇𝐶𝑖𝑗                                                         1 

Where 𝐶𝑖  the concentration of the metabolitei,𝑅𝑖𝑗  is the 

stoichiometric coefficient of metabolite 𝑖 in the reaction 𝑗 , 𝑉𝑗  

is the rate of reaction 𝑗 and 𝜇𝐶𝑖  is the growth rate on the 

dilution effect. The mass balance for the model may describe 

as following below:  

𝑑𝑥

𝑑𝑡
= 𝜇[𝑋]2 

𝑑[𝐺𝐿𝐶 𝑒𝑥 ]

𝑑𝑡
= −𝑉𝑝𝑡𝑠 [𝑋]                                                        3 

𝑑[𝐺6𝑃]

𝑑𝑡
= 𝑉𝑝𝑡𝑠 − 𝑉𝑔6𝑝𝑑 − 𝑉𝑝𝑔𝑖 − 𝜇[𝐺6𝑃]                       4 

𝑑[𝐹6𝑃]

𝑑𝑡
= 𝑉𝑝𝑔𝑖 + 𝑉𝑡𝑘𝑡𝑏 − 𝑉𝑝𝑓𝑘 − 𝜇[𝐹6𝑃]                         5 

𝑑[𝐹𝐷𝑃 ]

𝑑𝑡
=  𝑉𝑝𝑓𝑘 − 𝑉𝑎𝑙𝑑𝑜 − 𝜇[𝐹𝐷𝑃]                                   6 

𝑑[𝐺𝐴𝑃 ]

𝑑𝑡
= 2𝑉𝑎𝑙𝑑𝑜 − 𝑉𝑔𝑎𝑝𝑑  + 𝑉𝑡𝑘𝑡𝑎 + 𝑉𝑡𝑘𝑡𝑏 − 𝑉𝑡𝑎𝑙 − 𝜇[𝐺𝐴𝑃]7 

𝑑[𝑃𝐸𝑃 ]

𝑑𝑡
= 𝑉𝑝𝑐𝑘 − 𝑉𝑝𝑦𝑘 − 𝑉𝑝𝑝𝑐 − 𝑉𝑝𝑡𝑠 − 𝜇[𝑃𝐸𝑃]              8 

𝑑[𝑃𝑌𝑅 ]

𝑑𝑡
= 𝑉𝑝𝑦𝑘 + 𝑉𝑝𝑝𝑐 + 𝑉𝑝𝑡𝑠 − 𝑉𝑝𝑑 − 𝜇[𝑃𝑌𝑅]             9 

𝑑[𝐴𝑐𝐶𝑂𝐴 ]

𝑑𝑡
= 𝑉𝑝𝑑 + 𝑉𝑎𝑐𝑠 − 𝑉𝑐𝑠 − 𝑉𝑝𝑡𝑎 − 𝜇[𝐴𝑐𝐶𝑂𝐴]       10 

𝑑[𝐼𝐶𝐼𝑇]

𝑑𝑡
= 𝑉𝑐𝑠 − 𝑉𝑖𝑐𝑑 − 𝑉𝑖𝑐𝑙 − 𝜇[𝐼𝐶𝐼𝑇]                          11 

𝑑[2𝐾𝐺]

𝑑𝑡
= 𝑉𝑖𝑐𝑑 − 𝑉2𝑘𝑔𝑑  − 𝜇[2𝐾𝐺]                             12 

𝑑[𝑆𝑈𝐶 ]

𝑑𝑡
= 𝑉2𝑘𝑔𝑑  + 𝑉𝑖𝑐𝑙 − 𝑉𝑠𝑑 − 𝜇[𝑆𝑈𝐶]                     13 

𝑑[𝐹𝑈𝑀 ]

𝑑𝑡
= 𝑉𝑠𝑑 − 𝑉𝑓𝑢𝑚 − 𝜇[𝐹𝑈𝑀]                               14 

𝑑[𝑀𝐴𝐿 ]

𝑑𝑡
= 𝑉𝑓𝑢𝑚 + 𝑉𝑚𝑠 − 𝑉𝑚𝑑 − 𝑉𝑚𝑒𝑧 − 𝜇[𝑀𝐴𝐿]         15 

𝑑[𝑂𝐴𝐴]

𝑑𝑡
= 𝑉𝑚𝑑 + 𝑉𝑝𝑝𝑐 − 𝑉𝑚𝑒𝑧 − 𝑉𝑝𝑐𝑘 − 𝜇[𝑂𝐴𝐴]          16 

𝑑[𝐺𝑂𝑋 ]

𝑑𝑡
= 𝑉𝑖𝑐𝑙 − 𝑉𝑚𝑠 − 𝜇[𝐺𝑂𝑋]                                      17 

𝑑[𝐴𝐶𝑃]

𝑑𝑡
= 𝑉𝑝𝑡𝑎 − 𝑉𝑎𝑐𝑘 − 𝜇[𝐴𝐶𝑃]                                    18 

𝑑[𝐴𝐶𝐸 ]

𝑑𝑡
= 𝑉𝑎𝑐𝑘 − 𝑉𝑎𝑐𝑠 − 𝜇[𝐴𝐶𝐸]                                    19 

𝑑[6𝑃𝐺 ]

𝑑𝑡
= 𝑉𝑔6𝑝𝑑 − 𝑉6𝑝𝑔𝑑  − 𝜇[6𝑃𝐺]                             20 

𝑑[𝑅𝑢5𝑃]

𝑑𝑡
= 𝑉6𝑝𝑔𝑑  − 𝑉𝑟𝑝𝑖 − 𝑉𝑟𝑝𝑒 − 𝜇[𝑅𝑢5𝑃]                 21 

𝑑[𝑋𝑢5𝑃]

𝑑𝑡
= 𝑉𝑟𝑝𝑒 − 𝑉𝑡𝑘𝑡𝑎 − 𝑉𝑡𝑘𝑡𝑏 − 𝜇[𝑋𝑢5𝑝]                  22 

𝑑[𝑅5𝑃]

𝑑𝑡
= 𝑉𝑟𝑝𝑖 − 𝑉𝑡𝑘𝑡𝑎 − 𝜇[𝑅5𝑃]                                   23 

𝑑[𝑆7𝑃]

𝑑𝑡
= 𝑉𝑡𝑘𝑡𝑎 − 𝑉𝑡𝑎𝑙 − 𝜇[𝑆7𝑃]                                    24 

𝑑[𝐸4𝑃]

𝑑𝑡
= 𝑉𝑡𝑎𝑙 − 𝑉𝑡𝑘𝑡𝑏 − 𝜇[𝐸4𝑃]                                   25 

We performed the sensitivity analysis on large-scale dynamic 

kinetic model under continuous culture with dilution rate 0.2 

at steady-state condition by scaling all the kinetic parameters 

in increasing one by one in percentage start from 10% to 20% 

in this enzymes pts, pgi, pfk, aldo, gapdh, pyk, pdh, pta, aces, 

ask, cs, icdh, 2kgdh, sdh, fum, mdh, icl, ms, ppc, pck, mez, 

g6pdh, 6pgdh, rpe, rpi, tkta, tktb, tal using MATLAB software 

program.  

3. RESULT AND DISCUSSION 
The formal analysis shown that in 10% increasing no affection 

while in 20% increasing shown that there are eight kinetic 

parameters affected in the model output, the
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Fig 1: Metabolic of E. coli structure 



International Journal of Computer Applications (0975 – 8887)  

Majan College International Conference (MIC-2014) 

24 

kinetic parameters are V_ALDOmax, n_PK, Ki_PDH, ICDH, 

Kf_ICDH, V_SDH, V_FUM and V_ICLmax represent the 

reaction rates of (𝑉𝑎𝑙𝑑𝑜 ,𝑉𝑝𝑦𝑘 ,𝑉𝑝𝑑 ,𝑉𝑖𝑐𝑑 ,𝑉𝑖𝑐𝑙 ,𝑉𝑠𝑑  𝑎𝑛𝑑 𝑉𝑓𝑢𝑚 ) 

with concentration of the metabolites which are substrate and 

products of that reaction rates 

(𝐶𝐹𝐷𝑃 ,𝐶𝐺𝐴𝑃𝐷𝐻𝐴𝑃 ,𝐶𝑃𝐸𝑃 ,𝐶𝑃𝑌𝑅 ,𝐶𝐴𝑐𝐶𝑂𝐴 ,𝐶𝐼𝐶𝐼𝑇 ,𝐶2𝐾𝐺 ,𝐶𝑆𝑈𝐶 , 

 𝐶𝐺𝑂𝑋 ,𝐶𝐹𝑈𝑀 ,𝑎𝑛𝑑 𝐶𝑀𝐴𝐿 ). 

The affections of the eight kinetic parameters are analyzed 

below with some Figures.  

The interaction of V_ALDOmax in the model cause high 

changes in glycolysis pathway specially in metabolites of 

FDP, GAPDAHP, PEP and PYR; and the enzymes of pts, pgi, 

pfk, aldo, gapdh and pyk; also in acetate formation in ACP 

metabolite and pta, ask, acs enzymes. The interaction of n_PK 

in the model cause high changes in glycolysis, TCA cycle 

pathways and acetate formation specially in metabolites of 

Cell, FDP, PEP, PYR, 2KG and ACP; and the enzymes ofpyk, 

pita, ask and acs respectively. The interaction of Ki_PDH in 

the model cause changes in glycolysis pathway specially in 

metabolites of PEP, PYR, ACCOA; and gapdh, pdh 

enzymes;TCA cycle pathway the metabolites of 2KG and 

SUC was affected; moreover in Acetate formation the 

metabolites of ACE and ACP; and enzyme of aces Figure 

(2)& (3). 

 

Fig. 2. The affection of Ki_PDH in the Metabolites 

 

Fig. 3. The affection of Ki_PDH in the Fluxes 

The interaction of ICDH in the model cause high changes in 

glycolysis, TCA cycle and Acetate formation in these 

metabolites of FDP, PYR, AcCOA, ACE, ICIT, 2KG, SUC, 

FUM and MAL; and the enzymes of pdh, pita, acs, sdh, fum, 

mdh, icl and ms. The interaction of Kf_ICDH in the model 

cause high changes in glycolysis, TCA cycle and Acetate 

formation in these metabolites of FDP, PYR, AcCOA, ACE, 

ICIT, 2KG, SUC, FUM and MAL; and the enzymes of pdh, 

pita, acs, sdh, fum, mdh, icl and ms. Theinteraction of V_SDH 

in the model cause high changes in glycolysis, TCA cycle and 

Acetate formation in these metabolites FDP, PYR, ACP, 

ICIT, 2KG, SUC, FUM, MAL and GOX; and the enzymes of 

pdh, cs, icl, sdh, fum, mdh, pta and acs. The interaction of 

V_FUM in the model cause high changes in glycolysis, TCA 

cycle and Acetate formation in these metabolites FDP, PYR, 

2KG, FUM and ACP; and the enzymes of pdh, cs, icdh, icl, 

ms, sdh, fum, mdh, pta and aces Figure (4) & (5). 
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Fig. 4. The affection of V_FUM in the Metabolites 

 

Fig. 5. The affection of V_FUM in the Fluxes 

The interaction of V_ICLmax in the model cause high 

changes in glycolysis, TCA cycle and Acetate formation in 

these metabolites FDP, PYR, 2KG, SUC, FUM, AcCOA and 

ACP; and the enzymes of cs, icl, ms and mdh. 

From the analyzation there are three pathways affected in the 

model outputs which are glycolysis, TCA cycle and Acetate 

formation especially in these metabolites FDP, PYR, 2KG and 

ACP. For that we should consider these pathways and their 

affection in the model output in the optimization of the kinetic 

parameters of this model.  

4. CONCLUSION  
More than 190 kinetic parameters as a target study for 

investigate their affection in dynamic kinetic model 

experimentally using software program, the perturbation we 

mad in 10% and 20% increasing concentrations of each 

kinetics show that in 20% increasing they are eight kinetics 

are affect in the model output. It will be consider to be 

optimized to re-correct this model. 

Nomenclature 

Metabolites 
GLCex glucose; G6P: Glucose-6-phosphate; F6P: Fructose-6-

phosphate; FDP: Fructose 1,6-bisphosphate, GAP: 

Glyceraldehyde 3-phosphate; DHAP: Dihydroxyacetone 
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phosphate; PEP: Phosphoenolpyruvate, PYR: Pyruvate; 

AcCOA: Acetyl-CoA; AcP: Acetylphosphate; ACE: Acetate; 

ICIT: Isocitrate; 2KG: 2-Keto-Dgluconate; SUC: Succinate; 

FUM: Fumarate; MAL: Malate; OAA: Oxaloacetate; 6PG: 6-

Phosphogluconolactone; Ru5P: Ribose 5-phosphate; Xu5P: 

Xylulose 5-phosphate; R5P: Ribulose 5-phosphate; S7P: 

Sedoheptulose 7-phosphate; E4P: Erythrose 4-phosphate. 

Enzymes 
Pts: Phosphotransferase system; Pgi: Phosphoglucose 

isomerase / Glucosephosphate isomerase; Pfk: 

Phosphofructokinase-1; Aldo: Aldolase; GAPDH: 

Glyceraldehyde 3-phosphate dehydrogenase; Pyk: Pyruvate 

kinase; Pdh: Pyruvate dehydrogenase; Acs: Acetylcoenzyme 

A synthetase; Pta: Phosphotransacetylase; Ack: Acetate 

kinase; cs: Citrate synthase; ICDH: Isocitrate dehydrogenase; 

2KGDH: 2-Keto-D-gluconate Dehydrogenase; SDH: 

Succinate dehydrogenase; Fum: Fumarase; MDH: Malate 

dehydrogenase; Mez: Malic enzyme; Pck: 

Phosphoenolpyruvatecarboxykinase; Ppc: PEP carboxylase; 

ICL: Isocitratelyase; Ms: Malate synthase; G6pdh: Glucose-6-

phosphate dehydrogenase; 6Pgdh: 6Phsophogluconate 

dehydrogenase; Rpi: Ribulose5phosphate 3-isomerase; Rpe: 

Ribulose phosphate 3epimerase; Tkta: TransketolaseI; Tktb: 

TransketolaseII; Tal: Transaldolase.  
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