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ABSTRACT 
MapReduce is an emerging programming paradigm for data 

parallel applications proposed by Google to simplify large-

scale data processing. MapReduce implementation consists of 

map function that processes input key/value pairs to generate 

intermediate key/value pairs and reduce function that merges 

and converts intermediate key/value pairs into final results. 

The reduce function can only start processing after 

completion of   the map function. Due to dependencies 

between map and reduce function, if the map function is slow 

for any reason, this will affect the whole running time. In this 

technique,  t h e  message passing interface (MPI) strategies 

is used to implement MapReduce which reduces the runtime 

and optimized data exchange.MPI is used fo r  algorithmic 

parallelization. MapReduce with MPI combines redistribution 

and reduce and moves them into the network.  In this paper, 

new technology used as MapReduce overlapping using MPI, 

which is an enhancing structure of the MapReduce 

programming model for fast data processing. This 

implementation is based on running the map and the reduce 

functions concurrently in parallel by exchanging partial 

intermediate data between them in a pipeline fashion using 

MPI. At the same time, performing the algorithm parallelism 

in order to increase the performance with data parallelism of 

using overlapping mapreduce MPI.MPI support more 

efficiently all MapReduce applications. 

Keywords: Hadoop, MapReduce overlapping, MPI-

MapReduce, Parallel MapReduce.   

I.   INTRODUCTION 
Today, many commercial and scientific applications require 

the processing of large amounts of data, and thus, demand 

compute resources far beyond what can be provided by a 

single commodity processor. To address this, the role of 

parallel and distributed computing becomes more important 

than before by offering large-scale processing capabilities. 

MapReduce is a programming model for data intensive 

applications. MapReduce was proposed by Google. It is 

mainly composed of two functions: a map function. 

MapReduce has been used to process massive amounts of data 

in web and a reduce function. In general, the input data is 

partially divided into small chunks and randomly passed to a 

group of map functions. The map functions process the input 

data and generate intermediate (key,value) pairs. These pairs 

are grouped together with respect to their key to produce 

(key,list(values)) tuples. The tuples are then passed to a group 

of reduce functions, which do some analysis. There are many 

applications which can be adapted to have the same workflow 

including inverted indexing [1], k-means [2], sorting and 

PageRanking [3]. Thus, MapReduce simplifies the parallel 

programming process through the two map, and reduce 

functions. In contrast, MPI is a message passing library 

designed to function on parallel machines. MPI launches 

independent processes of an algorithm on each machine, in 

which the processes are connected using MPI by moving data 

from the address space of a certain process to another 

efficiently. MPI also supports collective operations, remote 

memory access and parallel I/O. Now, most parallel 

applications depend on two types of parallelization: data 

parallelization and algorithmic parallelization. With this two 

parallelism efficient communication capabilities of MPI to 

build a framework for fast data and algorithms processing is 

added using  MRO-MPI model (MapReduce overlapping 

using MPI) as an idea to speed up the MapReduce model by 

avoiding its bottlenecks and using MPI functions. In the 

original and the current implementations of MapReduce, the 

reduce function has to wait for the map function to finish 

before it can start processing. If the map function is stuck or 

slow down for any reason, this will affect the whole running 

time as the reducers will have to wait. MRO-MPI idea is used  

to send partial list of intermediate data to the responsible 

reducer so that the reducer may start to process this partial 

data while the mappers continue emitting new data. Hence, 

the map and reduce functions works in parallel to achieve a 

good speedup.  

In this paper MapReduce overlapping using MPI is used, 

because most of the current MPI-MapReduce 

implementations are based on the original MapReduce model. 

2.   ARCHITECTURE ON MAP-REDUCE 
The execution of the MapReduce model is done through 

different stages, as follows (see also figure 1): MapReduce is 

a programming model as well as a framework that supports 

the model. The main idea of the MapReduce model is to hide 

details of parallel execution and allow users to focus only on 

data processing strategies. The MapReduce model consists of 

two primitive functions: Map and Reduce. The input for 

MapReduce is a list of (key1, value1) pairs and Map()is 

applied to each pair to compute intermediate key-value pairs, 

(key2,value2). The intermediate key-value pairs are then 

grouped together on the key equality 

basis,i.e.(key2,list(value2)). For eachkey2, Reduce()works on 

the list of all values, then produces zero or more aggregated 

results. Users can define the Map() and Reduce() functions 

however they want the MapReduce framework works. 

MapReduce utilizes the Google File System(GFS) as an 

underlying storage layer to read input and store output. GFS is 

a chunk-based distributed file system that supports fault-

tolerance by data partitioning and replication. Apache Hadoop 

is an open-source Java implementation of 

MapReduce.Hadoop since Google’s MapReduce code is not 

available to the public for its proprietary use. Other 

implementations (such as DISCO written in Erlang) are also 

available, but not as popular as Hadoop. Like MapReduce, 

Hadoop consists of two layers: a data storage layer called 

Hadoop DFS(HDFS) and a data processing layer called 
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Hadoop MapReduce Framework. HDFS is a block-structured 

file system managed by a single master node like Google’s 

GFS. Each processing job in Hadoop is broken down to as 

many Map tasks as input data blocks and one or more Reduce 

tasks. Figure 1 illustrates an overview of the Hadoop 

architecture. A single MapReduce(MR) job is performed in 

two phases: Map and Reduce stages. The master picks idle 

workers and assigns each one a map or a reduce task 

according to the stage. Before starting the Map task, an input 

file is loaded on the distributed file system. At loading, the 

file is partitioned into multiple data blocks which have the 

same size, typically 64MB, and each block is triplicate to 

guarantee fault-tolerance. Each block is then assigned to a 

mapper, a worker which is assigned a map task, and the 

mapper applies Map() to each record in the data block. The 

intermediate outputs produced by the mappers are then sorted 

locally for grouping key-value pairs sharing the same key. 

After local sort, Combine() is optionally applied to perform 

pre-aggregation on the grouped key-value pairs so that the 

communication cost taken to transfer all the intermediate 

outputs to reducers is minimized. Then the mapped outputs 

are stored in local disks of the mappers, partitioned into R, 

where R is the number of Reduce tasks in the MR job. This 

partitioning is basically done by a hash function e.g., 

hash(key) mod R. When all Map tasks are completed, the 

MapReduce scheduler assigns Reduce tasks to workers. The 

intermediate results are shuffled and assigned to reducers via 

HTTPS protocol. Since all mapped outputs are already 

partitioned and stored in local disks, each reducer performs 

the shuffling by simply pulling its partition of the mapped 

outputs from mappers. Basically, each record of the mapped 

outputs is assigned to only a single reducer byone-to-one 

shuffling strategy. Note that this data transfer is performed by 

reducers’ pulling intermediate results. A reducer reads the 

intermediate results and merges them by the intermediate 

keys, i.e.key2, so that all values of the same key are grouped 

together. This grouping is done by external merge-sort. Then 

each reducer applies Reduce ( ) to the intermediate values for 

eachkey2 it encounters. The output of reducers is stored and 

triplicates in HDFS. Note that the number of Map tasks does 

not depend on the number of nodes, but the number of input 

blocks. Each block is assigned to a single Map task. However, 

all Map tasks do not need to be executed simultaneously and 

neither are Reduce tasks. For example, if an input is broken 

down into 400 blocks and here are 40 mappers in a cluster, the 

number of map tasks is 400 and the map tasks are executed 

through 10 waves of task runs. This behavior pattern is also 

reported in . The MapReduce framework executes its tasks 

based on runtime scheduling scheme. It means that 

MapReduce does not build any execution plan that specifies 

which tasks will run on which nodes before execution. While 

DBMS generates a query plan tree for execution, a plan for 

executions in MapReduce is determined entirely at runtime. 

With the runtime scheduling, MapReduce achieves fault 

tolerance by detecting failures and reassigning tasks of failed 

nodes to other healthy nodes in the cluster. Nodes which have 

completed their tasks are assigned another input block.   

 
Fig 1:  Map_Reduce Architecture 

 

3.   MESSAGE PASSING INTERFACE 

(MPI) 
MPI is a library. It specifies the names, calling sequences and 

the results of functions to be called from C programs, 

subroutines to be called from Fortran programs, and the 

classes and methods that make up the MPI C++ library. MPI 

is a specification, not a articular implementation. A correct 

MPI program should be able to run on all MPI 

implementations without change.  MPI is targeted towards the 

message passing model. Messages and buffers. Sending and 

receiving messages are the two fundamental operations. 

Messages can be typed with a tag integer. Allows message 

buffers to be more complex than a simple buffer and address 

combination by giving options to the user to create their own 

data types. I Separating Families of Messages. MPI programs 

can use the notion of contexts to separate messages in 

different parts of the code. Useful for writing libraries. The 

context are allocated at run time by the system in response to 

user (or library) requests. 

Communicators. The notions of context and group are 

combined in a single object called a communicator, which 

becomes a argument to most point-to-point and collective 

operations. Thus the destination or source specified in send or 

receive operation always refers to the rank of the process in 

the group identified by a communicator. For example, 

consider the following blocking send and blocking receive 

operations in MPI. MPI_Send(address, count, data type, 

destination, tag, comm) MPI_Recv(address, maxcount, data 

type, source, tag, comm, status) The status object in the 
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receive holds information about the actual message size, 

source and tag. 

Collective Communications. MPI provides two types of 

collective operations, performed by all the processes in the 

computation. 

Data movement: Broadcast, scattering, gathering and 

others. 

Collective computation: Reduction operations like 

minimum, maximum, sum, logical OR etc as well as user-

defined operations. 

Groups: Operations of creating and managing groups in a 

scalable manner. These can be used to control the scope of the 

above collective operations. 

Debugging and profiling. MPI requires the availability 

of “hooks" that allow users to intercept MPI calls and thus 

define their own debugging and profiling mechanisms. 

Support for libraries. Explicit support for writing 

libraries that are independent of user-code and inter-operable 

with other libraries. Libraries can maintain arbitrary data, 

called attributes, associated with the communicators they 

allocate and can specify their own error handlers. 

Support for heterogeneous networks. MPI 

programs can run on a heterogeneous network without the 

user having to worry about data type conversions. 

Processes and processors. The MPI specification uses 

processes only. Thus the mapping of processes to processors 

is up to the implementation. 

 

  
Table I Example of Most Common MPI Functions 

 
MPI Method Description 

MPI Send() Send data directly to a certain process 

MPI Recv() Receive data from a certain process 

MPI Gather() Gather data from different processes 

MPI Scatter() Scatter data on the processes 

MPI Bcast() Broadcast data on all processes 

 

4.   MRO-MPI Model 
In MPI, the sender has to define the rank of the process that 

receives the data and the type and the size of the sent data. At 

the same time, the receiver has to be ready and informed 

about the received data. Thus, this decreases the usability of 

MapReduce using MPI. Figure 3 shows the architecture of 

discussed prototype. The Map and Reduce sides are divided 

into two parts; user and system. The user side is the part 

where the programmer writes the mapping function. The 

system side is the part which is responsible to handle the 

communication.

  

 

Fig 2. MRO-MPI: The mappers and reducers work in parallel and partial data is sent in a pipeline fashion. 
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Advanced  model is based on three steps as follows: 

Mapping and Shuffling :In this model, the mapping and 

the shuffling are merged in one phase. The mapping is exactly 

like the original one. The map functions emit (Km,Vm) pairs. 

The Km of each pair is passed to a partitioning function. 

Partitioning:(Km) → (hkl), the output range of the function is 

based on the number of the reducers; for L reducers the range 

is : 0→L. The default function is a”Hash”function, which is 

similar to hash Partitioner in Hadoop, but also it can be 

replaced by user-defined hash function. 

Map step: Each worker node applies the "map()" function to 

the local data, and writes the output to a temporary storage. A 

master node orchestrates that for redundant copies of input 

data, only one is processed. 

Shuffle step: Worker nodes redistribute data based on the 

output keys (produced by the "map()" function), such that all 

data belonging to one key is located on the same worker node. 

Logical View: The Map and Reduce functions of 

MapReduce are both defined with respect to data structured in 

(key, value) pairs. Map takes one pair of data with a type in 

one data domain, and returns a list of pairs in a different 

domain: 

Map(k1,v1)  → list(k2,v2)  

The Map function is applied in parallel to every pair in the 

input dataset. This produces a list of pairs for each call. After 

that, the MapReduce framework collects all pairs with the 

same key from all lists and groups them together, creating one 

group for each key. 

 

 

Figure 3. MRO-MPI: Technical details and data merging 

For the default hash function, normally hash collisions occurs 

as the number of keys is more than the number of the 

reducers, but it happens with equal distribution to roughly 

make equal load balancing of the keys on the reducers. The 

(hkl,(Km,Vm)) pairs are saved in a local hash table for each 

process. Eachhkl is associated with a list of various (Km,Vm) 

pairs: 

MapHashtable : 

(hkl)→((Ki,V1),(Ki,V2),(Ki+1,V1),...(Km,Vm)) 

There are l counters C0−l, each counter is assigned to a hash 

key hkl. They are used to count the size of pairs associated to 

eachhkl. Every time a new pair is emitted, counter Chkl is 

checked if it is greater than a threshold value T, which is user-

defined. If so, the partial data is concatenated as one chunk 

and sent directly to the responsible reducer which has a rank 

hkl. Sending Data in MPI is based on the MPI Data types like 

MPIINT, MPI CHAR,... etc. Additionally, MPI gives the user 

the ability to construct his own data types based on the 

original ones, which is called “derived data types”.  

Receiving and Merging: All Reducers are actors, 

which means that they are ready to receive data from any 

mapper. The received data contains multiple intermediate 

(Km,Vm) pairs. A hash table is responsible for organizing this 

data. The key of this hash table is the intermediate key and the 
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value is a list of intermediate values received in this partial list 

and related to this key: 

Reduce Hash Table: Km→P list(Vm). 

Reducing: After grouping the data, the system checks if the 

user asked for reducing partial data or not, as in some 

applications, the reduce function needs the full (Km, 

list(Vm))(e.g. max or average functions). In this case, the 

reduce function receives the data and merges it with the 

already saved data without any processing until the complete 

mapping is done. If partial reduce can be processed (e.g. sum 

functions), all the keys within its partial list are passed to the 

reduce function one by one. After reducing, the partial data is 

saved in local memory. For the two scenarios, after saving the 

data, the system calls the receiving function again and this 

process continues until all the data is received from the 

mappers. When mapping is done and last partial data are 

reduced, output data are saved on the local hard disk of each 

reduce process. Hence in this model,four phases are truncated 

into three phases. The three phases run in parallel on different 

machines and continue until the mapping is done. The user 

has to define the number of mappers, reducers, and the 

threshold valueT. The ratio between the mappers and the 

reducers affects the performance of the model. A good ratio 

between the mappers and reducers with analysis and the effect 

of changing the T value are given in the next section. 

5.   PERFORMANCE RESULTS 
MapReduce applications typically process large amounts of 

data that have to be read from either the network or local 

disks. Thus, we assume that the I/O bandwidth is not 

sufficient to keep multiple processing elements busy. 

However, most of today’s systems are multi-core or SMP 

systems such that there are idle cores available to offload the 

communication. We use the threaded InfiniBandoptimized 

version of LibNBC [17,18] for all benchmarks. This 

efficiently results in offloading the reduce task to another core 

(the reduce operation is a part of the NBC Reduce 

communication) and thus utilizes another level of functional 

parallelism transparently to the application developer. 

Benchmarks of the simple string-search example were also 

covered by the more extensive simulator and delivered exactly 

the same results. Thus, we only present benchmark results for 

the different configurations of the simulator. We benchmarked 

two different workload-scenarios with 1 to 126 worker nodes 

with 10 tasks per process. We compared the threaded version 

of LibNBC with a maximum of 5 outstanding collective 

operations with Open MPI 1.2.6. We also varied the data-size 

of the reduction operation (in our example, we used MPI 

SUM as the reduction operation). Figure 4(a) shows the 

communication and synchronization overhead for a static 

workload of 1 second per packet. Using nonblocking 

collective results in a significant performance increase 

because nearly all communication can be overlapped. The 

remaining communication overhead is due to InfiniBand’s 

memory registration which is done on the host CPU. The 

graphs show a reduction of communication and 

synchronization overhead of up to 27%. Figure 4(b) shows. 

the influence of nonblocking collectives to dynamic 

workloads varying between 1ms and 10 s. The significant 

performance increase is due to avoidance of synchronization 

and the use of communication/computation overlap. This 

clearly shows that our technique can be used to benefit 

MapReduce-like applications significantly. The dynamic 

example shows improvements in time to solution of up to 

25% over the unoptimized implementation. 

 

 
 

Fig. 4. Overhead and Time to Solution for Static and Dynamic Workloads for different Number of Workers 
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6.   CONCLUSIONS 
MapReduce and MPI were developed in two different 

communities that have traditionally been somewhat disjoint. 

However, as the needs and capabilities of these two 

communities continue to converge, it will be to the benefit of 

both to leverage their respective technologies. In the case of 

MapReduce and MPI, it is possible to efficiently implement 

MapReduce using MPI – with some limitations. For example, 

HPC-centric optimizations can be applied if the reduce 

function fulfills certain criteria. Additional performance gains 

are possible through upcoming MPI features. Using 

nonblocking collective operations, for example, provided a 

speedup of up to 25% over the blocking implementation. 

Fully supporting MapReduce will require several additional 

features and capabilities from MPI. However, many of these 

features are generally recognized as being important, 

particularly as MPI evolves to support other modern 

programming and parallelization paradigms 
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