
International Journal of Computer Applications (0975 – 8887)

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015)

14

Adaptiveness in Map-Reduce using MPI

Ahmed H.I.Lakadkutta Pushpanjali M.Chouragade

Mtech(CSE) Assistant Professor, Comp.Engg.
Government College of Government College of

Engineering, Amravati, India, Engineering, Amravati, India,

ABSTRACT
MapReduce is an emerging programming paradigm for data

parallel applications proposed by Google to simplify large-

scale data processing. MapReduce implementation consists of

map function that processes input key/value pairs to generate

intermediate key/value pairs and reduce function that merges

and converts intermediate key/value pairs into final results.

The reduce function can only start processing after

completion of the map function. Due to dependencies

between map and reduce function, if the map function is slow

for any reason, this will affect the whole running time. In this

technique, t h e message passing interface (MPI) strategies

is used to implement MapReduce which reduces the runtime

and optimized data exchange.MPI is used fo r algorithmic

parallelization. MapReduce with MPI combines redistribution

and reduce and moves them into the network. In this paper,

new technology used as MapReduce overlapping using MPI,

which is an enhancing structure of the MapReduce

programming model for fast data processing. This

implementation is based on running the map and the reduce

functions concurrently in parallel by exchanging partial

intermediate data between them in a pipeline fashion using

MPI. At the same time, performing the algorithm parallelism

in order to increase the performance with data parallelism of

using overlapping mapreduce MPI.MPI support more

efficiently all MapReduce applications.

Keywords: Hadoop, MapReduce overlapping, MPI-

MapReduce, Parallel MapReduce.

I. INTRODUCTION
Today, many commercial and scientific applications require

the processing of large amounts of data, and thus, demand

compute resources far beyond what can be provided by a

single commodity processor. To address this, the role of

parallel and distributed computing becomes more important

than before by offering large-scale processing capabilities.

MapReduce is a programming model for data intensive

applications. MapReduce was proposed by Google. It is

mainly composed of two functions: a map function.

MapReduce has been used to process massive amounts of data

in web and a reduce function. In general, the input data is

partially divided into small chunks and randomly passed to a

group of map functions. The map functions process the input

data and generate intermediate (key,value) pairs. These pairs

are grouped together with respect to their key to produce

(key,list(values)) tuples. The tuples are then passed to a group

of reduce functions, which do some analysis. There are many

applications which can be adapted to have the same workflow

including inverted indexing [1], k-means [2], sorting and

PageRanking [3]. Thus, MapReduce simplifies the parallel

programming process through the two map, and reduce

functions. In contrast, MPI is a message passing library

designed to function on parallel machines. MPI launches

independent processes of an algorithm on each machine, in

which the processes are connected using MPI by moving data

from the address space of a certain process to another

efficiently. MPI also supports collective operations, remote

memory access and parallel I/O. Now, most parallel

applications depend on two types of parallelization: data

parallelization and algorithmic parallelization. With this two

parallelism efficient communication capabilities of MPI to

build a framework for fast data and algorithms processing is

added using MRO-MPI model (MapReduce overlapping

using MPI) as an idea to speed up the MapReduce model by

avoiding its bottlenecks and using MPI functions. In the

original and the current implementations of MapReduce, the

reduce function has to wait for the map function to finish

before it can start processing. If the map function is stuck or

slow down for any reason, this will affect the whole running

time as the reducers will have to wait. MRO-MPI idea is used

to send partial list of intermediate data to the responsible

reducer so that the reducer may start to process this partial

data while the mappers continue emitting new data. Hence,

the map and reduce functions works in parallel to achieve a

good speedup.

In this paper MapReduce overlapping using MPI is used,

because most of the current MPI-MapReduce

implementations are based on the original MapReduce model.

2. ARCHITECTURE ON MAP-REDUCE
The execution of the MapReduce model is done through

different stages, as follows (see also figure 1): MapReduce is

a programming model as well as a framework that supports

the model. The main idea of the MapReduce model is to hide

details of parallel execution and allow users to focus only on

data processing strategies. The MapReduce model consists of

two primitive functions: Map and Reduce. The input for

MapReduce is a list of (key1, value1) pairs and Map()is

applied to each pair to compute intermediate key-value pairs,

(key2,value2). The intermediate key-value pairs are then

grouped together on the key equality

basis,i.e.(key2,list(value2)). For eachkey2, Reduce()works on

the list of all values, then produces zero or more aggregated

results. Users can define the Map() and Reduce() functions

however they want the MapReduce framework works.

MapReduce utilizes the Google File System(GFS) as an

underlying storage layer to read input and store output. GFS is

a chunk-based distributed file system that supports fault-

tolerance by data partitioning and replication. Apache Hadoop

is an open-source Java implementation of

MapReduce.Hadoop since Google’s MapReduce code is not

available to the public for its proprietary use. Other

implementations (such as DISCO written in Erlang) are also

available, but not as popular as Hadoop. Like MapReduce,

Hadoop consists of two layers: a data storage layer called

Hadoop DFS(HDFS) and a data processing layer called

International Journal of Computer Applications (0975 – 8887)

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015)

15

Hadoop MapReduce Framework. HDFS is a block-structured

file system managed by a single master node like Google’s

GFS. Each processing job in Hadoop is broken down to as

many Map tasks as input data blocks and one or more Reduce

tasks. Figure 1 illustrates an overview of the Hadoop

architecture. A single MapReduce(MR) job is performed in

two phases: Map and Reduce stages. The master picks idle

workers and assigns each one a map or a reduce task

according to the stage. Before starting the Map task, an input

file is loaded on the distributed file system. At loading, the

file is partitioned into multiple data blocks which have the

same size, typically 64MB, and each block is triplicate to

guarantee fault-tolerance. Each block is then assigned to a

mapper, a worker which is assigned a map task, and the

mapper applies Map() to each record in the data block. The

intermediate outputs produced by the mappers are then sorted

locally for grouping key-value pairs sharing the same key.

After local sort, Combine() is optionally applied to perform

pre-aggregation on the grouped key-value pairs so that the

communication cost taken to transfer all the intermediate

outputs to reducers is minimized. Then the mapped outputs

are stored in local disks of the mappers, partitioned into R,

where R is the number of Reduce tasks in the MR job. This

partitioning is basically done by a hash function e.g.,

hash(key) mod R. When all Map tasks are completed, the

MapReduce scheduler assigns Reduce tasks to workers. The

intermediate results are shuffled and assigned to reducers via

HTTPS protocol. Since all mapped outputs are already

partitioned and stored in local disks, each reducer performs

the shuffling by simply pulling its partition of the mapped

outputs from mappers. Basically, each record of the mapped

outputs is assigned to only a single reducer byone-to-one

shuffling strategy. Note that this data transfer is performed by

reducers’ pulling intermediate results. A reducer reads the

intermediate results and merges them by the intermediate

keys, i.e.key2, so that all values of the same key are grouped

together. This grouping is done by external merge-sort. Then

each reducer applies Reduce () to the intermediate values for

eachkey2 it encounters. The output of reducers is stored and

triplicates in HDFS. Note that the number of Map tasks does

not depend on the number of nodes, but the number of input

blocks. Each block is assigned to a single Map task. However,

all Map tasks do not need to be executed simultaneously and

neither are Reduce tasks. For example, if an input is broken

down into 400 blocks and here are 40 mappers in a cluster, the

number of map tasks is 400 and the map tasks are executed

through 10 waves of task runs. This behavior pattern is also

reported in . The MapReduce framework executes its tasks

based on runtime scheduling scheme. It means that

MapReduce does not build any execution plan that specifies

which tasks will run on which nodes before execution. While

DBMS generates a query plan tree for execution, a plan for

executions in MapReduce is determined entirely at runtime.

With the runtime scheduling, MapReduce achieves fault

tolerance by detecting failures and reassigning tasks of failed

nodes to other healthy nodes in the cluster. Nodes which have

completed their tasks are assigned another input block.

Fig 1: Map_Reduce Architecture

3. MESSAGE PASSING INTERFACE

(MPI)
MPI is a library. It specifies the names, calling sequences and

the results of functions to be called from C programs,

subroutines to be called from Fortran programs, and the

classes and methods that make up the MPI C++ library. MPI

is a specification, not a articular implementation. A correct

MPI program should be able to run on all MPI

implementations without change. MPI is targeted towards the

message passing model. Messages and buffers. Sending and

receiving messages are the two fundamental operations.

Messages can be typed with a tag integer. Allows message

buffers to be more complex than a simple buffer and address

combination by giving options to the user to create their own

data types. I Separating Families of Messages. MPI programs

can use the notion of contexts to separate messages in

different parts of the code. Useful for writing libraries. The

context are allocated at run time by the system in response to

user (or library) requests.

Communicators. The notions of context and group are

combined in a single object called a communicator, which

becomes a argument to most point-to-point and collective

operations. Thus the destination or source specified in send or

receive operation always refers to the rank of the process in

the group identified by a communicator. For example,

consider the following blocking send and blocking receive

operations in MPI. MPI_Send(address, count, data type,

destination, tag, comm) MPI_Recv(address, maxcount, data

type, source, tag, comm, status) The status object in the

International Journal of Computer Applications (0975 – 8887)

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015)

16

receive holds information about the actual message size,

source and tag.

Collective Communications. MPI provides two types of

collective operations, performed by all the processes in the

computation.

Data movement: Broadcast, scattering, gathering and

others.

Collective computation: Reduction operations like

minimum, maximum, sum, logical OR etc as well as user-

defined operations.

Groups: Operations of creating and managing groups in a

scalable manner. These can be used to control the scope of the

above collective operations.

Debugging and profiling. MPI requires the availability

of “hooks" that allow users to intercept MPI calls and thus

define their own debugging and profiling mechanisms.

Support for libraries. Explicit support for writing

libraries that are independent of user-code and inter-operable

with other libraries. Libraries can maintain arbitrary data,

called attributes, associated with the communicators they

allocate and can specify their own error handlers.

Support for heterogeneous networks. MPI

programs can run on a heterogeneous network without the

user having to worry about data type conversions.

Processes and processors. The MPI specification uses

processes only. Thus the mapping of processes to processors

is up to the implementation.

Table I Example of Most Common MPI Functions

MPI Method Description

MPI Send() Send data directly to a certain process

MPI Recv() Receive data from a certain process

MPI Gather() Gather data from different processes

MPI Scatter() Scatter data on the processes

MPI Bcast() Broadcast data on all processes

4. MRO-MPI Model
In MPI, the sender has to define the rank of the process that

receives the data and the type and the size of the sent data. At

the same time, the receiver has to be ready and informed

about the received data. Thus, this decreases the usability of

MapReduce using MPI. Figure 3 shows the architecture of

discussed prototype. The Map and Reduce sides are divided

into two parts; user and system. The user side is the part

where the programmer writes the mapping function. The

system side is the part which is responsible to handle the

communication.

Fig 2. MRO-MPI: The mappers and reducers work in parallel and partial data is sent in a pipeline fashion.

International Journal of Computer Applications (0975 – 8887)

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015)

17

Advanced model is based on three steps as follows:

Mapping and Shuffling :In this model, the mapping and

the shuffling are merged in one phase. The mapping is exactly

like the original one. The map functions emit (Km,Vm) pairs.

The Km of each pair is passed to a partitioning function.

Partitioning:(Km) → (hkl), the output range of the function is

based on the number of the reducers; for L reducers the range

is : 0→L. The default function is a”Hash”function, which is

similar to hash Partitioner in Hadoop, but also it can be

replaced by user-defined hash function.

Map step: Each worker node applies the "map()" function to

the local data, and writes the output to a temporary storage. A

master node orchestrates that for redundant copies of input

data, only one is processed.

Shuffle step: Worker nodes redistribute data based on the

output keys (produced by the "map()" function), such that all

data belonging to one key is located on the same worker node.

Logical View: The Map and Reduce functions of

MapReduce are both defined with respect to data structured in

(key, value) pairs. Map takes one pair of data with a type in

one data domain, and returns a list of pairs in a different

domain:

Map(k1,v1) → list(k2,v2)

The Map function is applied in parallel to every pair in the

input dataset. This produces a list of pairs for each call. After

that, the MapReduce framework collects all pairs with the

same key from all lists and groups them together, creating one

group for each key.

Figure 3. MRO-MPI: Technical details and data merging

For the default hash function, normally hash collisions occurs

as the number of keys is more than the number of the

reducers, but it happens with equal distribution to roughly

make equal load balancing of the keys on the reducers. The

(hkl,(Km,Vm)) pairs are saved in a local hash table for each

process. Eachhkl is associated with a list of various (Km,Vm)

pairs:

MapHashtable :

(hkl)→((Ki,V1),(Ki,V2),(Ki+1,V1),...(Km,Vm))

There are l counters C0−l, each counter is assigned to a hash

key hkl. They are used to count the size of pairs associated to

eachhkl. Every time a new pair is emitted, counter Chkl is

checked if it is greater than a threshold value T, which is user-

defined. If so, the partial data is concatenated as one chunk

and sent directly to the responsible reducer which has a rank

hkl. Sending Data in MPI is based on the MPI Data types like

MPIINT, MPI CHAR,... etc. Additionally, MPI gives the user

the ability to construct his own data types based on the

original ones, which is called “derived data types”.

Receiving and Merging: All Reducers are actors,

which means that they are ready to receive data from any

mapper. The received data contains multiple intermediate

(Km,Vm) pairs. A hash table is responsible for organizing this

data. The key of this hash table is the intermediate key and the

International Journal of Computer Applications (0975 – 8887)

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015)

18

value is a list of intermediate values received in this partial list

and related to this key:

Reduce Hash Table: Km→P list(Vm).

Reducing: After grouping the data, the system checks if the

user asked for reducing partial data or not, as in some

applications, the reduce function needs the full (Km,

list(Vm))(e.g. max or average functions). In this case, the

reduce function receives the data and merges it with the

already saved data without any processing until the complete

mapping is done. If partial reduce can be processed (e.g. sum

functions), all the keys within its partial list are passed to the

reduce function one by one. After reducing, the partial data is

saved in local memory. For the two scenarios, after saving the

data, the system calls the receiving function again and this

process continues until all the data is received from the

mappers. When mapping is done and last partial data are

reduced, output data are saved on the local hard disk of each

reduce process. Hence in this model,four phases are truncated

into three phases. The three phases run in parallel on different

machines and continue until the mapping is done. The user

has to define the number of mappers, reducers, and the

threshold valueT. The ratio between the mappers and the

reducers affects the performance of the model. A good ratio

between the mappers and reducers with analysis and the effect

of changing the T value are given in the next section.

5. PERFORMANCE RESULTS
MapReduce applications typically process large amounts of

data that have to be read from either the network or local

disks. Thus, we assume that the I/O bandwidth is not

sufficient to keep multiple processing elements busy.

However, most of today’s systems are multi-core or SMP

systems such that there are idle cores available to offload the

communication. We use the threaded InfiniBandoptimized

version of LibNBC [17,18] for all benchmarks. This

efficiently results in offloading the reduce task to another core

(the reduce operation is a part of the NBC Reduce

communication) and thus utilizes another level of functional

parallelism transparently to the application developer.

Benchmarks of the simple string-search example were also

covered by the more extensive simulator and delivered exactly

the same results. Thus, we only present benchmark results for

the different configurations of the simulator. We benchmarked

two different workload-scenarios with 1 to 126 worker nodes

with 10 tasks per process. We compared the threaded version

of LibNBC with a maximum of 5 outstanding collective

operations with Open MPI 1.2.6. We also varied the data-size

of the reduction operation (in our example, we used MPI

SUM as the reduction operation). Figure 4(a) shows the

communication and synchronization overhead for a static

workload of 1 second per packet. Using nonblocking

collective results in a significant performance increase

because nearly all communication can be overlapped. The

remaining communication overhead is due to InfiniBand’s

memory registration which is done on the host CPU. The

graphs show a reduction of communication and

synchronization overhead of up to 27%. Figure 4(b) shows.

the influence of nonblocking collectives to dynamic

workloads varying between 1ms and 10 s. The significant

performance increase is due to avoidance of synchronization

and the use of communication/computation overlap. This

clearly shows that our technique can be used to benefit

MapReduce-like applications significantly. The dynamic

example shows improvements in time to solution of up to

25% over the unoptimized implementation.

Fig. 4. Overhead and Time to Solution for Static and Dynamic Workloads for different Number of Workers

International Journal of Computer Applications (0975 – 8887)

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015)

19

6. CONCLUSIONS
MapReduce and MPI were developed in two different

communities that have traditionally been somewhat disjoint.

However, as the needs and capabilities of these two

communities continue to converge, it will be to the benefit of

both to leverage their respective technologies. In the case of

MapReduce and MPI, it is possible to efficiently implement

MapReduce using MPI – with some limitations. For example,

HPC-centric optimizations can be applied if the reduce

function fulfills certain criteria. Additional performance gains

are possible through upcoming MPI features. Using

nonblocking collective operations, for example, provided a

speedup of up to 25% over the blocking implementation.

Fully supporting MapReduce will require several additional

features and capabilities from MPI. However, many of these

features are generally recognized as being important,

particularly as MPI evolves to support other modern

programming and parallelization paradigms

7. REFERENCES
[1] T. White, Hadoop: The Definitive Guide, first edition ed.

O’Reilly, june 2009.

[2] F. Ahmad, S. Lee, M. Thottethodi, and T. N.

Vijaykumar, “Mapreduce with communication overlap,”

in Technical 2007.

[3] M. Elteir, H. Lin, and W. chun Feng, “Enhancing

mapreduce via asynchronous data processing,” in

Parallel and Distributed Systems (ICPADS), 2010

IEEE 16th International Conference on, dec. 2010, pp.

397 –405.

[4] T. Hoefler, A. Lumsdaine, and J. Dongarra, “Towards

efficient mapreduce using mpi.” In PVM/MPI, ser.

Lecture Notes in Computer Science, M. Ropo, J.

Westerholm, and J. Dongarra,Eds., vol. 5759. Springer,

2009, pp.240–249.

[5] M. Elteir, H. Lin, and W. chun Feng, “Enhancing

mapreduce via asynchronous data processing,” in

Parallel and Distributed Systems (ICPADS), 2010 IEEE

16th International Conference on, dec. 2010, pp. 397 –

405

[6] Hishan Mohamed, Stephane´ Marchand-Maillet,

"Enhancing MapReduce using MPI and an optimized

data exchange policy" in 2012 41st International

Conference on Parallel Processing Workshops

[7] Dean, J., Ghemawat, S.: MapReduce: Simplified Data

Processing on Large Clusters.Commun. ACM 51(1).

[8] L¨ammel, R.: Google’s MapReduce programming model

— Revisited. Sci. Comput.rogram. 68(3) (2007) .

[9] de Kruijf, M., Sankaralingam, K.: MapReduce for the

CELL B.E. Architecture.IBM Journal of Research and

Development 52(4) (2007)

[10] He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.:

Mars: a MapReduce framework on graphics processors.

In: PACT ’08: Proceedings of the 17th international

conference on Parallel architectures and compilation

techniques, New York, NY, USA, ACM (2008) 260–

269

[11] Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G.,

Kozyrakis, C.: Evaluating MapReduce for Multi- core

andMultiprocessor Systems. In: HPCA ’07: Proceedings

of the 2007 IEEE 13th International Symposium on High

Performance Computer Architecture, Washington, DC,

USA, IEEE Computer Society (2007) 13–24

[12] Langville, A.N., Meyer, C.D.: Google’s PageRank and

Beyond: The Science of Search Engine Rankings.

Princeton University Press (July 2006)

[13] Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G.R.,

Ng, A.Y., Olukotun, K.:Map-Reduce for Machine

Learning on Multicore. In Sch¨olkopf, B., Platt, J.C.,

Hoffman, T., eds.: NIPS, MIT Press (2006) 281–288

[14] Kimball, A., Michels-Slettvet, S., Bisciglia, C.: Cluster

computing for web-scale data processing. SIGCSE Bull.

40(1) (2008) 116–120

[15] Hadoop: http://hadoop.apache.org (2009)

[16] Pike, R., Dorward, S., Griesemer, R., Quinlan, S.:

Interpreting the data: Parallel analysis with Sawzall.

Scientific Programming 13(4) (2005) 277–298

[17] Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file

system. SIGOPS Oper.Syst. Rev. 37(5) (2003) 29–43

IJCATM : www.ijcaonline.org

