
International Journal of Computer Applications (0975 – 8887) 

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015) 

11 

CUDA’S Mapped Memory to Get High Performance 

using GPU 

  
Tofik R. Kacchi  

Department of Computer Science and Engineering, 
Government College of Engineering, Amravati, 

India 

Pushpanjali Chauragade  
Assistant Professor, Department of Computer 

Science and Engineering, Government College of 
Engineering, Amravati, India           

 

ABSTRACT 
The API interfaces provided by CUDA help programmers to 

get high performance CUDA applications in GPU, but they 

cannot support most I/O operations in device codes. The 

characteristics of CUDA’s mapped memory are used here to 

create a dynamic polling service model in the host which can 

satisfy most I/O functions such as read/write file and 

“printf”.The technique to implement these I/O functions has 

some influence on the performance of the original 

applications. These functions quickly respond to the users’ 

I/O requirements with the “printf” performance better than 

CUDA’s. An easy and effective real-time method is given for 

users to debug their programs using the I/O functions. These 

functions improve productivity of converting legacy C/C++ 

codes to CUDA and broaden CUDA’s functions. 

Keywords: CUDA’s Introduction, Architecture, input-

output functions,  mapping of memory. 

1. INTRODUCTION 
Parallel applications for GPU can be easily developed using 

CUDA with the various API interfaces provided by CUDA 

providing the powerful tools to manage the GPU and the high 

memory bandwidth. Besides traditional image processing, 

CUDA has also enabled analyses at oil reconnaissance, 

astronomical timing, hydrodynamics, molecular kinetics, 

biology, audio frequency decoding, and video frequency 

decoding. The number of applications using the GPU have 

been accelerated many fold, even a hundred times more than 

in a CPU[1] with key run-time libraries such as CUBLAS, 

CUFFT, and CUDPP. 

However, the API interfaces and libraries in CUDA are self-

contained, so most of the I/O functions are not supported in 

the device (referring to the GPU and its memory) codes, so 

developing and debugging application is difficult. For 

example, developers often use “printf” in debugging to access 

application information. Although CUDA supports “printf” in 

device codes in version 3.1[2] and higher, users cannot see the 

results of “printf” in real-time until the kernel function is 

finished, which is not satisfactory. If the kernel function 

hangs, the users will not get any of the “printf” information. 

Therefore, the I/O functions are not convenient for 

programmers. Especially, the system will spend extra energy 

dealing with legacy codes that contain I/O operations. For 

example, the only method to complete file read/write 

operations in the device is to add some memory copies 

between the host (referring to the CPU and the system 

memory) and the device instead of directly reading/writing 

files. 

Most research on CUDA has been based on existing 

programming models and compilers that are legacy codes, not 

CUDA programs. Generally, these studies have changed the 

programs written in other programming languages to CUDA 

or to executable target codes on the GPU directly. For 

example, Lee et al.[3] designed a source-to-source compiler 

which can change OpenMP program to CUDA and used 

different program optimization methods in OpenMP and 

CUDA. HMPP[4] used compiling directives to translate C or 

FORTRAN programs to CUDA or OpenCL[5] 

program.PyCUDA[6] allows programmers to directly use 

CUDA’s parallel compute APIs in Python[7] codes. CuPP[7] 

integrates CUDA programs into an existing C++ framework. 

All these try to make the GPU programming easier and more 

effective. These tools can quickly transplant legacy codes to 

the GPU. Therefore, CUDA needs to also support I/O 

functions and the other common functions in these codes so as 

to not increase the designers’ workloads and to reduce the 

compiler’s applicability. 

This study uses the characteristics of the mapped memory to 

support I/O functions, such as reading/writing files and 

“printf” in device codes. These efficient I/O functions enable 

application developers to conveniently get data at run time to 

further enable transplanting legacy codes. At the same time, 

the I/O agent introduced here can be extended to memory 

operations, message sending and receiving, and socket 

operations, even for entire web server. This paper introduces 

CUDA and GPU, and the challenges faced when 

implementing efficient I/O functions in GPUs with 

descriptions of the implementation ideas and techniques. 

Examples are given using CUDA SDK 4.0 

2. ARCHITECTURE OF CUDA 
Figure 2.1 shows an overview of the CUDA memory model. 

The memory hierarchy of a CUDA device has several parts 

including the global memory, constant memory, shared 

memory, texture memory, and local memory. Each thread has 

a private local memory and each thread block has shared 

memory visible to all threads of the block with the same 

lifetime as the block. All threads can access the same global 

memory[2]. The constant memory and texture memory are 

read-only memory spaces accessible by all threads. 

 Each block contain following: 

 Set of local registers per thread. 

 Parallel data cache or shared memory that is shared 

by all the threads.  

 Read-only constant cache that is shared by all the 

threads and speeds up reads from constant memory 

space.  



International Journal of Computer Applications (0975 – 8887) 

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015) 

12 

 Read-only texture cache that is shared by all the 

processors and speeds up reads from the texture 

memory space. 

 

Local memory is in scope of each thread. It is allocated by 

compiler from global memory but logically treated as 

independent unit.Shared memory : 

 Accessible by any threads within a block where it 

was created. 

 Lifetime of a block. 

  

 

Figure 2.1 CUDA Memory Model 

 
The mapped memory is used here for efficient I/O on the 

GPU. However, the system must ensure the order and 

coherence of operations to the same mapped memory spaces 

because of the features of mapped memory, which is a big 

challenge. 

 

3. INPUT-OUTPUT FUNCTIONS  
The API interfaces and libraries in CUDA are self-contained, 

so most of the I/O functions are not supported in the device 

(referring to the GPU and its memory) codes, so developing 

and debugging application is difficult.This section shows the 

basic framework of I/O functions, which is as follows : 

3.1 Overview 
Figure 3.1 shows the basic framework of implementation of 

the Input-Output functions, which includes a preprocessor 

module, a support library of I/O functions, and a host agent 

module. The preprocessor inputs are GPU codes containing 

I/O functions which require processing and code generation 

work to provide the arguments for the device functions. The 

I/O function device library provides the required APIs. These 

APIs record the I/O function data and parameters, send agent 

requests, complete interactions with the host, and finally get 

the return values. The host calls pthread create to create a 

process to do the agent job. The process denoted by Agent tid 

scans the data structures stored in mapped memory to record 

information for the agent requests. When the host detects a 

request, the APIs in the host are called to deal with the agent’s 

request. 

 

 

Figure 3.1 Basic Frame-work for I/O Functions 

 

4. MAPPING OF MEMORY 
There are several built in variables that are available to kernel 

call: 

 blockIdx - block index within grid. 

 threadIdx - thread index within block. 

 blockDim - number of threads in a block. 

 

Equation Used : 

idx  =blockIdx.x * blockDim.x + threadIdx.x; 

 

Figure 4.1 Diagram of block breakdown and thread 

assignment for our array 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015) 

13 

5. CONCLUSION 
Thus, we have inferred that CUDA is nothing but a few 

extensionto C programming with application programming 

interfaces which is supporting heterogeneous data. As GPUs 

contain much larger number of dedicated ALUs than CPUs 

and GPUs is providing extensive support of Stream 

Processing paradigm i.e SIMD processing, so we can employ 

GPU for complex operations at the same time we can parallel 

employ CPU for performing execution of other operations. 

CUDA is better than C programming or C++ one, because it 

takes the advantages of both procedure oriented and object 

oriented programming by using the features of both C and 

C++. Hence, CUDA is needed for high performance parallel 

applications.In short, it is summarized as follows :  

• Essentially, a few extension to C + API supporting 

heterogeneous data 

• Parallel CPU + GPU execution  

• Uses features of both C & C++  

• Needed for high performance parallel applications   

6. REFERENCES  
[1]  IEEE Paper on “CUDA’s Mapped Memory To Support 

I/O functions on GPU” , presented at TSINGHUA 

SCIENCE AND TECHNOLOGY, by Wei Wu, 

FengbinQi,WangQuan He and Shanshan Wang, Volume 

18,Number 6,December 2013. 

[2]  NVIDIA Corporation, CUDA Toolkit 3.1 Downloads, 

https://developer.nvidia.com/cuda-toolkit-31-downloads, 

2010. 

[3]  S. Lee, S. Min, and R. Eigenmann, OpenMP to GPGPU: 

A compiler framework for automatic translation and 

optimization, presented at the 14th ACM 

SIGPLANSymposium on Principles and Practice of 

Parallel Programming, Raleigh, NC, USA, 2009. 

[4]  R. Dolbeau, S. Bihan, and F. Bodin, HMPP?: A hybrid 

multi-core parallelprogramming environment, presented 

at the 1st Workshop on General Purpose Processing on 

Graphics Processing Units, Boston, USA, 2007. 

[5] Khronos Group, The open standard for parallel 

programming of heterogeneous systems, 

http://www.khronos.org/opencl, 2011. 

[6] J. Breitbart, Cupp-A framework for easy CUDA 

integration, in Proc. the 2009 IEEEInternational 

Symposium on Parallel&Distributed Processing, 

Washington, DC, USA,       2009, pp. 1-8. 

[7]  S. Zhang, Y. Zhu, K. Zhao, and Y. Zhang, GPU High 

Performance Computing withCUDA,  (in Chinese). 

Beijing, China: China WaterPower Press, 2009. 

[8]  D. B. Kirk and W. W. Hwu, Programming Massively 

Parallel Processors: A Hands-on Approach. Burlington, 

MA, USA: Morgan Kaufmann Publishers, 2010. 

[9]  J. Sanders and E. Kandrot, CUDA by Example: An 

Introduction to General-Purpose GPU Programming. 

Boston, MA, USA: Addison-Wesley,2010. 

[10] G. Diamos, A. Kerr, and S. Yalamanchili, Ocelot: A 

dynamic optimizationframework for bulk-

synchronousapplications in heterogeneous systems, 

presented atthe19th International Conference on Parallel 

Architectures andCompilation Techniques, Vienna, 

Austria, 2010. 

7. AUTHOR BIOGRAPHY 
Tofik R. Kacchi has received his B.Tech degree in 

Computer Science and Engineering from Shri Guru 

Gobind Singhji Institute of Engineering and Technology, 

Nanded, India in 2014. At present, he is persuing Master of 

Technology in department of Computer Science and 

Engineering at Government College of Engineering, 

Amravati, India. His research interest includes High 

Performance Computing, Parallel Computing, Artificial 

Neural Network. 

Pushpanjali M. Chouragade has received her Diploma in 

Computer Science and Engineering from Government 

Polytechnic, Amravati, India, in 2007, the B.Tech. degree in 

Computer Science and Engineering from Government College 

of Engineering, Amravati, India in 2010 and her M.Tech. in 

Computer Science and Engineering from Government College 

of Engineering, Amravati, India, in 2013. She was a Lecturer 

with Department of Computer Science & Engineering, in 

Government College of Engineering Amravati, in 2010-11. 

Her research interest includes Data Mining, Web Mining, 

Image Processing. At present, she is an Assistant professor 

with department of Computer Science and Engineering at 

Government College of Engineering, Amravati, India, since 

2011.

 

IJCATM : www.ijcaonline.org 


