
MEDHA - 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

30

A Map Reduce Implementation on Open Source
Platform: EUCALYPTUS

Nilesh Mangtani
Master of Engg. II

nd
 Year

Computer Dept.
MITCOE, Pune

Jyoti B. Rathi
Assistant Professor
Department of CSE
J.D.I.E.T, Yavatmal

ABSTRACT

Cloud computing is one of the important emerging

technologies now-a-days. In recent years many of the

applications are developed by using the Cloud computing. It

mainly works by using the clusters of all the available

resources in an organization or a company. Also recently

Hadoop framework has also emerged which work in the

distributed environments only. Hadoop being a open-source is

used by many companies recently. In this paper, we have tried

to propose a solution of merging the Hadoop technology with

the cloud by using a open-source platform EUCALYPTUS.

Since both of the above platforms are open source many of

the companies can earn more profit by integrating with them.

In this case the MapReduce an important part of Hadoop is

being discussed and is tried to merge out with the Cloud by

using EUCALYPTUS. MapReduce is a programming model

that is developed by Google but widely used by Hadoop. Thus

in this paper we have discussed few of scenarios where

Hadoop can fails and also proposed the solution of those by

using the Cloud technology.

General Terms

Integration of Hadoop with Cloud by using open-source cloud

platform EUCALYPTUS

Keywords

Hadoop, MapReduce, Cloud Computing, EUCALYPTUS

1. INTRODUCTION
A cloud service can outsource management, maintenance and

administration of large clusters of servers for any company,

organization or even a private person still providing the

benefits. The infrastructure to control and maintain the cloud

can be proprietary like Microsoft Hyper-V Cloud [1],

VMware vCloud [2] and Citrix Open Cloud [3], but there are

also a number of free and open-source solutions like

Eucalyptus Cloud, OpenNebula [4] and CloudStack [5]. In

recent years, cloud computing and the services it provides

were deploying rapidly.

An Apache open source distributed computing framework is

Hadoop. It has been applied in many sites such as Amazon,

Facebook, and Yahoo and so on. It takes the advantage of the

power of clusters, with high-speed computing with scalability

across a large cluster. It works in parallel and thus it speedup

the processing speed. The most important part of this

framework is MapReduce and HDFS. Although it is meant to

run on the dedicated servers, but there is no problem to run it

on the virtual machine. Before the application of MapReduce,

Yahoo! Took 26 days of processing to build automatic

completion of indexes for their search engines which was

reduced to just 20 minutes by applying the MapReduce model

with a cluster of computing nodes [6]. It was developed by

Google for processing a very large amount of data to generate

the useful information. By hiding the details of distributed

computing system the complexity of distributed programming

is reduced. An example is WordCounter [7]: an application

that counts the number of times a word appears in a collection

of documents. Map emits a key/value pair, (word, 1). Reduce

combine the value from the same word and we can get the

number of times a word appears. MapReduce computation is

used in many applications [8-10] such as Distributed Grep,

Count of URL Access Frequency, Distributed Sort, Security

Enhanced DNS Group, and other real world applications. The

most important is Google still uses it in its new search engine

technology, Percolator [11] to analyze and produce the initial

search index. Also the user must know that it is not easy to

implement the MapReduce model. If any user wants to use it,

they have to set up their machine’s MapReduce environment

first to compute a large-scale data set. The code for the

MapReduce program is nearly impossible without suitable

background and training.

In this paper, section 2 describes a detailed introduction about

the Hadoop framework. Further in section 3 the description

about the open source platform EUCALYPTUS is provided.

Finally in section 4 the problem statement and solution is

provided which is followed by future work and conclusion.

2. HADOOP FRAMEWORK
Hadoop is an open source software package from the Apache

foundation which is used for batch processing of large data

sets on a physical cluster of machines. It contains many

different systems that are aimed at file storage, analysis and

processing of large amounts of data ranging from few

Gigabytes to several Petabytes. It contains a distributed file

system called Hadoop Distributed File System (HDFS), a

Common set of commands, scheduler, and the MapReduce

evaluation framework. The HDFS and MapReduce are the

most important part of the Hadoop which are detailed

analyzed in the next section. Hadoop is written in Java which

contains around 3,00,000 lines of code (LOC). The reason

behind such a huge code is that it contains the entire

complexity of cluster management, redundancy in HDFS,

consistency and reliability in case of node failure is included

in the framework itself. Hadoop is popular for processing

huge data sets, especially in social networking, targeted

advertisements, internet log processing etc.

MEDHA - 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

31

Figure 1: Hadoop Distributed File System

2.1 HDFS
HDFS is designed to be a filesystem to store large amounts of

data across a distributed system of computers that gives a fast

access rate and reliability for very large datasets. As

mentioned earlier also it is written in Java which is used to

communicate with other instances that are on the networked

of HDFS through RPC to store blocks of data across cluster. It

has a slower access rate and higher latency because it focuses

more on delivering high amount of data between physical

machines [12]. It is designed to work with files which can

vary from gigabytes to hundreds or thousands of Petabytes.

As shown in the Figure 1, HDFS contains three important

software parts. The first is the NameNode which is also called

as “master” of the filesystem. The main function of this is to

keep records of where and how files are stored in the system

i.e. it maintains the file system and the tree index of all files

and directories. HDFS stores files in its filesystem in the form

of blocks. It splits the original data in blocks of any

configurable size (defined in the NameNode configuration)

but the default size is 64 MB. This is compared to a normal

disk block which is 512 bytes [12]. After splitting the datafile

in different blocks, each block is sent to different DataNodes

or rather we can say to multiple DataNodes which will

provide redundancy and higher throughput when another

system requests access to the file. The DataNode is the second

part of HDFS which is also called as “slave” in the system.

The metadata about each file like which original datafile it

belongs, its relation to other blocks is stored on-disk in

NameNode. It is stored in form of two files: namespace image

and edit log. The perfect block locations on the DataNodes are

always rebuild on startup by communicating with DataNodes

[12].

Since NameNode keeps tracks of tree structure and metadata

of the files of the whole filesystem it is also a single point of

failure. If it breaks down the whole HDFS will be invalid even

though if the DataNodes are present since DataNodes doesn’t

have any information about the structure. The third part

Secondary NameNode also cannot work without NameNode.

The function of the secondary NameNode is only responsible

for validating the namespace of NameNode. The NameNode

and secondary NameNode should be different machines (and

separated from DataNodes) on a large system [12].

By default the NameNode keep three copies of each block on

different DataNodes to provide both redundancy and more

throughputs for the client. This value can be increased or

decreased but keeping minimum three is consider to be good.

Also to provide better redundancy and better throughput

HDFS is rack-aware. It wants to know which rack each node

resides in and how “far” in terms of bandwidth which can help

the NameNode to keep more copies of blocks on one rack for

faster throughput. Also the additional copies are always kept

on other rack to provide better redundancy.

When a user wants to read any file from the HDFS it first

contacts the NameNode. Then the NameNode provides the

blocks locations and inform to clients. This forces the client to

read and merge the blocks into one file from DataNodes.

However this task is not as easy to read from an operating

system since there are bindings to HTTP and FTP.

2.2 MapReduce
MapReduce is a programming model for processing and

analyzing very large datasets in a fast, scalable and distributed

way using distributed computing on a computer cluster. It is

invented and patented by Google. MapReduce has the

advantage of handling large data sets, so it is suitable for

cloud computing platform [13]. The word MapReduce is

derives from two typical functions used within functional

programming, the Map and Reduce functions [14]. Through a

license from Google, Hadoop has taken this framework and

implemented it to run on top of cluster of computers. For

utilizing the combined resources of a large cluster of any

commodity hardware Hadoop MapReduce is mainly used.

HDFS is a file system where it relies although it supports few

more distributed filesystem.

MapReduce main job is to divide the data into many logic

blocks such that the programs can process on distributed

clusters in parallel. Its input data set is a set of key/value pairs

and also output is same. The keys and values can be user-

implemented, but they are required to be serialized since they

are communicated across the network. Keys and values can be

of any data types. Users will work into two blocks: Map and

Reduce. The phases of whole process including sub-phases

are explained in detailed later. It is important to know that

while the different phases in a MapReduce job is considered

to be sequential, they are working in parallel as much as

possible. Figure 2 shows the MapReduce data process model.

MEDHA - 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

32

Figure 2: MapReduce phases in Hadoop MapReduce

The MapReduce framework contains the following phases:

2.2.1 InputFormat
This is the input phase which takes the input from user of

some sort and splits it into InputSplits phase. The input file is

normally a file on DFS, tables from a DBMS or anything the

programmer wants to read.

2.2.2 InputSplits

This phase is always dependent on what the input is. It is a

subset data and the splits are created in such a way that one

InputSplit is sent to each Map task.

2.2.3 MAP
User defined Map function takes an input in the form of key-

value pair generated through InputSplit. Each node runs one

map task in parallel with each other. MapReduce library put

all values with the same intermediate key together, then pass

them to Reduce function. The Map function is expressed as :

2.2.4 Combine
This is an optional phase that is run after each Map task on

each node to mini-reduce all keys that are same generated

from the current Map task.

2.2.5 Shuffle
This phase occurs when all nodes have completed their own

task. In this data is communicated with each node. Key-value

pairs are passed to append, sort and partition it.

2.2.6 Shuffle-append
This phase is automatically carried out by the framework. This

is phase to just put all the data together.

2.2.7 Shuffle-sort
The sort phase is carried out to sort the keys either in a default

way or in a programmer-implemented way.

2.2.8 Shuffle-Partition
This is the last phase of shuffle phase. This phase can be

handled in two ways- default way or programmer-

implemented way. This is used to calculate how the combined

data should be split out to pass to the reducers. Passing equal

amount of data to each reducer always provides the better

performance.

2.2.9 Reduce
Reduce function accepts an intermediate key and related

value. It is done by taking all the key-value pairs with the

same key and performing some kind of reducing on values.

The reducers always have a unique key with them i.e. if a

reducer has one key, no other reducer will receive that key.

The function is expressed as :

2.2.10 Output
One output to storage is generated by each reducer. Normally

the output files are generated in part-files for each reducer

such as part-r-00000, part-r-00001 etc. this can be

programmatically changed by implementing the

OutputFormat.

Normally the output produce by Reduce is in the form of 0 or

1. The value list is controlled based on memory size with the

help of an iterator and reduce function [15].

The working of MapReduce can be explained using a simple

word count example which will illustrate all the important

computing phases. In this example a large document is

scanned and number of particular word occurs is counted. The

whole process is carried out as follows:

1. Firstly the document is divided into many splits. The

input key is considered as the ID of the split and the split

is value corresponding to that key. Finally the document

gets divided into many splits of which each contains

(key, value) pairs.

2. Suppose that we are having m no of Mappers for this

work such that each Mapper contains one input split

based on any of the scheduling policy available. (If the

Mapper consumes its split, it asks for the next split).

Each Mapper process the (key, value) pair by using some

user defined Map function to produce intermediate key

value pairs. Suppose in our case we will consider that the

word ‘Mumbai’ occurs 2 times and ‘Pune’ occurs 3

times. So the output of the Mapper would be as follows:

(Mumbai, 1)

(Mumbai, 1)

(Pune, 1)

MEDHA - 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

33

(Pune, 1)

(Pune, 1)

Here the above format indicates one occurrence of each key

i.e. either Mumbai or Pune.

3. Then the above set of intermediate pairs is then pulled by

the “Reducer” to carry out further work.

4. Then according to a user define function the Reducer

work to combine all the values of above intermediate

key. Thus in above example after processing the set of

intermediate (key, value) pairs the output would be as

follow:

(Mumbai, 2)

(Pune, 3)

5. This is the final output that is written to disk as the final

output of the job which provides the word count of two

different words ‘Mumbai’ and ‘Pune’. We can also

provide more words to carry out this example.

To reduce the network traffic between Mapper and Reducer as

stated above we can always use a Combiner phase.

3. EUCALYPTUS PLATFORM

3.1 Introduction
Eucalyptus is an open-source free cloud management system

that provides the functionality in terms of IaaS deployment

and also can be used as private, hybrid or even public cloud

system with enough hardware. It uses the same API as the

AWS use which enables tools that are originally developed for

AWS to be used with the added benefit of Eucalyptus being

open-source and free. The Eucalyptus Machine Image (EMI)

is the instances running inside Eucalyptus which can be

created or downloaded as pre-packaged version. As soon as it

starts it contacts its different components to determine the

layout and setup of system it controls which are generally

configured by using the configuration files in each of those

components.

As shown in Figure 3, Eucalyptus have the components that

provides same features as Amazon in terms of computation

clouds with different names but with equal functionality and

API [16].

Figure 3: EUCALYPTUS COMPONENTS

3.1.1 Cloud Controller (CLC)
CLC is equivalent to Amazon’s Elastic Compute Cloud and it

is the starting point of the Eucalyptus cloud. The main role of

CLC is to provide the computational power such as CPU and

RAM to the user also it stats stops and controls the instances

in the system. Based on this particular information on the

infrastructure’s load and resource availability, it decides the

available resources so to dispatch the load to the clusters.

Thus we can say that it is the frontend for managing the whole

infrastructure of the cloud. It contains both web service

interface for end users and web interfaces for administrators.

It is also written in Java and it contacts the hypervisors

indirectly through Cluster Controllers (CC) and Node

Controllers (NC).

3.1.2 Cluster Controller (CC)
Cluster can be defined as a collection of machines grouped

together in the same network broadcast domain. CC being the

entry point to the cluster manages the NCs and several

instances running on them. It communicates with CLC and

NC, receives request for deploying instances from CLS and

choose the NC that will be used to deploy. It also controls the

virtual network between instances and collects all the

information on NCs and transfers it to the CLC.

3.1.3 Storage Controller (SC)
The Storage Controller (SC) is responsible for providing fast

dynamic storage devices with low latency and variable storage

size as Elastic Block Storage does in Amazon. It provides

persistent storage for instances on the cluster level in the form

of block level storage volumes. The instances use ATA over

Ethernet or Internet SCSI protocol to mount the virtual storage

devices. The SC is also written in Java.

3.1.4 Walrus Storage Controller (WS3)
Similar to Amazon S3 Walrus is the name of the storage

container that stores data in buckets with same API to read

and write data in a redundant system: put/get storage model to

create and delete buckets, create objects and also put or get

those objects from buckets. The main function of WS3 is to

store the machine images and snapshots. It is written in Java

and is accessible through the same means as S3 i.e. SOAP,

REST or Web Browser.

3.1.5 Node Controller (NC)
Node Controller always runs on each and every node present

on UEC. It controls the instances on the node. It gathers the

data about physical resource availability on the node and their

utilization and data about instances and finally reports to the

Cluster Controller. It also communicates with the OS and the

Hypervisor running on the node, and Cluster Controller.

4. OUR PROPOSED WORK
As we have seen above Hadoop splits any job to the number

of available Mappers and executes them using predefined Map

function. The problem with this scenario that we are

concentrating on is what if the numbers of nodes that are

available are less than the number of Mappers. In this case,

some Mappers have to wait till the other Mappers finish their

own work. But again waiting for such task will decrease the

performance as this will take more time and cost to execute

the task. Also parallelism will also be not maintained. Another

similar scenario can be that if any of the nodes i.e. Mapper or

Reducer fails during execution of a particular task the whole

task of that is restarted again. We also consider one more

scenario where the user wants to get job finishes in less time.

MEDHA - 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

34

In this case also the user has to increase the number of

Mappers and Reducers which will ultimately increase the

number of machines and thus cost.

The only solution that is feasible to this work is to carry out

the whole process of Hadoop on Cloud. We have defined the

open source platform EUCALYPTUS for using the cloud.

This provides the solution to above scenarios. For example

consider the first scenario where the numbers of nodes

available are less than Mappers. In this case, we just have to

deploy a single cloud and increase the number of Node

Controller (NC) to the number of Mappers that are available.

In the next scenario if any of the node fails at a particular state

then that node will be replaced by a new node as soon as it

gets fails. Thus in this case also the performance of the whole

system remains good. In the last scenario also if the user

wants to get its job done more quickly than just have to

increase the number of NC so that the Mappers and Reducers

can carry out their work in parallel. The working all the

different phases of Hadoop knows how to work in parallel so

their working is just maintained by Hadoop framework. The

problem to increase the Node Controller in EUCALYPTUS is

a feature that is available by Cloud Computing so in this case

also the work will gets divide as soon as any new NC is added

into the system.

Thus the above proposed solution is only possible if we use

the Hadoop on the Cloud. We have started on how to integrate

the Hadoop Framework with the EUCALYPTUS cloud.

5. FUTURE WORK
We have proposed the solution about the slaves of the Hadoop

Framework. We are working to above proposed solution. Also

as explained in the Hadoop framework that it is controlled by

a single system which is known as “master”. So the future

work is that whether we can add the “master” node or not

because it can be possible that the “master” node fails due to

some conditions while executing the task. In such a case if the

“master” node fails the whole task gets start from the

beginning by new “master” node. Also the other

implementation of Hadoop such as filesystem that it uses i.e.

HDFS can be added runtime i.e. we can even add any new file

system while executing the job. Also using queues to overlap

the map and shuffling stage seems to be a promising approach

to improve MapReduce performance.

6. CONCLUSION
It is clear that any large-scale system can be simplified if we

built it using the Cloud. In this paper, using MapReduce as an

example we have tried to explained that it is possible to

overcome the limitations of the cloud without decreasing the

performance. We have tried to propose a new fully distributed

architecture of MapReduce programming model by using the

general techniques that can be used for other systems also. In

our model, MapReduce is implemented on the top of Cloud

OS using the open-source platform EUCALYPTUS. This can

be used to carry out the working of MapReduce in a better

way by using the features of Cloud Computing. Even though a

full scale performance evaluation is beyond the scope of this

paper, our preliminary proposed solution indicates that this

can be practically implemented and its performance is better

with that of Hadoop.

7. REFERENCES
[1] Microsoft. Microsoft private cloud.

http://www.microsoft.com/virtualization/en/us/private-

cloud.aspx, 2011. Retrieved 2011-04-26.

[2] VMware. Vmware vcloud.

http://www.microsoft.com/virtualization/en/us/private-

cloud.aspx, 2011. Retrieved 2011-04-26.

[3] Citrix. Citrix open cloud platform.

http://www.citrix.com/English/ps2/products/subfeature.a

sp?contentID=2303748, 2011. Retrieved 2011-04-26.

[4] OpenNebula. Opennebula - the opensource toolkit for

cloud computing. http://opennebula.org/, 2011. Retrieved

2011-04-26.

[5] Cloud.com. The cloud os for the modern datacenter.

http://cloud.com/, 2011. Retrieved 2011-04-26.

[6] G. Orenstein, “Digging Deeper Into Data With Hadoop,”

Available at http://gigaom.com/2009/06/07/digging-

deeper-into-data-with-hadoop, 2009

[7] Jeffrey Dean and Sanjay Ghemawat, "MapReduce:

Simplified Data Processing on Large Clusters",

Symposium on Operating Systems Design and

Implementation, 2004

[8] Hadoop: The Definitive Guide, Tom Wbite, 2010

[9] Hadoop in Action, Chuck Lam, 2010

[10] NCHC Cloud Computing Research Group website,

http://trac.nchc.org.tw/cloud

[11] Daniel Peng and Frank Dabek, "Large-scale Incremental

Processing Using Distributed Transactions and

Notifications", Operating Systems Design and

Implementation, Oct. 2010

[12] T. White. Hadoop - The Defenitive Guide. O'Reilly

Media, 2nd edition, 2010.

[13] Dean J, Ghemawat S. MapReduce: Simplifed Data

Processing on Large Clusters[C]//Proc. of the 6th

Symposium on Operating System Design and

Implementation, San Francisco. 2004.

[14] J Dean and S Ghemawat. Mapreduce: Simplied data

processing on large clusters. In OSDI'04: Sixth

Symposium on Operating System Design and

Implementation. Google Inc., 2004.

[15] ZHENG Xin-jie, ZHU Cheng-rong, XIONG Qi-bang,

“Design and Implementation of Distributed Ray Tracing”

. Computer Engineering. November 2007

[16] Eucaluptys Systems, Inc. Eucalyptus Administration

Guide (2.0), 2010.

