
International Journal of Computer Applications (0975 – 8887)

Innovations and Trends in Computer and Communication Engineering (ITCCE-2014)

21

Review on Strategies for Shared Memory Sparse Matrix-

Vector Multiplication

Komal Deshmukh
Computer Department

MET BKC Adgaon, Nashik,

Savitribai Phule Pune University,
Maharashtra India

M.U. Kharat
Computer Department

MET BKC Adgaon, Nashik,
Savitribai Phule Pune University,

Maharashtra India

ABSTRACT
The sparse matrix is one of the most important data storage

format for large amount of data. Sparse matrix-vector

multiplication (SpMV) is important operation in many

scientific and engineering applications. Many physical

systems produce sparse matrices. Sparse matrix-vector

multiplication can be implemented sequentially and it

includes various methods like one dimensional cache-

oblivious method, this method extended to two dimensional

methods and Hilbert space filling curve. There is limitation of

sequential case as it is not providing efficient result. There

are some problems occur related to sequential case of

multiplication that are less arithmetic intensity, cache

inefficiency and limited memory bandwidth. To avoid such

problem parallel techniques were introduced. It mainly

focuses on high level strategies for efficient performance of

sparse matrix-vector multiplication. High level strategies

include no vector distribution, one dimensional distribution

and two dimensional distributions. This provides high

arithmetic intensity and better performance as compared to

sequential technique on NUMA Architecture.

Keywords
Sparse Matrix-Vector Multiplication (SpMV), Cache-

Oblivious, NUMA architecture

1. INTRODUCTION
The Matrix-Vector product (MV) is a core operation for a

various scientific and engineering applications like image

processing, simulation, electrical and control engineering and

so on. As many of the application store its data in terms of

matrix so it is termed as dense matrix. When the dense matrix

contains many zero element then matrix efficiently

represented using data structure as Sparse Matrix. A matrix in

which number of zero elements is greater than the number of

non-zero element is called sparse matrix. The general

approach of representing matrices in memory uses two-

dimensional arrays. But it may not be suitable for sparse

matrices because its storage includes large zero element

entries. One may increase storage efficiency by storing only

non-zero entries along with its row and column position.

Sparse matrix is nothing but the memory efficient

representation of data as compared to dense matrix [6].

The sparse matrix vector product (SpMV) is preeminent

operation in engineering and scientific application and hence

it has been a subject of profound research. The irregular or

random data accesses involved in SpMV make its

optimization as challenging task. Therefore, tremendous effort

has been devoted to cogitate data formats for representation of

sparse matrix with the goal of magnifying the performance.

There are various iterative solving techniques for sparse linear

system such as Conjugate Gradients (CG) [2], Generalized

Minimal Residual Algorithm for Solving Non-symmetric

Linear Systems (GMRES), BiCGstab [3].

This SpMV is basically done in two ways. It is divided into

two parts, where the first part is on optimizing the sequential

SpMV multiplication. In a world where parallel machines are

increasingly common place, however, a fast method should

also be parallelizable. Thus the second part combines the

insights of fast sequential SpMV multiplication and traditional

distributed SpMV multiplication, to describe parallel

implementations both for distributed-memory and shared-

memory architectures.

1.1 Sparse Matrix Storage Representation
There is several storage formats used for sparse matrices, but

many of them exploit the same basic technique.

Representation of these storage formats encompasses all non-

zero elements of the dense matrix into a real, complex array

and provides subordinate arrays are provided to specify the

locations of the non-zero element.

1.1.1 Coordinate Format (COO)
The coordinate format is one of the most flexible, elementary

and fast format for efficient representation of sparse matrix.

COO format is called as Triplet format which consist of only

non-zero elements and the coordinate position of every non-

zero elements are provided explicitly. Many a commercial

application as well as libraries supports the sparse matrix-

vector multiplication in the COO format. This presentation

consists of triplet that is (values, rows, and column) and a

parameter nz represents number of non-zero elements from

original matrix Z. All three arrays have dimension as nz. The

following triplet (value, row, and column) describes non-zero

elements in matrix Z.

values -The array which consist of non-zero elements

of original matrix Z in random order.

rows - This array consist of index for all non-zero elements

available in original matrix Z.

columns - This array has column index for all non-zero

elements available in original matrix Z.

Storage requirement for COO format is O(3nz).

1.1.2 Compressed Row Storage (CRS)
This format is basically row oriented format. Compressed

sparse row (CRS) is represented by three arrays:

the values, index and row-pointer. The following array

describes values, index, and row-pointer positions of non-zero

element. Value array is same as arrays of COO format.

index – index array maintain the column position for each

non-zero number.

International Journal of Computer Applications (0975 – 8887)

Innovations and Trends in Computer and Communication Engineering (ITCCE-2014)

22

row-pointer –This provides the pointer according to row for

each non-zero element.

Space requirement for CRS format is O(2nz+Ѳ) where Ѳ

represents space required for row-pointer. This format can

also extend to Incremental Compressed Row Storage (ICRS).

It contains only one extra array as i*nz+j where i and j are

row and column position respectively and nz is number of

non-zero element.

1.1.3 Compressed Column Storage (CCS)
The compressed column Storage (CCS) is analogous to the

CSR format, but the column pointer are used instead the row-

pointer. In other words, both format as CCS and CRS are

same for transposed matrix. The CCS format includes three

arrays: the values, index and column-pointer. The following

array describes values, index, and column-pointer. value array

is same as arrays of COO format.

index – index array maintain the row position for each non-

zero number.

Column-pointer –This provides the pointer according to

column for each non-zero element.

Space requirement for CRS format is O(2nz+Ѳ) where Ѳ

represents space required for column-pointer. This format can

also extend to Incremental Compressed Column Storage

(ICCS). It contains only one extra array as i*nz+j where i and

j are row and column position respectively and nz is non-zero

element in matrix.

1.2 Cache Behavior with SpMV

Multiplication
During SpMV multiplication data access is random and it

reduces efficiency. When the requested data is available in

cache then Cache hit, otherwise Cache miss occurs. For

efficient SPMV multiplication it is important to increase

cache hit rate as well as increase bandwidth between cache

and main memory. In the today era, many architecture

supports multiple caches placed between main memory and

processor. Cache which close to processor are lower level

cache and are faster as compared to higher level cache [1].

There are many processor or core are available in parallel

shared memory architecture. These cores may share higher

level cache or used their own individual cache.

1.3 Parallelization for SpMV

Multiplication
For parallelization of SpMV multiplication, the available non-

zero elements of any sparse matrix are evenly split into

number of core which are available, consider p are number of

available core and nz are total non-zero element then splitting

is done by nz/p. Then each core has its own set of non-zero

element, on which they performed sequential SpMV. Finally

it combined the result of all core after multiplication.

While dealing with parallelization, when optimization is

depend upon the computer hardware then it is called as cache-

aware technique. But when focus is on attending good

performance rather than computer architecture, it is nothing

but the cache-oblivious technique.

2. RELATED WORK
There are various techniques are available for sparse matrix

vector multiplication from Sequential technique to Parallel

high level strategies.

2.1 Sequential Methods
One of the sequential methods is nothing but Hypergraph

partitioning. As the aim of SpMV multiplication is to increase

cache hit rate. So it requires permutation of rows and column

of matrix. This permutation done by using row-net and

column-nets. In the hypergraph input matrix is represented

using (V, N) where V is all non-zero elements in matrix and N

is set of all nets. As Shown in Fig 1, in partitioning V is

divided into Vleft and Vright. Then all row net ni are placed

in Nrow (minus) if ni ∩ Vright=NULL, if ni ∩ Vleft = NULL

then placed it is in Nrow(plus), otherwise in Nrow(const).

Same procedure repeated for column. In this way it create

Separated Block diagonal (SBD). Finally apply Sequential

SpMV multiplication on each block [6].

Another technique is nothing but the reordering strategy

which mainly focuses on ordering of non- zero element. There

is freedom of ordering of non-zero element so any element

can be access from input and output vector.

Fig 1: Separated Block Diagonal form of Sparse Matrix

2.2 Parallel Methods
Basically the efficiency of SpMV computation kernel is not

only depends on adaptation of matrix for SpMV but also

depends upon the storage scheme of non-zero element. One of

the parallel techniques is nothing but the parallel shared

memory SpMV multiplication which is derived by Yzelman

and Bisseling. Parallel shared memory architecture consists

of number of cores and each processor has an active part in

SpMV multiplication. This techniques is divided into three

stages that are-

1. Firstly each processor read elements from input

vector consider as x and copies these elements into

local buffer of core xs.

2. Above step is followed by ICRS based

multiplication on each row i. In this case if i is local

to the core s then it directly writes its contribution to

local output vector ys otherwise it has to send its

contribution to remote process.

3. The last step is Global Synchronization in which it

ensures all the processes are done with sending their

contribution. And finally it gathers all the

contribution to main output vector y.

Another parallel technique of shared memory SpMV

multiplication is Morton Curve. It uses quad tree to store

sparse matrix. In quad tree root node is representing as full

matrix, it is splitted into four internal nodes which represents

rectangular sub matrices. Each sub matrix is corresponds to

child of internal node. Basically on the quad tree two

concurrent threads are run, in which one thread traverse node

corresponds to top rows of sub matrices while other thread

traverse the bottom rows of sub matrices.

International Journal of Computer Applications (0975 – 8887)

Innovations and Trends in Computer and Communication Engineering (ITCCE-2014)

23

3. HIGH-LEVEL STRATEGIES
As there are various SpMV multiplication strategies starting

from sequential to parallel. And then it is followed by High-

Level strategies. These are starts with simple distribution of

matrix but not take input and output vector into account for

distribution. It is followed by One-Dimensional (1D) strategy

and the Two-Dimensional strategy (2D).

3.1 No Vector Distribution
In this scheme there is simple distribution of matrix and it

input and output vector does not taken into account for

distribution. Input and Output vectors are stored in an

interleaved fashion so that any core can request any element

from input vector at random for multiplication. After

multiplication each core writes its output of multiplication

into local buffer of output vector. And finally postprocessing

step combines all local result. In this scheme Cache-Oblivious

Hilbert Curve (CO-H+) is used which totally depend upon the

non-zero structure of input matrix [1].

3.2 One-Dimensional Distribution
This high level strategy includes the distribution of matrix and

input vector x, but output vector does not taken into for

distribution. Input vector stored in an interleaved fashion so

that any core can request any element from input vector at

random for multiplication. In this strategy each core has its

own local input element for SpMV multiplication [1].

3.3 Two-Dimensional Distribution
One-Dimensional Distribution is followed by Two-

Dimensional Distribution in which matrix and both input and

output vector gets distributed. So that each processor has own

set of input vector element and output vector to store the

result of multiplication [1].

4. USE OF GPU FOR SpMV

MULTIPLICATION
Different techniques of SpMV multiplication are mainly

based on shared memory parallel architecture. Shared memory

architecture has large number of core for parallelization.

Graphical Processing Unit (GPU) is one in which many cores

are available for execution. So in case of SpMV

multiplication, requirement of number of core is fulfill by

GPU.

Using CPU with GPU together accelerate various scientific,

engineering and enterprise application. Basically CPU

consists of very few cores as compared to GPU. GPU consist

of thousands of small, efficient core design for handling the

multiple tasks simultaneously. Numbers of available core are

varying in GPU according to capacity and need. There are

different types of memory available on GPU that are Shared

memory, Texture memory, Global memory, Register memory

and Constant memory. Depends upon the need different

memories are available.

GPU is important for execution of shared memory parallel

architecture SpMV multiplication.

5. CONCLUSION
Many scientific and engineering applications store their data

in matrix format and dense matrices are efficiently

represented using sparse matrix. Sparse Matrix-Vector

multiplication is important operation in many applications like

web crawling, robot control application, electrical engineering

application, and term to index documenting etc. SpMV

multiplication uses various storage schemes like COO, CRS,

CCS, ICRS etc. The main aim of SpMV multiplication is to

increase the cache hit rate and increase main memory to

processor bandwidth.

A higher-level strategy includes No vector distribution, One-

Dimensional Distribution and Two-Dimensional Distribution.

Higher-level strategies provide high arithmetic intensity,

increase cache hit rate and increase bandwidth ratio. This

provides efficient performance as compared to sequential

techniques and it is decided by calculating speed up for SpMV

that is, ratio of time required by sequential SpMV

multiplication to time required by Parallel SpMV

multiplication.

6. ACKNOWLEDGMENTS
The author wish to thank MET’s Institute of Engineering

Bhujbal Knowledge City Nasik, HOD computer department,

guide and parents for supporting and motivating for this work

because without their blessing this was not possible.

7. REFERENCES
[1] Albert-Jan Nicholas Yzelman and Dirk Roose, “High-

Level Strategies for Parallel Shared-Memory Sparse

Matrix-Vector Multiplication,” IEEE Transaction on

parallel and distributed systems, vol. 25, no. 1, Jan 2014.

[2] M.R. Hestenes and E. Stiefel, “Methods of

ConjugateGradients for Solving Linear Systems,” J.

Research Nat’lBureau of Standards, vol. 49, pp. 409-436,

1952.

[3] H. van der Vorst, “BiCGSTAB: A Fast and Smoothly

Converging Variant of Bi-CG for the Solution of

Nonsymmetric Linear Systems,” SIAM J. Scientific and

Statistical Computation, vol. 13, pp. 631-644, 1992.

[4] Y. Saad and M. Schultz, “GMRES: A Generalized

Minimal Residual Algorithm for Solving Nonsymmetric

Linear Systems,” SIAM J. Scientific and Statistical

Computation, vol. 7, pp. 856-869,1986.

[5] P. Sonneveld and M.B. van Gijzen, “IDR: A Family of

Simple and Fast Algorithms for Solving Large Non

symmetric Linear Systems,” SIAM J. Scientific

Computing, vol. 31, no. 2, pp. 1035- 1062, 2008.

[6] A.N. Yzelman and R.H. Bisseling, “Cache-Oblivious

Sparse Matrix-Vector Multiplication by Using Sparse

Matrix Partitioning Methods,” SIAM J. Scientific

Computing, vol. 31, no. 4, pp. 3128- 3154, 2009.

[7] A.N. Yzelman, “Fast Sparse Matrix-Vector

Multiplication by Partitioning and Reordering,” PhD

dissertation, Utrecht Univ., 2011.

[8] A. Buluc¸, S. Williams, L. Oliker, and J. Demmel,

“Reduced- Bandwidth Multithreaded Algorithms for

Sparse Matrix-Vector Multiplication,” Proc. IEEE Int’l

Parallel and Distributed Processing Symp. (IPDPS ’11),

pp. 721- 733, 2011.

