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ABSTRACT 
The sparse matrix is one of the most important data storage 

format for large amount of data. Sparse matrix-vector 

multiplication (SpMV) is important operation in many 

scientific and engineering applications. Many physical 

systems produce sparse matrices. Sparse matrix-vector 

multiplication can be implemented sequentially and it 

includes various methods like one dimensional cache-

oblivious method, this method extended to two dimensional 

methods and Hilbert space filling curve. There is limitation of 

sequential case as it is not providing efficient result.  There 

are some problems occur related to sequential case of 

multiplication that are less arithmetic intensity, cache 

inefficiency and limited memory bandwidth. To avoid such 

problem parallel techniques were introduced. It mainly 

focuses on high level strategies for efficient performance of 

sparse matrix-vector multiplication. High level strategies 

include no vector distribution, one dimensional distribution 

and two dimensional distributions. This provides high 

arithmetic intensity and better performance as compared to 

sequential technique on NUMA Architecture. 
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1. INTRODUCTION 
The Matrix-Vector product (MV) is a core operation for a 

various scientific and engineering applications like image 

processing, simulation, electrical and control engineering and 

so on. As many of the application store its data in terms of 

matrix so it is termed as dense matrix. When the dense matrix 

contains many zero element then matrix efficiently 

represented using data structure as Sparse Matrix. A matrix in 

which number of zero elements is greater than the number of 

non-zero element is called sparse matrix. The general 

approach of representing matrices in memory uses two-

dimensional arrays. But it may not be suitable for sparse 

matrices because its storage includes large zero element 

entries. One may increase storage efficiency by storing only 

non-zero entries along with its row and column position. 

Sparse matrix is nothing but the memory efficient 

representation of data as compared to dense matrix [6]. 

The sparse matrix vector product (SpMV) is preeminent 

operation in engineering and scientific application and hence 

it has been a subject of profound research. The irregular or 

random data accesses involved in SpMV make its 

optimization as challenging task. Therefore, tremendous effort 

has been devoted to cogitate data formats for representation of 

sparse matrix with the goal of magnifying the performance. 

There are various iterative solving techniques for sparse linear 

system such as Conjugate Gradients (CG) [2], Generalized 

Minimal Residual Algorithm for Solving Non-symmetric 

Linear Systems (GMRES), BiCGstab [3]. 

This SpMV is basically done in two ways. It is divided into 

two parts, where the first part is on optimizing the sequential 

SpMV multiplication. In a world where parallel machines are 

increasingly common place, however, a fast method should 

also be parallelizable. Thus the second part combines the 

insights of fast sequential SpMV multiplication and traditional 

distributed SpMV multiplication, to describe parallel 

implementations both for distributed-memory and shared-

memory architectures. 

1.1 Sparse Matrix Storage Representation 
There is several storage formats used for sparse matrices, but 

many of them exploit the same basic technique. 

Representation of these storage formats encompasses all non-

zero elements of the dense matrix into a real, complex array 

and provides subordinate arrays are provided to specify the 

locations of the non-zero element. 

1.1.1 Coordinate Format (COO) 
The coordinate format is one of the most flexible, elementary 

and fast format for efficient representation of sparse matrix. 

COO format is called as Triplet format which consist of only 

non-zero elements and the coordinate position of every non-

zero elements are provided explicitly. Many a commercial 

application as well as libraries supports the sparse matrix-

vector multiplication in the COO format. This presentation 

consists of triplet that is (values, rows, and column) and a 

parameter nz represents number of non-zero elements from 

original matrix Z. All three arrays have dimension as nz. The 

following triplet (value, row, and column) describes non-zero 

elements in matrix Z.  

values -The array which consist of non-zero elements 

of original matrix Z in  random order. 

rows - This array consist of index for all non-zero elements 

available in original matrix Z.  

columns - This array has column index for all non-zero 

elements available in original matrix Z. 

Storage requirement for COO format is O(3nz). 

1.1.2 Compressed Row Storage (CRS) 
This format is basically row oriented format. Compressed 

sparse row (CRS) is represented by three arrays: 

the values, index and row-pointer. The following array 

describes values, index, and row-pointer positions of non-zero 

element. Value array is same as arrays of COO format. 

index – index array maintain the column position for each 

non-zero number. 
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row-pointer –This provides the pointer according to row for 

each non-zero element. 

Space requirement for CRS format is O(2nz+Ѳ) where Ѳ 

represents space required for row-pointer. This format can 

also extend to Incremental Compressed Row Storage (ICRS). 

It contains only one extra array as i*nz+j where i and j are 

row and column position respectively and nz is number of 

non-zero element. 

1.1.3 Compressed Column Storage (CCS) 
The compressed column Storage (CCS) is analogous to the 

CSR format, but the column pointer are used instead the row-

pointer. In other words, both format as CCS and CRS are 

same for transposed matrix. The CCS format includes three 

arrays: the values, index and column-pointer. The following 

array describes values, index, and column-pointer. value array 

is same as arrays of COO format. 

index – index array maintain the row position for each non-

zero number. 

Column-pointer –This provides the pointer according to 

column for each non-zero element. 

Space requirement for CRS format is O(2nz+Ѳ) where Ѳ 

represents space required for column-pointer. This format can 

also extend to Incremental Compressed Column Storage 

(ICCS). It contains only one extra array as i*nz+j where i and 

j are row and column position respectively and nz is non-zero 

element in matrix. 

1.2 Cache Behavior with SpMV               

Multiplication 
During SpMV multiplication data access is random and it 

reduces efficiency. When the requested data is available in 

cache then Cache hit, otherwise Cache miss occurs. For 

efficient SPMV multiplication it is important to increase 

cache hit rate as well as increase bandwidth between cache 

and main memory. In the today era, many architecture 

supports multiple caches placed between main memory and 

processor. Cache which close to processor are lower level 

cache and are faster as compared to higher level cache [1]. 

There are many processor or core are available in parallel 

shared memory architecture. These cores may share higher 

level cache or used their own individual cache. 

1.3 Parallelization for SpMV 

Multiplication  
For parallelization of SpMV multiplication, the available non-

zero elements of any sparse matrix  are evenly split into 

number of core which are available, consider  p are number of 

available core and nz are total non-zero element then splitting 

is done by nz/p. Then each core has its own set of non-zero 

element, on which they performed sequential SpMV. Finally 

it combined the result of all core after multiplication. 

While dealing with parallelization, when optimization is 

depend upon the computer hardware then it is called as cache-

aware technique. But when focus is on attending good 

performance rather than computer architecture, it is nothing 

but the cache-oblivious technique. 

2. RELATED WORK 
There are various techniques are available for sparse matrix 

vector multiplication from Sequential technique to Parallel 

high level strategies. 

2.1 Sequential Methods 
One of the sequential methods is nothing but Hypergraph 

partitioning. As the aim of SpMV multiplication is to increase 

cache hit rate. So it requires permutation of rows and column 

of matrix. This permutation done by using row-net and 

column-nets. In the hypergraph input matrix is represented 

using (V, N) where V is all non-zero elements in matrix and N 

is set of all nets. As Shown in Fig 1, in partitioning V is 

divided into Vleft and Vright.  Then all row net ni are placed 

in Nrow (minus) if ni ∩ Vright=NULL, if ni ∩ Vleft = NULL 

then placed it is in Nrow(plus), otherwise in Nrow(const). 

Same procedure repeated for column. In this way it create 

Separated Block diagonal (SBD). Finally apply Sequential 

SpMV multiplication on each block [6]. 

Another technique is nothing but the reordering strategy 

which mainly focuses on ordering of non- zero element. There 

is freedom of ordering of non-zero element so any element 

can be access from input and output vector. 

 

Fig 1: Separated Block Diagonal form of Sparse Matrix  

2.2 Parallel Methods 
Basically the efficiency of SpMV computation kernel is not 

only depends on adaptation of matrix for SpMV but also 

depends upon the storage scheme of non-zero element. One of 

the parallel techniques is nothing but the parallel shared 

memory SpMV multiplication which is derived by Yzelman 

and Bisseling.  Parallel shared memory architecture consists 

of number of cores and each processor has an active part in 

SpMV multiplication. This techniques is divided into three 

stages that are- 

1. Firstly each processor read elements from input 

vector consider as x and copies these elements into 

local buffer of core  xs. 

2. Above step is followed by ICRS based 

multiplication on each row i. In this case if i is local 

to the core s then it directly writes its contribution to 

local output vector ys otherwise it has to send its 

contribution to remote process. 

3. The last step is Global Synchronization in which it 

ensures all the processes are done with sending their 

contribution. And finally it gathers all the 

contribution to main output vector y. 

Another parallel technique of shared memory SpMV 

multiplication is Morton Curve. It uses quad tree to store 

sparse matrix. In quad tree root node is representing as full 

matrix, it is splitted into four internal nodes which represents 

rectangular sub matrices. Each sub matrix is corresponds to 

child of internal node. Basically on the quad tree two 

concurrent threads are run, in which one thread traverse node 

corresponds to top rows of sub matrices while other thread 

traverse the bottom rows of sub matrices. 
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3. HIGH-LEVEL STRATEGIES 
As there are various SpMV multiplication strategies starting 

from sequential to parallel. And then it is followed by High-

Level strategies. These are starts with simple distribution of 

matrix but not take input and output vector into account for 

distribution. It is followed by One-Dimensional (1D) strategy 

and the Two-Dimensional strategy (2D). 

3.1 No Vector Distribution 
In this scheme there is simple distribution of matrix and it 

input and output vector does not taken into account for 

distribution. Input and Output vectors are stored in an 

interleaved fashion so that any core can request any element 

from input vector at random for multiplication. After 

multiplication each core writes its output of multiplication 

into local buffer of output vector. And finally postprocessing 

step combines all local result. In this scheme Cache-Oblivious 

Hilbert Curve (CO-H+) is used which totally depend upon the 

non-zero structure of input matrix [1]. 

3.2 One-Dimensional Distribution 
This high level strategy includes the distribution of matrix and 

input vector x, but output vector does not taken into for 

distribution. Input vector stored in an interleaved fashion so 

that any core can request any element from input vector at 

random for multiplication. In this strategy each core has its 

own local input element for SpMV multiplication [1]. 

3.3 Two-Dimensional Distribution 
One-Dimensional Distribution is followed by Two-

Dimensional Distribution in which matrix and both input and 

output vector gets distributed. So that each processor has own 

set of input vector element and output vector to store the 

result of multiplication [1]. 

4. USE OF GPU FOR SpMV 

MULTIPLICATION 
Different techniques of SpMV multiplication are mainly 

based on shared memory parallel architecture. Shared memory 

architecture has large number of core for parallelization. 

Graphical Processing Unit (GPU) is one in which many cores 

are available for execution. So in case of SpMV 

multiplication, requirement of number of core is fulfill by 

GPU. 

Using CPU with GPU together accelerate various scientific, 

engineering and enterprise application. Basically CPU 

consists of very few cores as compared to GPU. GPU consist 

of thousands of small, efficient core design for handling the 

multiple tasks simultaneously. Numbers of available core are 

varying in GPU according to capacity and need. There are 

different types of memory available on GPU that are Shared 

memory, Texture memory, Global memory, Register memory 

and Constant memory. Depends upon the need different 

memories are available. 

GPU is important for execution of shared memory parallel 

architecture SpMV multiplication. 

5. CONCLUSION 
Many scientific and engineering applications store their data 

in matrix format and dense matrices are efficiently 

represented using sparse matrix. Sparse Matrix-Vector 

multiplication is important operation in many applications like 

web crawling, robot control application, electrical engineering 

application, and term to index documenting etc. SpMV 

multiplication uses various storage schemes like COO, CRS, 

CCS, ICRS etc. The main aim of SpMV multiplication is to 

increase the cache hit rate and increase main memory to 

processor bandwidth.  

A higher-level strategy includes No vector distribution, One-

Dimensional Distribution and Two-Dimensional Distribution. 

Higher-level strategies provide high arithmetic intensity, 

increase cache hit rate and increase bandwidth ratio. This 

provides efficient performance as compared to sequential 

techniques and it is decided by calculating speed up for SpMV 

that is, ratio of time required by sequential SpMV 

multiplication to time required by Parallel SpMV 

multiplication. 
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