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ABSTRACT 

The goal of the data mining process is to extract information 

from various data sources. Different sources can provide 

documents that contain data with different structure may be 

considered as representing the same conceptual information. 

Solution to this is duplication detection. Duplicate detection is 

detection of same real world entity in the data sources. 

Duplicate detection is a necessary task in data cleansing. 

Various algorithms are proposed for detection of duplicates in 

relational data, but very few solutions are focused on 

hierarchical data like XML. Duplicate Detection exactly 

identifies whether the data is duplicated or not. A peculiar 

method XMLDup is introduced for duplicate detection in 

XML data.  XMLDup uses Bayesian network to evaluate 

probability of two XML elements being duplicates. It 

considers not only the content within the elements but also the 

way that content is structured. To improve the run time 

efficiency of network evaluation, a lossless pruning strategy is 

used. The algorithm achieves high accuracy and recall score 

in several data sets. The XMLDup perform state-of-the-art in 

duplicate detection in terms of both effectiveness and 

efficiency. 

Keywords 
Duplicate detection, XML, Bayesian networks, data cleaning, 

and optimization. 

1. INTRODUCTION 
XML is widely used for data exchange between networks and 

it is also used for uploading data on web. It has ability to 

represent data from wide variety of sources. XML data have 

vital advantage over a relational database, as it acts as a 

communication medium between different applications. Most 

of the time XML documents from different sources may 

contain errors and inconsistencies. It is important to ensure 

quality of data uploaded on web. But quality of data can be 

compromised due to introduction of different types of errors, 

like fuzzy duplicates[1]. Duplicates are multiple 

representations of same real world entities. Errors are 

introduced due to typos, misspelling and different 

representation format. Duplicate data is one of the biggest 

problems in any data analyst’s life. Duplicate detection has 

practical relevance in many applications, including data 

cleaning, data integration. Identification of duplicates has 

become important task as duplicates are not exactly equal. 

Data may be represented in various formats. It is essential to 

use a correct matching strategy for identifying if they refer to 

the same real world entity or not.  

Duplicate detection has been studied extensively for relational 

data stored in a single table. Algorithms performing duplicate 

detection in a single table generally compare based on 

attribute values. However, data usually comes in more 

complex structures. In relational structure the tuples are 

compared and their similarity scores are computed based on 

their attribute values[8]. The methods devised for duplicate 

detection in a single relation does not directly apply to XML 

data, due to differences between the two data models [5]. The 

hierarchical relationships in XML provide useful additional 

information that helps improve both runtime and quality of 

duplicate detection. The goal of duplicate detection is to 

detect that XML objects are duplicates, despite the differences 

in the data.The problem as duplicate detection in hierarchical 

data is discussed. 

Consider the two XML elements depicted as trees in Fig. 1. 

Both represent movie objects and are labeled mov. These 

elements have two attributes, namely the year and title. They 

nest further XML elements representing director(dir) and 

casts (cast). A casts consists of several actor or actresses (act), 

represented as children XML elements of cast. Leaf elements 

have a text node which stores the actual data. For instance, 

year has a text node containing the string “2006” as its value. 

 

Fig 1: Two XML trees that represent the similar movie. 

In this example, the aim of duplicate detection is to detect that 

both movies are duplicates, despite the differences in the data. 

To do this, comparisonof the corresponding leaf node values 

of both objects is done. The hierarchical organization of XML 

data helps in detecting duplicate movelements, since 

descendant elements can be detected to be similar, which 

increases the similarity of the ancestors, and so on in a top-

down fashion. 

2. RELATED WORK 
In this section various algorithms and techniques which were 

proposed for duplicate detection is explained.  

R. Ananthakrishna, S. Chaudhuri, and V. Ganti, developed an 

algorithm for eliminating duplicates in dimensional tables in a 

data warehouse, which are usually associated with hierarchies.  

Hierarchies to develop a high quality, scalable duplicate 

elimination algorithm have been exploited, and evaluation is 

done on real datasets from an operational data warehouse [3]. 

Guha et al., proposed a novel approach to perform 

approximate joins in XML databases. The main goal was how 
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to efficiently join two sets of similar elements. Thus, focused 

was on an efficient implementation of a tree edit distance[2]. 

M. Weis et.al proposed Dogmatix framework which aims at 

both efficiency and effectiveness in duplicate detection [5]. 

The framework consists of three main steps. 1]candidate 

definition; 2]duplicate definition, which provides the 

definitions necessary for duplicate detection (i.e., the set of 

object representations to compare and the duplicate classifier 

to use) and 3] duplicate detection, which includes the actual 

algorithm, an extension to XML data [3].In this framework, 

XML elements based not only on their direct data values, but 

also on the similarity of their parents, children, structure, etc. 

Milano et al. propose a distance measure between two XML 

object representations that is defined based on the concept of 

overlays [4]. An overlay between two XML trees U and V is a 

mapping between their nodes, such that a node uϵU is mapped 

to a single node vϵV if and only if, they have the same path 

from the root. This measure is then used to perform a pairwise 

comparison between all candidates. If the distance measure 

determines that two XML candidates are closer than a given 

threshold, the pair is classified as a duplicate. Identification of 

the object is difficult for XML data because of its structural 

pliability. For approximate comparisons among XML trees, 

tree edit distances have been used. However, such distances 

don’t consider the semantics implicit in XML data structure, 

and their use is computationally infeasible for unordered 

data.A new distance for XML data called as structure aware 

XML distance is defined, which solves the problems, together 

with a polynomial-time algorithm to calculate it. 

3. PROPOSED METHOD 
For hierarchical data, a probabilistic duplicate detection 

algorithm called XMLDup is proposed. For duplicate 

detection, a Bayesian Network model is constructed, and this 

model is used to compute the similarity between XML object 

representations. Given this similarity, two XML objects are as 

duplicates if it is above a predefined threshold [7].  

A major result in that XMLDup exceed the performance of 

existing algorithm more efficiently for XML duplicate 

detection. A schema mapping step has preceded duplicate 

detection is assumed, so that all XML elements compared 

comply with the same schema. It provides a more extensive 

evaluation of algorithms than in previous work. A distance 

measure between two XML object representations that is 

defined based on the concept of overlays is more effective 

algorithm. 

3.1 Construction of Bayesian Network 
Bayesian Networks is a directed acyclic graph, where the 

nodes represent random variables and the edges represent 

dependencies between those variables [6].  

3.1.1 Bayesian Network structure 
A proposed approach for XML duplicate detection is based on 

one basic assumption: The fact that two XML nodes are 

duplicates depends only on the fact that their values are 

duplicates and that their children nodes are duplicates. Thus, 

we say that two XML trees are duplicates if their root nodes 

are duplicates. To illustrate this idea, consider the goal of 

detecting that both movies represented in Fig.1.are duplicates. 

This means that the two movie objects, represented by nodes 

tagged mov, are duplicates depending on whether or not their 

children nodes (tagged dir and cast) and their values for 

attributes year and title are duplicates. Furthermore, the nodes 

tagged dir are duplicates depending on whether or not their 

values are duplicates, and the nodes tagged cast are duplicates 

depending on whether or not their children nodes (act) are 

duplicates. This process goes on recursively until the leaf 

nodes are reached. If we consider trees U and U' of Fig.1, this 

process can be represented by the Bayesian Network of Fig.2. 

Let us first consider the XML nodes tagged mov. As 

illustrated in Fig.2, the BN will have a node labeled mov11 

representing the possibility of node mov1 in the XML tree U 

being a duplicate of node mov1 in the XML tree U'. 

 

Fig 2:    Bayesian Network to compute the similarity of the   

 trees in Fig.1. 

Node mov11 is assigned a binary random variable. This 

variable takes the value1 (active) to represent the fact that the 

XML mov nodes in trees U and U' are duplicates. It takes the 

value 0 (inactive) to represent the fact that the nodes are not 

duplicates. In accord with assumption, the probability of the 

two XML nodes being duplicates depends on 1) whether or 

not their values are duplicates, and 2) whether or not their 

children are duplicates. Thus, node mov11 in the BN has two 

parent nodes, as shown in Fig.2. Node Vmov11 represents the 

possibility of the values in the mov nodes being duplicates. 

Node Cmov11 represents the possibility of the children of the 

mov nodes being duplicates. As before, a binary random 

variable, that can be active or inactive, is assigned to these 

nodes, representing the fact that the values and children nodes 

are duplicates or non duplicates, respectively. It is assumed 

that the probability of the XML node values being duplicates 

depends on each attribute independently. This is represented 

in the network by adding new nodes for the attributes as 

parents of node Vmov11, represented as rectangles in Fig.2. In 

this case, these new nodes represent the possibility of the year 

values in the mov nodes being duplicates and of the title 

values in the mov nodes being duplicates. Similarly, the 

probability of the children of the movnodes being duplicates 

depends on the probability of each pair of children nodes 

being duplicates. Thus, two more nodes are added as parents 

of node Cmov11: node dir11 represents the possibility of node 

dir1 in tree U being a duplicate of the node dir1 in tree U'; 

node cast11 represents the possibility of node cast1 in tree U 

being a duplicate of node cast1 in tree U’. Whole process is 

repeated for these two nodes. However, a slightly different 

procedure is taken when representing multiple nodes of the 

same type, as is the cases for the XML nodes labeled act. In 

this case, the full set of nodes is compared, instead of each 

node independently. Thus, the set of act nodes being duplicate 

depends on each act node in tree U being a duplicate of any 

act node in tree U'. This is represented by nodes act, act1, and 
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act2 in the BN of Fig.2.This approach is not symmetrical, i.e., 

the network obtained for U and U' is not always the same as 

that obtained for U' and U. However, it would be difficult to 

satisfy this feature without a significant decrease in efficiency, 

while we would not expect a high increase in effectiveness. 

3.2 Computing Probabilities 
As a binary random variable is assigned to each node, which 

takes the value 1 to represent the fact that the corresponding 

data in trees U and U' are duplicates, and the value 0 to 

represent the opposite. Thus, to decide if two XML trees are 

duplicates, the algorithm has to compute the probability of the 

root nodes being duplicates. 

3.2.1 Prior Probabilities 
In the network of Fig.2, we need to define the prior 

probabilities of values being duplicates in the context of their 

parent XML node, i.e., P(mov11[year])P(mov11[title]) 

P(dir11[value])and P(actij[value]) . These probabilities can be 

defined based on a similarity function sim( ) between the 

values, normalized to fit between 0 and 1. However, it is 

sometimes not possible, or not efficient, to measure the 

similarity between two attribute values. In this case, we define 

the probability as a small constant ka, named the default 

probability, representing the possibility of any two values 

being duplicates before we observe them. Thus, we define P 

(tij [a]) = sim (vi[a], vj [a]) if the similarity was measured, 

and P (tij [a]) =ka if otherwise, where Vi[a] is the value of 

attribute a of the ith node with tag t in the XML tree. For 

instance, for the name attribute in the mov nodes, we can 

define sim (n1, n2) = 1-ned (n1, n2), where ned( ) is the 

normalized edit distance between the strings. The default 

probability ka can be derived from the distribution of attribute 

values in the database, or simply be set to a small number. 

3.2.2 Conditional Probabilities 
CP1: The probability of the values of the nodes is duplicates, 

given that each single pair of values contains duplicates.  

CP2: The probability of the children nodes is duplicates, given 

that each single pair of children are duplicates. The more child 

nodes in both trees are duplicates, the higher the probability 

that the parent nodes are duplicates.  

CP3: The probability of two nodes is duplicates given that 

their values and their children are duplicates.  

CP4: The probability of two nodes is duplicates given that 

their values and their children are duplicates. 

4. Algorithm for BN Evaluation 
In order to improve the BN evaluation time, a lossless pruning 

strategy is proposed. This strategy is lossless in the sense that 

no duplicate objects are lost. Only object pairs incapable of 

reaching a given duplicate probability threshold are discarded. 

As stated before, network evaluation is performed by doing a 

propagation of the prior probabilities, in a bottom up fashion, 

until reaching the topmost node. The prior probabilities are 

obtained by applying a similarity measure to the pair of values 

represented by the content of the leaf nodes. Computing such 

similarities is the most expensive operation in the network 

evaluation and in the duplicate detection process in general.  

Therefore, the idea behind our pruning proposal lies in 

avoiding the calculation of prior probabilities, unless they are 

strictly necessary. The strategy follows the premise that, 

before comparing two objects, all the similarities are assumed 

to be 1.The idea is to, at every step of the process, maintain an 

upper bound on the final probability value.At each step, 

whenever a new similarity is computed, the final probability is 

estimated taking into consideration the already known 

similarities and the unknown similarities that we assume to be 

1. When we verify that the network root node probability can 

no longer achieve a score higher than the defined duplicate 

threshold, the object pair is discarded and, thus, the remaining 

calculations are avoided. The process is presented in detail in   

Algorithm 1. NetworkPruning(N,T)  

Input: N-node which we intend to compute the probability 

score; T- threshold value below which the XML nodes are 

considered non-duplicates  

Output:Probability scoreof the XML nodes represented by N  

1: Get the ordered list of parents 

2: Set Maximum probability of each parent node as 1 

3: currentScore← 0  

4: for each node n in List do {Compute the duplicate 

probability}  

5: if n is a value node then  

6: For value nodes, compute the similarities 

7: else  

8: Get new threshold 

9: NetworkPruning(n, newThreshold)  

10: end if  

11: parentScore[n] ← score  

12: currentScore ←computeProbability(parentScore)  

13: if currentScore < T then  

14: End network evaluation  

15: end if  

16: end for  

17: return currentScore 

The algorithm takes as input a node N from the BN and a user 

defined threshold T. It starts by gathering a list of all the 

parent nodes of N and assuming that their duplicate 

probability score is 1 .It then proceeds to compute the actual 

probability value of each of the parents of N.If a given parent 

node n is a value node, its probability score is simply the 

similarity of the values it represents. If, on the other hand, n 

also has parent nodes, its probability score depends on the 

scope of its own parents, which is computed recursively 

.However, the algorithm should now be called with a different 

threshold value, that depends on the equation used to combine 

the probabilities for node N (line 8).Once the score for node n 

is computed, the algorithm checks if the total score for N is 

still above T, and decides whether to continue computing or to 

stop the network evaluation.
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5. CONCLUSION 
A new method for XML duplicate detection called XMLDup 

can be used.The probability of two XML objects being 

duplicates is determined. The algorithm uses a Bayesian 

Network. The Bayesian Network model is composed from the 

structure of the objects being compared. In XMLDup the user 

needs to provide the attributes, their respective default 

probability parameter, and a similarity threshold. However, 

the model is also very flexible, allowing the use of different 

similarity measures and different ways of combining 

probabilities. The runtime efficiency of XMLDup is improved 

by using a network pruning strategy. The XMLDup perform 

state-of-the-art in duplicate detection in terms of both 

effectiveness and efficiency.It is intended to extend the BN 

model construction algorithm to compare XML objects with 

different structures and apply machine learning methods to 

derive the conditional probabilities and network structure, 

based on the existing data. The machinelearning and 

optimization algorithm such as bee, artificial immune system 

and BAT algorithm to derive conditional probability values 

can be used in future. 
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