
International Journal of Computer Applications (0975 – 8887)

Innovations and Trends in Computer and Communication Engineering (ITCCE-2014)

1

Review on Duplicate Detection in Hierarchical Data

using Network Pruning Algorithm

Amita Fulsundar
Computer Department,

MET BKC Adgaon, Nashik,SavitribaiPhule Pune University, Maharashtra India.

ABSTRACT

The goal of the data mining process is to extract information

from various data sources. Different sources can provide

documents that contain data with different structure may be

considered as representing the same conceptual information.

Solution to this is duplication detection. Duplicate detection is

detection of same real world entity in the data sources.

Duplicate detection is a necessary task in data cleansing.

Various algorithms are proposed for detection of duplicates in

relational data, but very few solutions are focused on

hierarchical data like XML. Duplicate Detection exactly

identifies whether the data is duplicated or not. A peculiar

method XMLDup is introduced for duplicate detection in

XML data. XMLDup uses Bayesian network to evaluate

probability of two XML elements being duplicates. It

considers not only the content within the elements but also the

way that content is structured. To improve the run time

efficiency of network evaluation, a lossless pruning strategy is

used. The algorithm achieves high accuracy and recall score

in several data sets. The XMLDup perform state-of-the-art in

duplicate detection in terms of both effectiveness and

efficiency.

Keywords
Duplicate detection, XML, Bayesian networks, data cleaning,

and optimization.

1. INTRODUCTION
XML is widely used for data exchange between networks and

it is also used for uploading data on web. It has ability to

represent data from wide variety of sources. XML data have

vital advantage over a relational database, as it acts as a

communication medium between different applications. Most

of the time XML documents from different sources may

contain errors and inconsistencies. It is important to ensure

quality of data uploaded on web. But quality of data can be

compromised due to introduction of different types of errors,

like fuzzy duplicates[1]. Duplicates are multiple

representations of same real world entities. Errors are

introduced due to typos, misspelling and different

representation format. Duplicate data is one of the biggest

problems in any data analyst’s life. Duplicate detection has

practical relevance in many applications, including data

cleaning, data integration. Identification of duplicates has

become important task as duplicates are not exactly equal.

Data may be represented in various formats. It is essential to

use a correct matching strategy for identifying if they refer to

the same real world entity or not.

Duplicate detection has been studied extensively for relational

data stored in a single table. Algorithms performing duplicate

detection in a single table generally compare based on

attribute values. However, data usually comes in more

complex structures. In relational structure the tuples are

compared and their similarity scores are computed based on

their attribute values[8]. The methods devised for duplicate

detection in a single relation does not directly apply to XML

data, due to differences between the two data models [5]. The

hierarchical relationships in XML provide useful additional

information that helps improve both runtime and quality of

duplicate detection. The goal of duplicate detection is to

detect that XML objects are duplicates, despite the differences

in the data.The problem as duplicate detection in hierarchical

data is discussed.

Consider the two XML elements depicted as trees in Fig. 1.

Both represent movie objects and are labeled mov. These

elements have two attributes, namely the year and title. They

nest further XML elements representing director(dir) and

casts (cast). A casts consists of several actor or actresses (act),

represented as children XML elements of cast. Leaf elements

have a text node which stores the actual data. For instance,

year has a text node containing the string “2006” as its value.

Fig 1: Two XML trees that represent the similar movie.

In this example, the aim of duplicate detection is to detect that

both movies are duplicates, despite the differences in the data.

To do this, comparisonof the corresponding leaf node values

of both objects is done. The hierarchical organization of XML

data helps in detecting duplicate movelements, since

descendant elements can be detected to be similar, which

increases the similarity of the ancestors, and so on in a top-

down fashion.

2. RELATED WORK
In this section various algorithms and techniques which were

proposed for duplicate detection is explained.

R. Ananthakrishna, S. Chaudhuri, and V. Ganti, developed an

algorithm for eliminating duplicates in dimensional tables in a

data warehouse, which are usually associated with hierarchies.

Hierarchies to develop a high quality, scalable duplicate

elimination algorithm have been exploited, and evaluation is

done on real datasets from an operational data warehouse [3].

Guha et al., proposed a novel approach to perform

approximate joins in XML databases. The main goal was how

International Journal of Computer Applications (0975 – 8887)

Innovations and Trends in Computer and Communication Engineering (ITCCE-2014)

2

to efficiently join two sets of similar elements. Thus, focused

was on an efficient implementation of a tree edit distance[2].

M. Weis et.al proposed Dogmatix framework which aims at

both efficiency and effectiveness in duplicate detection [5].

The framework consists of three main steps. 1]candidate

definition; 2]duplicate definition, which provides the

definitions necessary for duplicate detection (i.e., the set of

object representations to compare and the duplicate classifier

to use) and 3] duplicate detection, which includes the actual

algorithm, an extension to XML data [3].In this framework,

XML elements based not only on their direct data values, but

also on the similarity of their parents, children, structure, etc.

Milano et al. propose a distance measure between two XML

object representations that is defined based on the concept of

overlays [4]. An overlay between two XML trees U and V is a

mapping between their nodes, such that a node uϵU is mapped

to a single node vϵV if and only if, they have the same path

from the root. This measure is then used to perform a pairwise

comparison between all candidates. If the distance measure

determines that two XML candidates are closer than a given

threshold, the pair is classified as a duplicate. Identification of

the object is difficult for XML data because of its structural

pliability. For approximate comparisons among XML trees,

tree edit distances have been used. However, such distances

don’t consider the semantics implicit in XML data structure,

and their use is computationally infeasible for unordered

data.A new distance for XML data called as structure aware

XML distance is defined, which solves the problems, together

with a polynomial-time algorithm to calculate it.

3. PROPOSED METHOD
For hierarchical data, a probabilistic duplicate detection

algorithm called XMLDup is proposed. For duplicate

detection, a Bayesian Network model is constructed, and this

model is used to compute the similarity between XML object

representations. Given this similarity, two XML objects are as

duplicates if it is above a predefined threshold [7].

A major result in that XMLDup exceed the performance of

existing algorithm more efficiently for XML duplicate

detection. A schema mapping step has preceded duplicate

detection is assumed, so that all XML elements compared

comply with the same schema. It provides a more extensive

evaluation of algorithms than in previous work. A distance

measure between two XML object representations that is

defined based on the concept of overlays is more effective

algorithm.

3.1 Construction of Bayesian Network
Bayesian Networks is a directed acyclic graph, where the

nodes represent random variables and the edges represent

dependencies between those variables [6].

3.1.1 Bayesian Network structure
A proposed approach for XML duplicate detection is based on

one basic assumption: The fact that two XML nodes are

duplicates depends only on the fact that their values are

duplicates and that their children nodes are duplicates. Thus,

we say that two XML trees are duplicates if their root nodes

are duplicates. To illustrate this idea, consider the goal of

detecting that both movies represented in Fig.1.are duplicates.

This means that the two movie objects, represented by nodes

tagged mov, are duplicates depending on whether or not their

children nodes (tagged dir and cast) and their values for

attributes year and title are duplicates. Furthermore, the nodes

tagged dir are duplicates depending on whether or not their

values are duplicates, and the nodes tagged cast are duplicates

depending on whether or not their children nodes (act) are

duplicates. This process goes on recursively until the leaf

nodes are reached. If we consider trees U and U' of Fig.1, this

process can be represented by the Bayesian Network of Fig.2.

Let us first consider the XML nodes tagged mov. As

illustrated in Fig.2, the BN will have a node labeled mov11

representing the possibility of node mov1 in the XML tree U

being a duplicate of node mov1 in the XML tree U'.

Fig 2: Bayesian Network to compute the similarity of the

 trees in Fig.1.

Node mov11 is assigned a binary random variable. This

variable takes the value1 (active) to represent the fact that the

XML mov nodes in trees U and U' are duplicates. It takes the

value 0 (inactive) to represent the fact that the nodes are not

duplicates. In accord with assumption, the probability of the

two XML nodes being duplicates depends on 1) whether or

not their values are duplicates, and 2) whether or not their

children are duplicates. Thus, node mov11 in the BN has two

parent nodes, as shown in Fig.2. Node Vmov11 represents the

possibility of the values in the mov nodes being duplicates.

Node Cmov11 represents the possibility of the children of the

mov nodes being duplicates. As before, a binary random

variable, that can be active or inactive, is assigned to these

nodes, representing the fact that the values and children nodes

are duplicates or non duplicates, respectively. It is assumed

that the probability of the XML node values being duplicates

depends on each attribute independently. This is represented

in the network by adding new nodes for the attributes as

parents of node Vmov11, represented as rectangles in Fig.2. In

this case, these new nodes represent the possibility of the year

values in the mov nodes being duplicates and of the title

values in the mov nodes being duplicates. Similarly, the

probability of the children of the movnodes being duplicates

depends on the probability of each pair of children nodes

being duplicates. Thus, two more nodes are added as parents

of node Cmov11: node dir11 represents the possibility of node

dir1 in tree U being a duplicate of the node dir1 in tree U';

node cast11 represents the possibility of node cast1 in tree U

being a duplicate of node cast1 in tree U’. Whole process is

repeated for these two nodes. However, a slightly different

procedure is taken when representing multiple nodes of the

same type, as is the cases for the XML nodes labeled act. In

this case, the full set of nodes is compared, instead of each

node independently. Thus, the set of act nodes being duplicate

depends on each act node in tree U being a duplicate of any

act node in tree U'. This is represented by nodes act, act1, and

International Journal of Computer Applications (0975 – 8887)

Innovations and Trends in Computer and Communication Engineering (ITCCE-2014)

3

act2 in the BN of Fig.2.This approach is not symmetrical, i.e.,

the network obtained for U and U' is not always the same as

that obtained for U' and U. However, it would be difficult to

satisfy this feature without a significant decrease in efficiency,

while we would not expect a high increase in effectiveness.

3.2 Computing Probabilities
As a binary random variable is assigned to each node, which

takes the value 1 to represent the fact that the corresponding

data in trees U and U' are duplicates, and the value 0 to

represent the opposite. Thus, to decide if two XML trees are

duplicates, the algorithm has to compute the probability of the

root nodes being duplicates.

3.2.1 Prior Probabilities
In the network of Fig.2, we need to define the prior

probabilities of values being duplicates in the context of their

parent XML node, i.e., P(mov11[year])P(mov11[title])

P(dir11[value])and P(actij[value]) . These probabilities can be

defined based on a similarity function sim() between the

values, normalized to fit between 0 and 1. However, it is

sometimes not possible, or not efficient, to measure the

similarity between two attribute values. In this case, we define

the probability as a small constant ka, named the default

probability, representing the possibility of any two values

being duplicates before we observe them. Thus, we define P

(tij [a]) = sim (vi[a], vj [a]) if the similarity was measured,

and P (tij [a]) =ka if otherwise, where Vi[a] is the value of

attribute a of the ith node with tag t in the XML tree. For

instance, for the name attribute in the mov nodes, we can

define sim (n1, n2) = 1-ned (n1, n2), where ned() is the

normalized edit distance between the strings. The default

probability ka can be derived from the distribution of attribute

values in the database, or simply be set to a small number.

3.2.2 Conditional Probabilities
CP1: The probability of the values of the nodes is duplicates,

given that each single pair of values contains duplicates.

CP2: The probability of the children nodes is duplicates, given

that each single pair of children are duplicates. The more child

nodes in both trees are duplicates, the higher the probability

that the parent nodes are duplicates.

CP3: The probability of two nodes is duplicates given that

their values and their children are duplicates.

CP4: The probability of two nodes is duplicates given that

their values and their children are duplicates.

4. Algorithm for BN Evaluation
In order to improve the BN evaluation time, a lossless pruning

strategy is proposed. This strategy is lossless in the sense that

no duplicate objects are lost. Only object pairs incapable of

reaching a given duplicate probability threshold are discarded.

As stated before, network evaluation is performed by doing a

propagation of the prior probabilities, in a bottom up fashion,

until reaching the topmost node. The prior probabilities are

obtained by applying a similarity measure to the pair of values

represented by the content of the leaf nodes. Computing such

similarities is the most expensive operation in the network

evaluation and in the duplicate detection process in general.

Therefore, the idea behind our pruning proposal lies in

avoiding the calculation of prior probabilities, unless they are

strictly necessary. The strategy follows the premise that,

before comparing two objects, all the similarities are assumed

to be 1.The idea is to, at every step of the process, maintain an

upper bound on the final probability value.At each step,

whenever a new similarity is computed, the final probability is

estimated taking into consideration the already known

similarities and the unknown similarities that we assume to be

1. When we verify that the network root node probability can

no longer achieve a score higher than the defined duplicate

threshold, the object pair is discarded and, thus, the remaining

calculations are avoided. The process is presented in detail in

Algorithm 1. NetworkPruning(N,T)

Input: N-node which we intend to compute the probability

score; T- threshold value below which the XML nodes are

considered non-duplicates

Output:Probability scoreof the XML nodes represented by N

1: Get the ordered list of parents

2: Set Maximum probability of each parent node as 1

3: currentScore← 0

4: for each node n in List do {Compute the duplicate

probability}

5: if n is a value node then

6: For value nodes, compute the similarities

7: else

8: Get new threshold

9: NetworkPruning(n, newThreshold)

10: end if

11: parentScore[n] ← score

12: currentScore ←computeProbability(parentScore)

13: if currentScore < T then

14: End network evaluation

15: end if

16: end for

17: return currentScore

The algorithm takes as input a node N from the BN and a user

defined threshold T. It starts by gathering a list of all the

parent nodes of N and assuming that their duplicate

probability score is 1 .It then proceeds to compute the actual

probability value of each of the parents of N.If a given parent

node n is a value node, its probability score is simply the

similarity of the values it represents. If, on the other hand, n

also has parent nodes, its probability score depends on the

scope of its own parents, which is computed recursively

.However, the algorithm should now be called with a different

threshold value, that depends on the equation used to combine

the probabilities for node N (line 8).Once the score for node n

is computed, the algorithm checks if the total score for N is

still above T, and decides whether to continue computing or to

stop the network evaluation.

International Journal of Computer Applications (0975 – 8887)

Innovations and Trends in Computer and Communication Engineering (ITCCE-2014)

4

5. CONCLUSION
A new method for XML duplicate detection called XMLDup

can be used.The probability of two XML objects being

duplicates is determined. The algorithm uses a Bayesian

Network. The Bayesian Network model is composed from the

structure of the objects being compared. In XMLDup the user

needs to provide the attributes, their respective default

probability parameter, and a similarity threshold. However,

the model is also very flexible, allowing the use of different

similarity measures and different ways of combining

probabilities. The runtime efficiency of XMLDup is improved

by using a network pruning strategy. The XMLDup perform

state-of-the-art in duplicate detection in terms of both

effectiveness and efficiency.It is intended to extend the BN

model construction algorithm to compare XML objects with

different structures and apply machine learning methods to

derive the conditional probabilities and network structure,

based on the existing data. The machinelearning and

optimization algorithm such as bee, artificial immune system

and BAT algorithm to derive conditional probability values

can be used in future.

6. REFERENCES
[1] E. Rahm and H. H. Do, “Data cleaning: Problems and

current approaches,” IEEE Data Engineering Bulletin,

vol. 23, pp. 3–13, 2000.

[2] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and

T. Yu,“Approximate XML joins,” in Conference on the

Management of Data(SIGMOD), 2002.

[3] R. Ananthakrishna, S. Chaudhuri, and V. Ganti,

“Eliminatingfuzzy duplicates in data warehouses,” in

Conference on Very LargeDatabases (VLDB), Hong

Kong, China, 2002, pp. 586–597.

[4] D. Milano, M. Scannapieco, and T. Catarci, “Structure

awareXML object identification,” in VLDB Workshop

on Clean Databases(CleanDB), Seoul, Korea, 2006.

[5] M. Weis and F. Naumann, “Dogmatix tracks down

duplicatesin XML,” in Conference on the Management

of Data (SIGMOD),Baltimore, MD, 2005, pp. 431–442.

[6] J. Pearl, Probabilistic Reasoning in Intelligent Systems:

Networks ofplausible inference, 2nd ed. Morgan

Kaufmann Publishers, 1988.

[7] L. Leita o, P. Calado, and M. Weis, "Structure-Based

Inference of XML Similarity for Fuzzy Duplicate

Detection", Proc. 16th ACM Int'l Conf.Information and

Knowledge Management,pp. 293-302, 2007.

[8] A. M. Kade and C. A. Heuser, “Matching XML

documents inhighly dynamic applications,” in ACM

Symposium on DocumentEngineering (DocEng), 2008,

pp. 191–198.

