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ABSTRACT 

The present paper deals with the thermal effect model of 

temperature distribution in dermal layers of elliptical shaped 

human limbs involving two uniformly perfused tumor in dermis 

layer. Here the tumor is characterized by uncontrolled rates of 

metabolic heat generation. The normal tissues are characterized 

by self controlled metabolic heat generation. It is assumed that 

first there was only one tumor in the dermis but after sometime 

another tumor has developed at other position in the limb due to 

metastasis. The structure of the region has been taken into 

account by dividing the dermal region of the human limb into 

five layers. The outermost layer is the epidermis. Below the 

epidermis are the three layers of dermis followed by a layer of 

subermal tissues.  The innermost solid cylinder is the limb core. 

Hexahedral elements have been used to discretize the whole 

region. Appropriate boundary conditions have been framed 

using the physical conditions. The seminumerical method has 

been used to obtain the temperature profiles.  
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1. INTRODUCTION 
In human body heat is generated every time. Even at complete 

rest or sleep or at the time of exercising heat is generated. 

Greater the exercise produce more and more heat. As a result 

body core temperature is also increases. But in order to maintain 

body core temperature 
037 C  the Skin and Subcutaneous Tissue 

(SST) region plays an important role. It is boundary lamina, 

which consists of mainly two natural layers epidermis, and 

dermis. Below the skin there is an extensive network of blood 

vessels, lymphatic, fat cells and nerve fibers of subcutaneous 

tissue that rest upon body core. The heat transfers in blood 

vessels helps in maintaining uniform body core temperature 

irrespective of changes in environmental temperature. There are 

two more processes - metabolic heat generation (sum of physical 

and chemical changes), and sensible and insensible perspiration 

that help in maintaining uniform body core temperature. There 

are four avenues of heat loss: convection, conduction, radiation, 

and evaporation. If skin temperature is greater than that of the 

surroundings, the body can lose heat by radiation and 

conduction. But if the temperature of the surroundings is greater 

than that of the skin, the body actually gains heat by radiation 

and conduction. In such conditions, the only means by which the 

body can rid itself of heat is by evaporation. So when the 

surrounding temperature is higher than the skin temperature, 

anything that prevents adequate evaporation will cause the 

internal body temperature to rise. During sports activities, 

evaporation becomes the main avenue of heat loss. Humidity 

affects thermoregulation by limiting sweat evaporation and thus 

heat loss. A number of research workers have attempted to carry 

out experimental and theoretical investigations on temperature 

distribution problems in human body organs during the last few 

decades. Experimental investigations were carried out by 

Patterson [1] to determine the temperature profiles. The 

theoretical analysis and interpretation of the data in all the 

foregoing applications Chao [2,3], Cooper [4], Saxena [5,6], 

Sadakata [7] and Gurung [8] have been based on the widely 

used following bio heat equation given by Perl [9]. 

A
T

ρc Div.(KgradT)+M(T -T)+S.
t





                               (1) 

Here, ρ , c , K , S  and M are respectively the density, specific 

heat, thermal conductivity , rate of metabolic heat generation 

and blood mass flow rate  in tissues.  Further attempts have been 

made by Saxena and Pardasani [10], Pardasani and Adlakha [11] 

and Jain [12] to study problems involving abnormalities like 

tumors in SST regions of human body. Some models have been 

developed by Mitchell et.al [13], Pardasani and Adlakha [14, 

15], Pardasani and Jas [16], Zhu et.al [17] and Song et. al [18] 

for temperature variation in human limbs for one and two 

dimensional steady cases under normal physiological and 

environmental conditions. Pardasani and Shakya [19] have 

extended finite element modeling to infinite domains. From the 

above literature survey, it is evident that all the research workers 

have assumed that human limb is perfectly circular in shape. But 

actually human limb is not perfect circular cylinder in shape, it 

may be considered as tapered elliptical cylinder in shape. So for 

realistic studies, it becomes necessary to develop a model to 

investigate temperature distribution considering elliptical shaped 

human limb involving metastasis of tumor. In view of this, 

Agrawal et.al have developed a model to study temperature 

variation in dermal layers of elliptical shaped human limbs by 

using Cubic Splines and Fourier Series approach [20]. Also they 

developed a two dimensional model to study thermal 

distribution in dermal regions involving metastasis tumors by 

using finite element method [21]. In this paper a semi numerical 

model a combination of Finite element method [22] and Fourier 

series [23] has been used.  

2. MATHEMATICAL MODEL 
The mathematical equation (1)  for  three-dimensional steady 

state case in elliptical coordinates may be written as:  
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(2)  

Here, 1S and W  respectively denote the self controlled and 

uncontrolled metabolic heat generation. Also μ , ν  and z   are 

elliptic-cylinder coordinates defined as follows: 

' '

'

x dcosh μ.cos ν, y dsinhμ.sin ν (0 ν 2 ,μ 0),

z z

    



Where, 
' ' '(x ,y ,z )   are rectangular coordinates. The constant d  

is semi focal distance of elliptical shape which is defined 

as
' 2 ' 2d= (a ) -(b ) . Where 

'a   and 
'b   are the semimajor and 

semiminor axis of coaxial elliptical layers respectively. Also let 

id  is the eccentricity of each layer which is given by 

'i
dd =

a
.The outer surface of the limb is exposed to the 

environment and heat loss at this surface takes place due to 

conduction, convection, radiation and evaporation which is 

given as [5]:     

5μ=μ a

T
-K h(T-T )+LE

μ





.                                    (3) 

Where, h  is the heat transfer coefficient, aT  is atmospheric 

temperature, L  is Latent heat and E  is rate of sweet 

evaporation. The blood moves in arteries from the trunk at body 

core temperature i.e. 
037 C  into the limbs. This blood looses 

heat to the tissues while moving towards the extremities of the 

limbs. Thus the blood is at a lower temperature at extreme parts 

of the limbs. So the inner core temperature of the limb has been 

taken to be variable along the axial direction of the limb. Hence 

the following boundary conditions are imposed at the inner 

boundary [13]: 

-ξz
0 11 12T(μ ,ν,z)=G +G e                                                        (4) 

0 0aT (ν,z)=T (ν) at z=a  and 0 0bT (ν,z)=T (ν) at z=b      (5)           

The two opposite sides of the inner core of the limb may be at 

different temperatures, so at the two ends of the limb the 

following parabolic variation of the core temperature along 

angular direction has been taken [21] 

   2 2
0a 1a 2a 3a 0b 1b 2b 3bT ν =C + C ν+C ν ,T ν =C + C ν+C ν (6)  

0a a0

0a aπ

0a a0

Where, T (ν) = T at ν= 0

T (ν) = T at ν= π

T (ν) = T at ν= 2π

                                     (7) 

and             

0b b0

0b bπ

0b b0

T (ν) = T at ν= 0

T (ν) = T at ν= π

T (ν) = T at ν= 2π.

                                   (8)                                       

The temperature distribution in the limbs will be uniform along 

z-direction near the trunk, as the core temperature is uniform up 

to small distances from trunk.  The other extremity of the limbs 

is assumed to be perfectly insulated and no heat loss takes place 

along the z-direction to the environment. Thus the flux along the 

z-direction at both the ends of the limbs is assumed to be zero as 

given below: 

T
0 at z =a

z





,

T
0 at z = b

z





                               (9) 

Since the radial distances are very small as compared to the 

axial distances, so the gradients at the two extremities of the 

limbs will be negligible.  Also the thermoregulation process tries 

to preserve the heat by insulation and make up the heat loss by 

heat generation, thus reducing the temperature gradients to 

maintain the thermal balance. Now the dermal region of the limb 

is divided in to five concentric elliptic layers with different 

eccentricity 1d , 2d , 3d , 4d and 5d . These layers have been 

further discretized   into sub regions i.e. into 50 elements of 

elliptical sectors with two of its sides curved along angular 

direction. The angular points of each element are the nodes. Two 

uniformly perfused tumors in 18th and 48th element are 

assumed to be situated in the dermal region of the limb (see Fig. 

1). The element information is summarized in Table-I.  

The equation (2) and (3) are transformed into the following 

discretized variational form by using calculus of variations [22] 

for the eth  element: 

 

(e) (e)
(e) 2 2

2
(e) 2

2(e)

1 2
( ) (e) (e) (e)

1 A

(e) (e) (e)
1

(e)
(e) (e) 2 (e)

1 a
Î2

T T
K {( ) ( )

μ ν

(T )
1

I dμdν
2

M T -T

-2(S +W )T

λ
A [h(T -T ) +2L E T ]dν .

2

e

z

A


  
  

  
    
  
  
  
  
  
  
   







           (10)                                                                             

Where,     
(e) (e)2 2 (e) 2 (e)

1A =d (sinh μ +sin ν )   and e= 1, 2….50 . 
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Figure 1 Finite element descretization of human limb 

In equation (10) 
(e)λ =1  is only for those elements which are 

exposed to the environment and
(e)λ =0 , for the remaining 

elements. Also 
(e)

AT  is arterial temperature in each element has 

been taken equal to the core temperature of the limb. 

(e)
A 0,T =T(μ ν,z)                                                                     (11) 

Here 
(e)W  is assigned constant but different values in each 

layer.  
(e)W =0  for normal tissues and 

(e)W >0 for malignant  

tissues. In view of this 
(e)W  is taken as 

(e) (e)W =η s  , where s 

is the rate of metabolic heat generation in subdermal tissues, 
(e)η  represents the ratio between the rates of metabolic activity 

in normal and malignant tissues. Here 
(e)η =0  for normal  

tissues  whereas  
(e)0 η 1   denotes that rate of metabolic 

activity in malignant tissues is less than or equal to that in 

normal tissues. Also 
(e)η >1  denotes that rate of metabolic 

activity in tumor is greater than that of normal tissues. Since the 

thickness of the layers is very small, the following linear 

variation with respect to position along radial direction is 

assigned to thermal conductivity, blood mass flow and 

metabolic heat generation in each layer: 

(e) (e) (e) (e) (e) (e) (e) (e) (e)
1 2 1 2 1 2K =α +α μ, M =β +β μ, S =λ +λ μ  

Where, 
(e) (e)

1 2α ,α , (e) (e)
1 2β ,β , (e) (e)

1 2λ and λ  are given below 

[14]: 

Subcutaneous tissues:  e=1 (4) 46 

(e) (e) (e) (e)

1 1 2 1 1 2

(e) (e) (e) (e)

1 1 2

α = K , α =0, β = M , β =0,

γ =S , γ =0, λ =0, W =0
 

Dermis :   e=2+5i1+5i2,  i1 =0 (1) 9,  i2 =0 (1) 2. 

Normal tissues: 

(e) (e) (e)1 2 3 1 3 1 1 2 3 1
1 2 1

2 1 2 1 2 1

K μ -K μ K -K M μ -M μ
α = , α = , β =

μ -μ μ -μ μ -μ

(e) (e) (e)3 1 1 2 3 1 3 1
2 1 2

2 1 2 1 2 1

M -M S μ -S μ S -S
β = , γ = , γ =

μ -μ μ -μ μ -μ
 

Malignant tissues: (e=18, 48) 

(e) (e) (e) (e) (e) (e)

1 2 1 2 1

(e) (e) (e) (e)

2

α = K,α =0, β = τ m, β =0, γ =0,

γ =0, λ =0, W =η s
 

Here, 
(e)τ  and 

(e)η  can be assigned any values depending on 

the type of tumors. As a particular case, it is assumed that the 

blood flow is almost the same in tumors and normal tissues. 

Thus 
(e)τ =1 for malignant tissues. Also two types of tumors 

have been considered, with metabolic rates respectively three 

and five times of that in normal tissues. 

Epidermis: e=5 (4) 50 

(e) (e) (e) (e) (e)

1 3 2 1 2 1

(e) (e) (e)

2

α = K , α =0, β =0, β =0, γ =0,

γ =0, λ =1, W =0
 

The following bilinear shape function for the variation of 

temperature within each element has been taken as: 

(e) (e) (e) (e) (e)
1 2 3 4T =ξ +ξ μ+ξ ν +ξ μν                                        (12) 

Where, 
(e) (e) (e) (e)

1 2 3 4ξ ,ξ ,ξ and ξ  are constants for the eth 

element. The eqs. (12) in matrix notation can be written as: 
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(e) T (e)T = P ξ                                                                            (13) 

Here,  
TP =[1 μ ν μν]  , (e) T (e) (e) (e) (e)

1 2 3 4(ξ ) =[ξ ξ ξ ξ ]  

Using nodal conditions we get, 

η η η ηT(μ ,ν ,z )=T ; Where η=i,j,k,l                           (14) 

From equations (13) and (14) we get, 

(e) (e) (e)T = P ξ                                                                       (15) 

  Where,  

i i i i i

(e) j j j j j(e)

k k k k k

l l l ll

T 1 μ ν μ ν

T 1 μ ν μ ν
T = and P =

T 1 μ ν μ ν

1 μ ν μ νT

   
   
   
   
   
     

  

From eq. (15) we have,   
(e)(e) (e)ξ = R T                               (16)                                                          

where,
1(e) (e)R = P


putting 
(e)ξ from eq. (16) in eq. (13) we get, 

(e)(e) T (e)T = P R T                                                                  (17) 

The integral 
(e)I  given in equation (10) can be put in the form                                                                                                                                                           

(e) (e) (e) (e) (e) (e)
k m s λ μI = I +I -I +I +I                                         (18) 

Where,

2 2
(e) (e)

(e) (e)
k

1 T T
I = K dμ dν

2 μ ν

jk

i i



 

                  
    (19)      

μjνk

(e) (e) (e) (e)2 (e)2
m 1 A

νi μi

1
I = A M T +T dμ dν

2
 
                       (20)            

μjνk

(e) (e) (e) (e) (e) (e) (e)
(s) 1 A 1

νi μi

I = A M T +S +W T dμ dν 
         (21)                

l

5

j

ν(e)
(e) (e) (e) 2 (e)

(λ) 1 a μ=μ

ν

λ
I = A h (T -T ) +2LET dν

2
 
      (22)  

j

i

2μ
(e) (e) (e) 2

μ 1 2μ

1
I = K A (T ) dμ.

2 z



                                   (23) 

Now putting value of 
(e)T  from (17) in (19), (20), (21), (22) 

and (23) and then minimizing with respect to each nodal point 

temperature with the assumption that the parameters 
(e) (e)K ,M  

and 
(e)S  are constants but different in each layer, we get: 

(e) (e)
(e) (e) (e)(e)k m

(e) (e)

dI dI
= A T , = B T

dT dT

                               (24) 

(e) (e)
(e)(e) (e) (e)s λ

(e) (e)

dI dI
=G , = F T +D

dT dT

                                (25) 

(e)(e) 2
μ (e)

(e) 2

dI d T
=H

dzdT

                                                             (26)                                                   

Where, 
(e) (e)T (e)

ij
4x4

A = R A R 
 

,  (e) (e)T (e)
ij

4x4
B = R B R ,       

 (e) (e)T
i

4x1
G = R G ,  (e) (e)T (e)

ij
4x4

F =R F R  

 (e) (e)T
i

4x1
D = R D  and    (e) (e)T (e)

ij
4x4

H = R H R   

here, ijA , ijB , ijF , ijH  ( i , j =1,2,3, 4)  and iG , iD  ( i =1,2,3,4) 

are constants. 

Now, from (18) we have following equation: 

(e)(e)(e) (e) (e)(e)
μsk m λ

(e) (e) (e) (e) (e) (e)

dIdIdI dI dIdI
= + - + +

dT dT dT dT dT dT

               (27) 

On putting (24), (25) and (26) in (27) we get, a following set of 

differential equations in terms of nodal temperatures iT . 

2

2

d T
XT - V = Y.

dz
                                                            (28) 

Here,   

N
(e) (e) (e)T T(e) (e)

1 2 N

e=1

X = M A +H +F M ,T = T T .........T 
    

 

N
T (e) (e) (e)

e=1

Y = M G -D 
  ,  

N
(e) (e)T(e)

e=1

V = M B M                                                      

NT   denotes the 
thN  nodal temperature and N  is the number 

of nodal points. Now, following Fourier series is applied to 

eliminate the variable z from the above equation (28): 

0 00 n0 i 0i ni

n=1 n=1

T =A + A cosnαz, T =A + A cosnαz

 

           (29)                                                     

Where, α=π/b  and the coefficients 00A  and n0A  are known 

due to boundary condition (3). All coefficients 0iA  and niA  

are obtained by solving the following system of linear equations 

obtained from (28), and (29). 

(1) (1) (2) (2)
0 nX A =p , X A =p                                               (30) 
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Here, 
(v)X (v=1, 2) are square matrices of order (60 X 60). 0A   

and nA  are column matrices of order (60 X 1) and they 

represent the matrices of coefficients 0iA  and niA  

respectively. 
(σ)p (σ=1,2)  is column matrices of order (60 X 

1). A computer program has been developed for the entire 

problem and temperature profiles are obtained in each 

subregion. 

3. RESULTS AND DISCUSSION 
In this section, numerical results are shown in the form of 

figures explaining the relationship observed between the 

physiological parameters. The parameters used [8, 14] are as 

follows: 

1K =0.06 cal/cm-min.deg.C, 3K =0.03cal/cm-min.deg.C,       

L=579.0 cal/gm and 2h=0.009Cal/cm -min.deg.C  

The results have been computed for the following case. 
0

aT =15 C , E=0 ,
0

bT =37 C ,
0

αT =34 C ,  

3
1M =0.003 Cal/cm -min.deg.C , 3M =0 , 3S =0 , 

3
1S =0.0357Cal/cm -min.deg.C ,

3s=0.0357Cal/cm -min.

k= 0.0845 Cal/cm-min.deg. C ,
3m=0.003Cal/cm -min . 

The expression for nodal information is as given below: 

Radial Coordinates: -      

i k-1μ =a for i=k+6j : j=0(1)9 and k=1(1)6 . 

Here, constants 
ia (i=0(1)5)  can be assigned any value 

depending upon the sample of skin layers under study. Here as a 

particular case following values have been used [14]. 

0 1 2 3

4 5

a =6.0 cm,  a =6.5 cm,  a =6.65 cm,  a =6.75  cm,

a =6.9 cm,  a =7.1 cm.
 

Angular Coordinates: 

0
i i+6 i

0 0
i+6 i i+6 i

ν =0 for i=1(1)6 , ν =ν +45 for i=1(1)12

ν =ν +15 for i=13(1)30 , ν =ν +45 for i=31(1)54

Eccentricity:- 

i k-1d =d for i=k+6j : j=0(1)9 and k=1(1)6                   

The following set of eccentricities has been calculated. 

1 2 3 4 5d =. 0030  d =. 0026   d =. 0023 d =. 0020 d =. 0017

The graph in figure-2 and figure-3 is between temperature (T) 

and angle (ν)  for η=3.0  and η=5.0 . The continuous lines are 

for normal tissues while the broken lines are for malignant 

tissues.  

 

Figure 2 Graph between temperature (T)  and angle ( ν ) at z=1 

and η=3.0  

 

Figure 3 Graph between temperature (T)  and angle ( ν ) at z=1 

and η=5.0  

The elevation in temperature profiles (broken lines) in each 

layer can be seen between 
0ν=0  to 

0ν=45 , 
0ν=90  to 

0ν=135 and 
0ν=315 to

0ν=360 . The tumor is situated 

between  
0ν=105  to 

0ν=120 and also between 
0ν=315  to 

0ν=360 .The maximum thermal disturbances are observed in 

these regions. The slope of the curves changes at  
0ν=105  , 

0120  and
0ν=315 . Thermal disturbances are more between 

0ν=315  to 
0ν=360  and 

0ν=0 to
0ν=45   as compared to 

0ν=90  to 
0ν=135 .This is because the size of tumor is larger 

between 
0ν=315 to 

0ν=360  than that between 
0ν=105  and 

0120 . The figure-4 and figure-5 represents the graph between 

Temperature T and radial distance μ  at 
0ν=105  and 

0120  for 

η=3.0  and η=5.0  respectively. The elevation in temperature 

profiles (broken lines) is seen along radial direction towards the 

outer surface due to the presence of tumor in the dermis. This 

elevation is very small in the subdermal part but increases as we 

move towards the tumor in the dermis.  The elevation in 

temperature profiles is more in the dermis and epidermis as 

compared to that in the subdermal part. 
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Figure 4   Graph between temperature (T) and radial distance 

( μ ) at η=3.0  

 

Figure 5 Graph between temperature (T) and radial distance ( μ ) 

at η=5.0  

Further, from the above graphs it is observed that the thermal 

effect of tumor is more along radial direction as compared to 

that along angular direction. This is because the radial distances 

involved are small as compared to the angular distances. Also 

the temperature gradient is more along radial direction than that 

along angular directions. Thus heat flows more along the radial 

direction towards the outer surface in comparison to angular 

directions. The numerical results obtained here are quite similar 

and good agreement with the physiological facts as well as with 

those obtained by other researchers [10, 21]. The changes in the 

slope of the curves in the region of maximum thermal 

disturbances give us the idea about the position and size of the 

tumor.  Here in figure-2 and figure-3 it is observed that elevation 

in temperature profiles is more for  η=5.0  than for η=3.0 . 

Thus the metabolic activity has significant thermal effects on the 

tumor. These results can be used to correlate the temperature 

profiles with the type of tumor.  

From the above discussion, it is evident that thermal information 

of normal and malignant tissues can be useful for predicting the 

position, size and type of tumors. The seminumerical 

computational technique a combination of finite element method 

and Fourier series employed here has been quite successful in 

reducing the three dimensional problem further in to two-

dimensional problem and obtaining useful results. The 

computations involved in this method are less as compared to 

those in variational finite element method [21].  This technique 

is also quite efficient and versatile as it has been possible to 

incorporate important variations of the parameters involved in 

the problem. Another important feature of this approach is that 

we have been able to incorporate the realistic geometric shape of 

the elliptical tapered shaped limb along three dimensions. This 

model can be further extended to incorporate more structural 

details of tumor.  
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