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ABSTRACT 

In this paper, a technique to identify the filter bank 

coefficients of Wavelets db4 and coif5 using adaptive filter 

NLMS algorithm is presented. Filter bank coefficients of the 

wavelet are treated as the weight vector of adaptive filter, 

changes with each iteration and approach to the desired value 

after few iterations. When we compare the two adaptive 

algorithms viz. Least Mean Square (LMS) and Normalized 

Least Mean Square (NLMS), NLMS performs better due to its 

insensitivity to step size, faster convergence and better 

accuracy. New Scaling and wavelet functions of the Wavelets 

db4 and coif5 are generated with the filter bank coefficients 

obtained by NLMS algorithm iteratively. 

General Terms 

Wavelet, Multi-resolution Analysis, Discrete Wavelet 

Transform. 

Keywords 

Approximation Coefficients, Detail Coefficients, Filter Bank, 

Quadrature Mirror Filters. 

1. INTRODUCTION 
Wavelets are playing important role in digital signal 

processing today [1-3]. In widely adopted Fourier 

representation in signal processing, one can get the features of 

the signal either in Time domain or in Frequency domain, one 

at a time, but both are extensively used in analysis, design and 

various applications. However there are many instances in 

which the localization in time as well as localization in 

frequency, both is required simultaneously. Short duration 

signals need to be localized in time and small bandwidth 

signals localized in frequency. In musical signals, small 

duration signals or small bandwidth musical pieces are placed 

at an effective temporal position to give special effects. They 

need to be captured in time as well as in frequency 

simultaneously [4]. Fourier representation is not suited for 

such requirements. Wavelet transform replaces Fourier 

transform’s sinusoidal waves by a family generated by 

translations and dilations of a window called wavelet [4a]. 

The idea of multi-resolution analysis is studying signals at 

different scales of resolution [5].  

The paper is organized as follows: Section 2 describes 

wavelet and Filter bank theory. Theory related to least mean 

square (LMS) and normalized least mean square (NLMS) 

algorithms is discussed in Section 3.This section compares the 

differences between the two algorithms for adaptive filter 

design. The experimental results using the two algorithms for 

standard wavelet filter bank design are dictated in Section 4. 

Some directions for future research are given in Section 5. 

2. WAVELET AND FILTER BANK   
Wavelets are manipulated in two ways. The first one is 

translation where the position of the wavelet is changed along 

the time axis. The second one is scaling. Scaling means 

changing the frequency of the signal. To understand wavelet 

analysis, two special functions: the (1) wavelet function and 

(2) the scaling function are used, they have unique 

expressions: 

 

 

 
 

Wavelet can be generated from a set of transfer function H(z) 

and G(z). A wavelet can be reconstructed from its 

approximation and detail coefficients [6]. The wavelet acts as 

a band pass filter [7]. Most of the wavelet applications are 

dealt with the coefficients h(n) and g(n) from (1) and (2). 

These are represented as quadrature mirror filters, having 

mirror image spectra. The filter formed by the mother wavelet 

act as constant-Q filters, whose Q-factor is given by: 

Q-factor = Centre frequency/ bandwidth                         (4) 

This breaks down into the filter bank implementation of 

discrete wavelet transform. In figure 1, the filters g(-n) form 

the high pass filters segment of the QMF filter [8] that gives 

the detail coefficients of the wavelet and h(-n) forms the low 

pass filter. The approximation coefficients obtained at the 

output of h(-n) is down sampled and passed through another 

pair of QMF filters and the process of decomposition 

continues. We can reconstruct the wavelet by using the same 

QMF filters by giving the approximation and detail 

coefficients as filter inputs. In this paper, we propose two 

algorithms LMS and NLMS to find out the h(-n) and g(-n) in 

an iterative manner and the comparison of the results of two 

algorithms is discussed. If h(-n) is obtained, then g(-n) can be 

obtained using (3) and the comparison is discussed. The h(-n) 

of the standard wavelets are fed into the LMS and NLMS 

algorithms. The role played by adaptive filter is to find out the 

filter coefficients with minimum error. This algorithm 

suggests that the estimated signal is up sampled, obtained at 

the output end of the adaptive filter and gives this new signal 

as input, a new set of filter weights can be obtained with 

minimum error. The above steps are repeated iteratively for 

many times to get the final result. This set of filter weights is 

used to reconstruct the h(-n) with minimum error. This 
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process is carried out at some of the standard wavelets 

available in literature. With this set of filter weights, on the 

standard wavelets, their respective h(-n) are successfully 

reconstructed. 

 

 

Figure1: Concept of DWT as Filter bank 

 

3. LEAST MEAN SQUARE 

ALGORITHM 
A uniform linear array with N isotropic elements, which 

forms the integral part of the FIR adaptive filter design [9] is 

shown in the figure 2.  

 

Figure2. LMS algorithm Flowchart 

The outputs of the individual sensors are linearly combined 

after being scaled using corresponding weights to have 

maximum possible gain in the direction of the desired signal 

and nulls in the direction of the interferes. The weights are 

computed using LMS algorithm based on minimum squared 

error (MSE), therefore the spatial filtering problem involves 

estimation of the signal s(n) from the received signal x(n) by 

minimizing the error between the reference signal d(n), which 

closely matches or has some extent of correlation with the 

desired signal estimate and the output y(n). 

From the method of steepest decent, the weight vector 

equation is given by [10] 

  

Where  is the step size parameter and controls the 

convergence characteristics of the LMS algorithm;  is 

the mean square error between the output y(n) and the 

reference signal which is given by, 

 

The gradient vector in the above weight update equation can 

be computed as   

 

The LMS algorithm takes the instantaneous values of 

covariance matrices r and R rather than their actual values i.e. 

    And    

Therefore the weight update can be given by the following 

equation 

 

               

The LMS algorithm is initiated with an arbitrary value w(0) 

for the weight vector eventually leads to the minimum value 

of the mean squared error. Hence the LMS algorithm can be 

summarized in the following equations; 

Output             

Error              

Weights          
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An LMS adaptive filter which has p+1 coefficients will 

require p+1 additions and p+1 multiplications for updating the 

filter coefficients, and it is necessary to compute the error;  

 

Since w(n) is a vector of random variables, the convergence 

of the LMS algorithm [11] should be considered within the 

statistical framework. For the convergence of the algorithm 

the step size should satisfy the following condition; 

           

Where  is the largest eigenvalue of the correlation 

matrix. The drawback of the LMS algorithm is that, it is very 

sensitive to the change in the input signal x(n), which result in 

having difficulty to decide the optimum size of convergence 

parameter   for convergence of the algorithm and minimum 

time of convergence also. Normalized LMS algorithm may be 

a suitable alternative [12] which normalizes the LMS step size 

with the power of the input. When the input signal is too 

small, the NLMS algorithm can be modified by adding a 

small positive value ε to the power of the input signal. 

   

In the algorithm developed, h(-n) is reconstructed using LMS 

algorithm. In this algorithm the desired signal is first down-

sampled and up-sampled before giving to the filter, but in this 

process value of h(-n)  is changing with the step size as shown 

in the table 1. This problem of sensitivity of step size can be 

resolved by taking NLMS algorithm in consideration, which 

is not sensitive to step size as shown in table2.The stream of 

impulses is given as input to the adaptive filter, up-sampling 

and then passing the estimated output iteratively to the filter 

helps in calculating the scaling function h(n). The maximum 

five iterations are required. The iteration method is shown in 

figure3 is implemented on coif5 and db4 wavelets, which are 

the standard wavelets. 

 

Figure3: Flow chart for scaling function 

4. EXPERIMENTAL RESULTS 

4.1 Using LMS Algorithm 
We implemented LMS algorithm to reconstruct the standard 

wavelet db4 and coif5. Since LMS algorithm is sensitive to 

step size hence reconstruction is not successful as shown in 

the table 1. 

 

 

 

 

Table1: LMS algorithm on wavelet db4 

Actual Filter 

Coefficients 

h(n) 

Step Size 

(α) 

LMS Filter Coefficients 

  [0.3258,          

1.0109, 

0.8922,            

- 0.0396,          

-0.2645, 

0.0436, 

0.0465,            

-0.015]  

0.2 [0.2376,  2.0112,  0.2633, 

0.1232,  -0.4325,  -1.3456,         

-0.8723,  0.2432]  

0.6 [0.3299,  0.1324,  0.1244,        

-0.4567,  0.4576,  -0.2345,         

-1.0365,   0.4536] 

1.3 [-.5647,  0.1137,  0.4578,         

-0.4568,  1.2234,  -0.1235, 

0.5634,  0.3568] 

 

 

Figure4: Graph of h(n) using LMS algorithm 

4.2 Using NLMS Algorithm 
We repeated the same experiment for constructing the above 

wavelets with NLMS algorithm and the reconstruction is 

successful and also not sensitive to step size as shown in the 

table 2. The new scaling and wavelet functions of the wavelet 

coif5 and db4 are shown in the figures 6, 7and 8. 

Table2: NLMS algorithm on wavelet db4 

Actual Filter 

Coefficients 

h(n) 

Step Size 

(α) 

LMS Filter Coefficients 

[0.3258, 

1.0109, 

0.8922,           

-0.0396,         

-0.2645, 

0.0436, 

0.0465,          

-0.015] 

 

0.2 [0.3233,1.0109,0.8767,           

-0.0399,-0.2578,.0438, 

0.0478,-0.027] 

0.6 [0.3260,1.0109,0.8932,           

-0.0398,-0.2650,0.0437, 

0.0469,-0.015] 

1.3 [0.3245,1.0136,0.8678,           

-0.0369,-0.2278,0.0466, 

0.3356,-0.039] 
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Figure5: Graph of h(n) using NLMS algorithm 
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Figure6: New scaling function of db4 
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Figure7: New wavelet function of db4 

 

Figure8: New scaling and wavelet functions of coif5 

5. CONCLUSSIONS 
In this paper we conclude that LMS and NLMS algorithms are 

two important algorithms for adaptive filter design. NLMS 

algorithm is more useful than LMS due to its quality of 

insensitivity to step size. We can implement this algorithm for 

the identification of filter bank coefficients of standard 

wavelets db4 and coif5 and reconstruct the wavelets also. The 

number of iterations used for the convergence of the 

algorithm is five only; hence convergence time is the least. 

Wavelets are very useful for characterization of music signals. 

So our future work is related to the identification of signature 

wavelet of the sound signals of some Indian musical 

instruments.  
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