
National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

7

Web Services using Asynchronous Communication

G M Tere
Department of Computer

Science,
Shivaji University, Kolhapur,

 Maharashtra - 416004, India

B T Jadhav
Y.C. Institute of Science,

Satara, Maharashtra - 415001,
India

R. R. Mudholkar
Department of Electronics,

Shivaji University,
Kolhapur,

Maharashtra – 416004, India

ABSTRACT

Asynchronous interactions are becoming more important in

the implementation of complex B2B Web applications. This

paper addresses correlation and coordination issues involved

with asynchronous Web services, by studying different

mechanisms and metadata structures for supporting them; in

addition, several interaction patterns for building

asynchronous computations are discussed, and the trade-offs

between the various patterns are shown. In conclusion, we

illustrate the use of asynchronous Web services in the context

of some concrete B2B applications. This paper discusses how

to build a web services architecture that handles requests and

responses as separate transactions. Not all web services work

synchronously; in some situations, responses to web service

requests are not provided immediately, but rather sometime

after the initial request transactions complete.

Such asynchronous operations aren't explicitly supported by

web services specifications and standards. In some situations,

responses to web service requests are not provided

immediately, but rather sometime after the initial request

transactions complete. Such asynchronous operations aren't

explicitly supported by web services specifications and

standards; however, those standards do include the

infrastructure and mechanisms on which asynchronous

operations can be based. In this paper, several design patterns

for asynchronous web services are discussed.

General Terms
Performance, Design

Keywords
Asynchronous patterns, asynchronous transports, synchronous

transports, request/reply operations, web services

1. INTRODUCTION
Web services are programmable application logic that is

accessible using standard Internet protocols. Web Services

provide well-defined interfaces [1], or contracts, that describe

the services provided. Invocations of web services are

asynchronous in nature in that the service provider must be

capable of accepting requests from clients without notice.

However, sometimes the response to the web service request

is available on the same thread of execution as the invocation;

such operations are often labeled as synchronous. This

discussion of asynchronous operations will not focus on the

initiation of request messages by clients or the consumption of

request messages by service providers; rather, this paper focus

on how to handle responses to web service requests that are

not provided immediately but at a time after the initial request

transactions complete. Such asynchronous behavior is

common for services that require complex processing that

may take minutes or even days to complete - when, for

example, the web service implementation is dependent on

batch processing or manual steps requiring human

intervention.

The designer of a web services client needs to decide how to

handle asynchronous responses [3] and how to ensure that his

or her implementation is compatible with the way in which a

service provider supports asynchronous operations. One

option for the client is to issue a request and then block its

thread of execution waiting for a response, but for obvious

reasons this is not a good alternative; among other problems,

it results in resource inefficiencies and raises transactional and

scalability issues. The preferred solution is to build

asynchronous behavior into the client. The client makes a

request as part of one transaction and carries on with the

thread of execution. The response message is then handled by

a different thread within a separate transaction. In this model,

the client as a service requestor requires a notification

mechanism and a registered listener component to receive

responses. Likewise, there must be a correlator (a correlation

or transaction ID) exchanged between the client and service

provider for associating responses with their requests. A

typically asynchronous scenario would include the following:

 Production and transmission of a request message by a

client.

 Consumption of the request message by the service

provider.

 Production and transmission of a response message by

the service provider.

 Consumption of the response message by the client.

The messages exchanged may be thought of as datagrams for

which no reply is needed or expected in order for the

transaction to be processed. Through the use of such

datagrams, the sending or initiating party of the messages can

be fully decoupled from the receiving party, allowing for a

truly asynchronous relationship between the two.

1.1 Challenges to be addressed
To support asynchronous operations, one must address many

issues that do not exist when responses are synchronous. The

tasks that need to be addressed by asynchronous

implementations include:

 Defining a correlator and a mechanism for its exchange.

 Defining a reply-to address specifying where the

response should be sent, and ensuring that the service

provider is informed of this destination.

 The generation of a response by a service provider as a

transaction separate from the request.

 The receipt of an asynchronous response by the client.

 The correlation of response with request by both the

client and service provider.

1.2 Transports and local interfaces
The transports that can be used for web services

communications [3] vary in their capabilities to facilitate the

support of asynchronous operations. Thus, it's not only web

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

8

services behavior that can be described as either asynchronous

or synchronous; the transport used for exchanging web

services messages also falls into one category or the other.

Transports whose interfaces inherently support the correlation

of response messages to request messages for application use

and support a push and pull type of message exchange are

often described as being asynchronous transports.

Synchronous transports do not provide these facilities and,

when used for asynchronous operations, require that the

applications (the client and service provider, for the purposes

of this discussion) manage the correlation of messages

exchanged by not only defining how the correlator will be

passed within each message, but by also matching responses

with requests. Examples of transports that can be used in

support of asynchronous operations include [7]:

 Asynchronous transports

o HTTPR

o JMS

o IBM MQSeries Messaging

o MS Messaging

 Synchronous transports

o HTTP

o HTTPS

o RMI/IIOP

o SMTP

 Regardless of the transport being used for an

asynchronous operation, the client (or service proxy used

by the client) and the service provider are responsible for

generating a correlator that the transports can use in

managing the requests and responses.

 Typically, when business partners are utilizing web

services to integrate their business processes, they will

prefer to use HTTP, HTTPS, and HTTPR as transports

for communications across the Internet; within an

enterprise, when there are similar application platforms,

native transports and interfaces will be used, such as

JMS, RMI/IIOP [5], and JCA (Java Connection

Architecture).

 The asynchronous transports enable a client to continue

processing on its thread of execution immediately after

requesting a service invocation; they also provide

mechanisms to enable a client to determine the status of

its web service requests, and to retrieve responses to

those requests.

 Web service implementations that do not provide the

ability to initiate the transmission of a response on a

separate thread of execution cannot be used for

asynchronous operations. Examples of such

implementations would be those that use EJBs to front-

end database applications or implementations that

provide access to enterprise systems through the use of

local interfaces such as JCA.

2. ASYNCHRONOUS PATTERNS
The four patterns for support of asynchronous web service

operations discussed here are based on the four transmission

primitives that an endpoint can support, as defined in version

1.1 of the Web Services Descriptor Language (WSDL) [2]

specification:

 One-way: The endpoint receives a message.

 Request/response: The endpoint receives a message, and

sends a correlated message.

 Solicit/response: The endpoint sends a message, and

receives a correlated message.

 Notification: The endpoint sends a message.

It should be noted that the number of transmission primitives

and the number of patterns discussed in this paper are totally

independent of each other. Each of the patterns introduces

a correlator exchanged between the client and service provider

for use in associating responses with requests. The correlator

can be provided by either end of the exchange and its creator

may be determined based on the underlying transport. For

example, when using HTTPR and JMS [8], the source of a

message provides the correlator: a transaction ID or a

combination of JMSMessageID and JMSCorrelationID. For

single-direction operations, if HTTP or HTTPS is used and

the reception of the service invocation needs to be confirmed

by the client, the client's HTTP protocol handler should block

on the invocation waiting for the HTTP response to ensure

that the request has been successfully received by the service

provider's HTTP listener. For a case in which a service proxy

is used by the client, any error conditions associated with the

request should result in an exception being thrown. It's

important to model the interface of the service proxy to match

the WSDL operations defined by the service provider[2]. For

example, if a client invokes a one-way operation, the proxy

should never return a parameter to the client. Such an

exchange would in effect make the operation a request/reply

operation, with the reply information not coming from the

service provider. The W3C's WSDL working group is

expected to expand the language's support for asynchronous

operations by providing the ability to define callback

mechanisms formally within WSDL. In the meantime, the

four primitives listed above can be used in support of

asynchronous operations. However, the IDEs and other web

services tooling currently available to automate the generation

of client-side service proxies typically only support the

request/response model.

2.1 One-way and notification operations
In this pattern, the request and the response are two messages

defined within separate WSDL operations [2]. The request is

modeled as an inbound one-way operation and the response is

modeled as an outbound notification operation. Each message

is sent as a separate transport-level transmission. This pattern

as shown in Figure 1, provides a high level of decoupling

between the client and service provider, as it supports the use

of two datagrams exchanged between the parties, one for the

request and one for the response.

Fig 1: One-way and notification operations

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

9

For this pattern, the client is responsible for creating the

correlation ID and passing it to the service provider via

whatever mechanism has been agreed upon by the two parties.

SOAP headers, HTTP headers, and JMSCorrelationIDs would

all be acceptable mechanisms [5].

Defining the reply-to address, which indicates where the

response should be sent, is also the responsibility of the client,

and the means for informing the service provider of this

address is determined by how the WSDL is defined for the

operations. If the client has a published a notification listener

service supporting a one-way operation, its WSDL will

contain the port address for the service. Likewise, the service

provider will need access to the WSDL of the client's service

to determine where to send the response. Access to the WSDL

of the notification listener service can be provided when the

provider's web service is deployed or at runtime by passing a

reference to the WSDL on the initial request. Alternatively,

the specific address (for example, the URI) denoting where

the response is to be sent can also be provided explicitly as a

parameter on the request.

This pattern is also applicable for publish and subscribe

(pub/sub) and event notification types of services. A market

index update application would be a good example of a

pub/sub service; examples of event notification services

include applications that notified interested parties about the

completion of or exceptions in business process tasks, the

completion of a long-running report, or the meeting of certain

inventory thresholds. Providing the reply-to address

information as a parameter on the request (a request to

subscribe to a topic or event, for instance) will enable a

service provider to support a large number of subscribers with

little administrative support.

For this pattern, in which messages are sent using separate

transport-level transmissions without application-level

acknowledgements being exchanged between the client and

service provider, the transport used should be one considered

reliable if the business process that's being supported by the

message flows is critical.

2.2 Request/Reply operations
In this pattern, request and response are two messages defined

within a single request/reply operation and sent as two

separate and unrelated transport-level transmissions.

This pattern, as shown in Figure 2, can also provide a high

level of decoupling between the client and service provider, as

it supports the use of two datagrams exchanged between the

parties for the request and response. However, to use this

pattern, the service provider must be a little more

sophisticated in processing information at runtime. For

example, the service provider will need to be able to handle as

an input parameter the address to which it should send the

response (for example, the reply-to address).

Fig 2: Request/reply operation

For this pattern, the client is responsible for creating the

correlation ID and passing it to the service provider via

whatever mechanism has been agreed upon by the two parties.

Again, SOAP headers, HTTP headers,

and JMSCorrelationIDs are among the acceptable

mechanisms.

Defining the reply-to address denoting where the response

should be sent is also the responsibility of the client. Since a

single operation is used for this pattern, a reference to the

address or the explicit address itself must be provided as a

parameter on the request. For example, if the client has a

published an asynchronous response listener service

supporting one-way operations, a reference to the service's

WSDL can be provided on the initial request.

This pattern is applicable for general-purpose services where

the request results in a single response; examples of such

services include the persistence or retrieval of data, or the

initiation of a business process consisting of a single unit of

work, such as an electronic payment. Pattern 2 is similar to

Pattern 1, in which messages are sent using separate transport-

level transmissions without application-level

acknowledgements being exchanged between the client and

service provider. Thus, the transport used for this pattern

should also be one considered reliable if the business process

that's being supported by the message flows is critical [10].

2.3 Request/reply operations with polling
In this pattern, request and response are handled using four

messages defined within two separate WSDL operations. The

initial request is modeled as a request/reply operation, with

two messages (a transmission with a reply) sent as a single

transport-level exchange. The response is retrieved by a

second request, also modeled as a request/reply operation with

two messages sent as a single transport-level exchange [8].

The two operations are meant to be implemented as

synchronous flows, with information being returned from the

service provider for each request providing the client with a

level of acknowledgement per request.

This pattern shown in Figure 3. It enables the client-side

implementation to be simpler in support of self-service based

solutions, in which the client application initiates all

interactions, while also providing a level of decoupling

between the client and service provider. However, it's

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

10

assumed that the request/reply operations are synchronous

such that the flows for the reply messages use the native

transport reply mechanism (for example, an HTTP Response

operation).

Fig 3: Request/reply operation with polling

In the example shown in Figure 3, the service provider

generates the correlation ID and the client is responsible for

using it to retrieve the response; however, theoretically either

side of the exchange could create the correlation ID.

This pattern results in a simpler client implementation, as the

notification mechanism and listener components are not

required. However, the client must implement a facility with

which it can periodically poll for the response from the

service provider [11]. This pattern may not be the most

efficient, as more than one request per response may be

needed to retrieve the response if the initial service request

hasn't completed, but it makes for simpler implementations.

Thus, this pattern is applicable in cases where simplicity has a

priority and where the expected load for the service is low.

Examples of service types that could benefit from polling

include the initiation of long-running business processes,

requests for generation of complex reports, and services used

by browser-based customer facing solutions.

3. Request/reply operations with posting
Under this pattern, request and response are handled using

four messages defined within two separate WSDL operations.

The initial request is modeled as a request/reply operation,

with two messages sent as a single transport-level exchange.

The response is modeled as a solicit/reply operation, with two

messages sent as a single transport-level exchange. The two

operations are meant to be implemented as synchronous flows

with information being returned from the consuming party for

each request providing the requesting party with a level of

acknowledgement per request.

This pattern as shown in Figure 4, is similar to Pattern 1 and

useful for pub/sub or event notification services when a

synchronous transport is used and when the client and service

provider require an application-level acknowledgement.

Because of this similarity, the example situations given under

Pattern 1 could also be addressed by Pattern 4; other examples

of service types requiring explicit acknowledgements include

services used to exchange business-critical information or

confidential information for medical or financial industries --

funds transfers or the initiation of insurance claims, for

example.

Fig 4: Request/reply operations with posting

If the roles of the client and service provider are reversed for

the handling of the response, the WSDL operation for sending

the response can be defined as a request/reply operation for

the client. The role reversal is simply for convenience; it

facilitates the development of the pattern, as today's tooling

does not support solicit/reply operations. The messages that

flow between the two parties are not changed; only this

article's model for describing the client's and service

provider's perspectives is different. Main features of

asynchronous patterns [4][7] are summarized in Table 1.

Table 1 : Main features of asynchronous patterns

Pattern Use cases Features

Polling E-commerce B2C, web

portals

Very simple to use

but not efficient

Callback Long running async

information retrieval

services (not business

critical)

Hard to implement,

but more efficient.

Suitable for P2P.

Publish-

subscribe

Useful in news, business-

information

Same as Callback

pattern

Callback

with ack.

Variant of Callback, useful

to verify published data

reception

Inherits Callback

features. Adds initial

synchronous

information.

Publish-

subscribe

with ack.

Variant of Publish-

Subscribe, useful for

tracking purposes and in

B2B WS transactions

Inherits Publish-

Subscribe features.

Adds initial

synchronous

information.

4. CONCLUSIONS
As the industry further develops specifications that determine

how to coordinate flows between web services and how to

describe dependencies between web services that realize

business processes, support for asynchronous operations will

be simplified. However, today's web services specifications

and standards do not directly describe the support of

asynchronous operations, though they do include the

infrastructure and mechanisms on which asynchronous

operations can be based. Asynchronous web services patterns

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

11

will serve as foundations on which one can build advanced

asynchronous web patterns. The support of asynchronous web

service operations can be implemented using both

synchronous and asynchronous transport protocols. The use of

asynchronous transports, which inherently provide the

correlation of request and response messages and provide the

mechanisms to query status and retrieve response messages

independently, makes the support of asynchronous operations

on both the client and service provider sides easier, as

message-oriented middleware provides reliable messaging for

the transport of web service requests and responses. Likewise,

synchronous transports can be used to support simpler

implementations that support asynchronous operations,

especially where a self-service style is preferred by the client

application. Thus using asynchronous patterns we can achieve

faster communication. Asynchronous invocations provide a

great deal of flexibility for web services users and for the

people who write and host web services. With more web

services becoming generally available and getting more

complex at the same time, more applications are able to

integrate those web services into their applications. Because

most of the final applications ultimately interact with users,

the challenge is to provide a better response to user.

5. ACKNOWLEDGMENTS
We thanks teachers of Department of Computer Science,

Shivaji University, Kolhapur for motivating us for this

research work. We wish to thank the Principal of Thakur

College of Science and Commerce, Mumbai and Principal,

Y.C. Institute of Science, Satara for providing resources

required to complete this paper.

6. REFERENCES
[1] A. Bosworth et al., Web Services Addressing

http://msdn.microsoft.com/ws/2003/03/wsaddressing/,

2003, Accessed on 20th Dec 2011

[2] Erik Christensen, Francisco Curbera, Greg

Meredith, Sanjiva Weerawarana, Web Services

Description Language (WSDL) 1.1,

http://www.w3.org/TR/wsdl

[3] G. Alonso, F. Casati, H. Kuno, V. Machiraju, Web

Services - Concepts, Architectures and Applications.

Springer Verlag, October 2003

[4] I. Manolescu, M. Brambilla, S. Ceri, S. Comai, P.

Fraternali, Exploring the combined potential of Web sites

and Web services. WWW’03 (poster), Budapest, 2003.

[5] JavaTM RMI-IIOP Documentation,

http://download.oracle.com/javase/1.3/docs/guide/rmi-

iiop/index.html, Accessed on 20th Dec 2011

[6] M. Brambilla, S. Ceri, S. Comai, P. Fraternali,

Model driven development of Web Services and

hypertext applications. SCII03, June 2003, Orlando

[7] Matt Powell, Asynchronous Web Service Calls over

HTTP with the .NET Framework, Microsoft

Corporation, 2009

[8] Oracle WebLogic Server, Programming Advanced

Features of WebLogic Web Services Using JAX-RPC,

10g Release 3 (10.3), August 2008

[9] Osamu Takagiwa, Adrian Spender, Anthony

Stevens, Julien Bouyssou, Programming J2EE APIs with

WebSphere Advanced, IBM, 2001

[10] P. Yendluri, Web Services Reliable Messaging,

http://webservices.org/index.php/article/articleview/1148

/1/24, Accessed on 22nd Dec 2011

[11] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S.

Comai, M. Matera. Designing Data-Intensive Web

Applications.Morgan-Kaufmann, Dec. 2002. IBM,

BPEL4WS Version 1.1, http://www-

106.ibm.com/developerworks/library/ws-bpel/, Accessed

on 22nd Dec 2011

