
National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

21

Creating Web Services from Legacy Code

Vinay Goyal
Professor (CSE)

Jind Institute of Engineering & Technology,
Jind. (Haryana)

Amit Jain

Research Scholar (Computer Science),
Teerthanker Mahaveer University,

Moradabad. (Uttar Pradesh)

ABSTRACT
Over the past two decades, lots of people have forecast that

legacy systems would soon be a craze of the history. In bare

disparity, companies are now apprehending greater repayment

from their legacy systems as they tie them to distributed

systems. However, companies face quite a lot of major

disputes in managing their legacy systems in these rapidly

changing environments. The role of web services in migration

of legacy systems to service-oriented architecture is of

extreme importance for research field. Web Services are

software system designed to support interoperable machine-

to-machine interaction over a network. It has an interface

designed in a format that systems can work upon. In this

paper, an emphasis has been laid onto the study of web

services and their role in context to extraction of several

components from legacy systems.

Keywords
WSDL, SOAP, W3C, Packaging, Assembling.

1. INTRODUCTION
Today’s computing requires promising services accessible as

promptly as probable but this is not so simple to attain since

vast quantity of functionality is somehow masked in billions

of dollars value of existing code. Web services standards—

including SOAP, WSDL, UDDI, and BPEL—are based on the

readily and openly available internet protocols XML and

HTTP, and thus are easier and cheaper to be apprehended.

Web Services, along with a group of protocols, has become de

facto incorporation expertise for apprehending service-

oriented computing. Simple Object Access Control Protocol

(SOAP) is generally used as the communication protocol.

Web Services Description Language (WSDL) has become the

de facto standard for unfolding the boundary of a web

services. And further the concept of Universal Description,

Discovery and Integration (UDDI) is related to defining a

directory service for web services. UDDI enables web service

clients to locate candidate services and discover their details.

Service consumers and service providers utilize these

standards to perform Service-Oriented Architecture’s basic

procedures.

Web Services Description Language (WSDL) is a layout for

relating a web services interface. It is a way to explain

services and how they should be related to precise network

addresses. The price for that is modeling the evolution of

legacy systems to the WSDL interface, setting the parameters

according to the interface specification [1].

WSDL has three parts:

 Syntactic Description

 Operations

 Service Bindings

Fig 1. Components of WSDL

Syntactic Description is usually done by using XML and

comprises both of data type description and message details

that make use of the data type descriptions.

These descriptions are usually based upon some contracted

XML terminology. This conformity could be in existence

within an organization or between organizations.

Terminologies within an organization could be intended

purposely for that organization. They may or may not be

based on some industry-wide terminology. If data type and

message descriptions need to be used between organizations,

then most likely an industry-wide terminology will be used.

Processes describe procedures for the messages supported by

a web services. There are four types of processes:

 One-Way: Message sent without acknowledgement.

 Request/Response: The sender sends a message and

gets acknowledgement.

 Solicit Response: A request for a response.

 Notification: Messages sent to multiple receivers.

Processes are grouped into port types. Port types define a set

of processes supported by the Web service. Service bindings

join port types to a port. A port is defined by relating a

network address with a port type. A collection of ports defines

a service.

This binding is commonly created using - SOAP which

provides the envelope for sending web service messages over

the internet. It is part of the set of standards specified by the

W3C - The World Wide Web Consortium, which is involved

in developing interoperable technologies (specifications,

guidelines, software, and tools) and serves as a forum for

information, commerce, communication, and collective

understanding.

2. ARCHITECTURE OF WEB

SERVICES
The architecture for web services provides a framework that

can be represented with more powerful illustrations and

practices taken from recognized computer science approaches.

A set of services can be poised to form another service called

amalgamated service that represents a selected business

process.

Presently, a business process using web services can be

depicted in Business Process Execution Language (BPEL)

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

22

and can be executed by the assistance of business process

engine.

Fig 2. Architecture of web services

There are several set of steps which are from a part of Web

Services. The UDDI registry is intended to eventually serve as

a means of "discovering" Web Services described using

WSDL. The Web Services Description Language (WSDL)

forms the basis for Web Services. SOAP essentially

provides the envelope for sending the Web Services

messages. SOAP generally uses HTTP, but other means of

connection may also be used. In the above fig 2, a layout of

various procedures alongwith the services and description

language has been shown. The depiction of a business process

and its implementation decreases the information technology

space between business and software professionals.

3. FRAMEWORK FOR EXTRACTING

WEB SERVICES
There are three fundamental steps essential to produce web

services from legacy code.

 Recovering the legacy code.

 Packaging the recovered code.

 Assembling the code as a web service.

Recovering the Legacy Code
To be able to recover code from an accessible legacy code

base, it is prerequisite essential to situate that code and to

conclude if it is appealing to be reused. At times, there is no

issue in scrutinizing and appraising the code of a few

miniature programs. That can be done by any programmer

well-known with the code using an easy text editor. It is

relatively dissimilar to investigate numerous programs in

search of a few reusable chunk of code. Also domain

expertise is required, but he/she should be supported by

computerized reverse engineering tools. The method to

determine the business policy is the outcome which they

generate. By recognizing the variables which are returned by

the functions dispensing the business rules, one can also

classify the functions.

If the code was written in structured manner and then it would

have been easy to assign it to single block of code. But the

actual scenario is somewhat different from the usual. It is

altogether scattered as business functions in several blocks of

code. There is also a possibility that an individual block of

code may be involved in executing numerous business

functions. So in that situation there exist a close association

between the code structures and the business rules.

By having a data flow analysis based on the final outcome, it

is possible to outline the outcome back in the course of all of

the statements, which put in the effort toward fabricating it.

Thus, on recognition of the instructions, it is easy to locate

what exactly is stored in code blocks, i.e. the procedure,

paragraphs, subroutines, etc., they are interlinked with the

variables they relate to. This technique is known as Code

Slicing. It is originally used in testing to validate the path

leading to a given outcome. Nevertheless, it relates uniformly

to the assignment of eliminating business policies. The

indispensable point is that a business regulation is defined as

an algorithm for calculating a given outcome. There may also

be several outcome formed in diverse places, for example an

order inventory process which not only verifies the execution

of that order, but also renews the quantity of the item ordered

and produces a billing arrangement and a shipment order. To

extract the code for processing an order, it would then be

essential to recognize all of the data objects formed as an

outcome of that dispensing. The next step after recognizing

the code is to mine that code and to rebuild it as a split module

with its own interface. This is done by copying the effective

code blocks into a common structure and by keeping all of the

data objects they relate to into a familiar data interface.

Fig 3. Layout for migrating Source Code

In C, the interfaces are arguments of the type structure and

whereas in COBOL the objects are level 1 item in the linkage

section and in PL/I the objects are related data structures with

the pointers to them as arguments to the main process. The

final outcome will be a subroutine with a call interface. Thus,

the business logic code will be rearranged into a self-

contained subprogram. This is a prerequisite to packaging it.

A practical consequence of this code reengineering procedure

is a citation of the accessible business rules. For every data

outcome of a particular use case, the conditions, assignments,

computations and I/O procedure is vital. Also, to determine

that outcome an outline of a data flow tree is established. The

concluding outcome builds the root node of the tree. The other

nodes are the parameters and transitional variables which flow

into that ending outcome. The branches of the tree correspond

to the state transitions, which are activated by conditional

statements such as if, switch case and loop statements.

Thus, a business procedure is a connection of control and data

flow, it is indispensable to portray both view point. With the

help of this illustration, it becomes feasible for the user to

choose whether an accessible rule, realized within a legacy

system is worth reclaiming it as a general function in a

service-oriented architecture arena.

Packaging the recovered code
Once a business regulation has been found, acceptable and

creditable of reclaiming, the next step is to package it. The

objective of the packaging phenomenon is to provide the

constituent extracted from the legacy code with a WDSL

interface. The method used is to alter every entry into a

process and to change each argument into an XML data

constituent. The data structures will become multifaceted

rudiments with one or more sub-elements.

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

23

The processes will have their parameters and outcomes as

indication to the data element descriptions. Both the technique

and the argument will be developed into an XML

representation with a SOAP framework. With the help of a

certain tool the automation procedure is being conducted for

transformation in relation to the various programming

languages.

Besides, creating the WSDL interface description, it also

improves the packaged component with two extra modules.

One module is for parsing the inward message and extracting

the data from it. This data is then assigned to the equivalent

parameters in the packaged module. The other module is for

forming the return message from the outcome generated by

the packaged element. In this way, the legacy code can be

reprocessed as a web service without having to transform the

code.

The two generated subroutines act as a link between the

WSDL interface and the call interface of the original code.

This is a prerequisite to packaging it [2]. The idea is to evade

manual exploitation of the legacy code, since manual

intrusion is not only expensive, but also error prone. To be

effective packaging must be automated.

This simple fact has been acknowledged for offering

packaging solutions for entire programs and databases.

Nevertheless, the logic they contain can be reused, but only if

it is extracted from the novel context and converted into

another web compatible one format.

As of now, service-oriented architecture is essentially a

collection of services. These services communicate with each

other. The communication can involve either simple data

passing or it could involve two or more services coordinating

some activity. Some means of connecting services to each

other is needed.

Assembling the Code
The last step is assembling the code as web service, so as to

link the web service to the overlying business procedures and

protocols. This is made possible by means of a proxy

component. The business process work flow actually calls

upon the proxy which is accessible in the same address space

as the process definition.

On the application server, there is a scheduler, which receives

the SOAP message & concludes which web-service is to be

performed and forwards the WSDL contents to that particular

service, in fact into the packaged legacy code. The packaging

of the code parses the XML input data and moves the data to

the suitable addresses in the packaged component.

Once the packaged component has been implemented, its

outcome is converted by the package into an XML output data

structure, which goes back to the scheduler to be transmitted

back to the web client. Thus, in this way the business process

can be processed on any client anywhere and still is able to

access the legacy functions on the application server.

4. ISSUES RELATED TO

REUSABILITY
High performance is an issue with web services. There is a

significant time penalty to be paid for in interpreting the

business process language and in sending messages to and

from the application server. Parsing the WSDL requests and

responses is only one of the many time consuming bottle

necks. The conversion of the WSDL interface to the local

language interface and back is a minor problem compared to

the total performance issue.

Relative to interpreting the BPEL, marshalling and

dispatching the messages and parsing the WSDL interfaces, it

is insignificant. It must be seen that the dynamic binding of

business processes to distributed web services is in itself a

resource consuming process with or without packaging [4].

Thus, it can be concluded that using packaged web services is

more efficient than using non-packaged web services [3].

5. CONCLUSION
Web Services offered within the framework of a service-

oriented architecture promise to make applications more

flexible, easier to compose and cheaper to develop [5]. In this

paper it has been shown and discussed, how legacy code can

be reused to help develop web services. It would be unwise to

ignore the vast amount of proven legacy software available

within corporations and public administrations, when

migrating to a service-oriented architecture is a feasible

solution. There are three ways of doing this.

One is to reverse engineer the code and to re-implement the

algorithm in another language. Another is to package the

executable code and to access it via the existing interface. The

third alternative is to transform the source code as has been

described here. This third alternative is to be recommended

when the code is sufficiently independent of its environment

and the cost of reimplementation is also not too high. The

technology for doing so is available. Doing so avoids the cost

and risks of having to develop them from scratch. The savings

is the difference between the cost of recovering and packaging

the legacy functions as opposed to the cost of designing,

coding and testing. It promises to be significant. The main

problem has turned out to be reentrancy. The state of the data

contained within a packaged web service is that of the last

caller. Thus, if different processes are using the same service,

their data will be mixed.

One solution is to store the internal data state in a temporary

database under the identity of that user. The other solution is

to have a scheduler. Both solutions have advantages and

disadvantages. However, this is not a problem specific to

packaged legacy code, but to all web services. It has to be

solved in order for this technology to be accepted widely.

6. REFERENCES
[1] Lavery,J./Boldyreff,B./Ling,B./Allison,C.: Modelling the

evolution of legacy systems to Web-based systems ,

Journal of Software Maintenance and Evolution,Vol.16,

Nr. 1,2004, p.5.

[2] Sneed, H.: Extracting Business Logic from existing

COBOL Programs as a Basis for Reuse , Proc. of 9th

IWPC-2001, IEEE Computer Society, Toronto, May,

2001, p. 167.

[3] Manoj, T./Redmond, R./Yoon, V./Singh, R.: A semantic

approach to monitor Business Process Performance ,

Comm. of ACM, Vol. 48, No. 12, Dec. 2005, p. 55.

[4] Zou, Y./ Lau, T./ Kontogiannis, K.: Model Driven

Business Process Recovery , Proc. of 11th WCRE-2004,

IEEE Computer Society Press, Delft, N.L. Nov. 2004, p.

224.

[5] Jones, S.: Towards an acceptable Definition of Web

Services , IEEE Software, May 2005, p. 87.

