
National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

 7

A Novel Approach to Automatically Combine Search
and Ranking Results

Mohd. Husain
Department of Computer Sc. &

Engineering.
MGIMT, Lucknow, INDIA

Ayushi Prakash
Department of I.T.

Azad IET, Lucknow
INDIA

Afsaruddin Khan
Department of I.T.

Azad IET, Lucknow
 INDIA

ABSTRACT
In the World Wide Web there are innumerable information

sources containing very useful information that cannot be

indexed by general-purpose search engines and hence cannot

be visited by most common users. Of course, users can search

a source through its query interface if they know where the

source can be found. The idea of querying and collating

results from multiple databases is not new. Internet meta-

search engines, online catalogues, multi-databases and other

kinds of information integration systems have attracted a lot

of attention since the advent of the network.

In the web's early days, it used to be that a search engine

either presented crawler-based results or human-powered

listings. Today, it is extremely common for both types of

results to be presented. Usually, a hybrid search engine will

favor one type of listings over another. Often the user is

interested in items that are both visually and semantically

similar. With a view to supporting such functionality, the

hybrid search engine provides a novel retrieval method, in

which both visual and ontology search is employed for the

same query. This novel method automatically combines

different types of search results, and complements content-

based search with ontology-based search and vice versa. In

this paper, we study the rank aggregation problem in the

context of the web, i.e. the problem of ranking result from

various sources. There are various ranking aggregation

methods available. We design an algorithm, based on which

we propose a new rank aggregation method. It is observed

that our proposed method is more effective and efficient than

other well-known methods.

Keywords
Crawling, Multi-criteria selection, Meta Search Engines, Rank

Aggregation, and Word Association.

1. INTRODUCTION
Document Retrieval is the computerized process of producing

a list of documents that are relevant to an inquirer’s request by

comparing the user’s request to an automatically produced

index of the textual content of documents in the system. These

documents can then be accessed for use within the same

system. Nearly everyone today uses Document Retrieval

systems, although they may not refer to them as such, but

rather as Web-based search engines.

Searching on Internet has never been an easy task, even though

it is one of the most common tasks performed on the Web.

This task is becoming even more difficult with the continued

growth of the amount of information posted on the World

Wide Web. Web is quickly gaining grounds as a viable source

of information over the past year or so with the appearance of

many traditional and novel information services on the Web.

Due to the sheer size of the Web and the rapidity with which

new information gets added and existing information changes,

finding relevant documents could sometimes be worse than

searching for a needle in a haystack [1].

The increasing availability of machine readable texts led to

rapid, widespread growth in the usage of Information Retrieval

systems as the collection against which users could search

increased dramatically. Not surprisingly, this also led to the

flourishing of the early commercial Information Retrieval

systems. These systems were sufficiently complex and non-

intuitive that end users needed to have trained search

intermediaries do their searches, because these intermediaries

could understand the intricacies of the data records in the

Information Retrieval System and were well trained in

constructing queries in Boolean logic. These early systems

were not based on free text searching, but rather, required the

intermediary to know the exact wording and syntax to use in

searching, both in proper names and subject based descriptions

– referred to respectively as authority files and controlled

vocabulary.

Measuring relative performance of information retrieval (IR)

systems such as Web search engines is essential for research

and development and for monitoring search quality in dynamic

environments. However, due to the size and dynamic nature of

document collections and users, evaluating or comparing the

retrieval performance of search engines in regular intervals is

difficult. Automatic evaluation of retrieval systems is the

ultimate solution to this problem. Assessing IR effectiveness

normally requires a test collection, a set of queries, and

relevance information about each document with respect to

each query. However, for very large databases creating

relevance judgment is a difficult and extremely time-

consuming task, since all documents need to be judged for

relevance to each query [2].

Searching for relevant information is a difficult and sometimes

very time-consuming procedure because of an enormous

amount of information and the lack of structure. Traditional

Web search engines return the user query results by displaying

a long list of documents without any process of data

classification or clustering. Considering the variations among

search engines, the efficient integration of the results from

several different search engines for the same query, is an

important but difficult technique that can dramatically improve
Web search technology. To exhaust a Web search, one often

has to use several search tools and has to be familiar with the

different interfaces and searching rules. It would be desirable

to have a central place with a uniform interface, where a query

can be entered and the search conducted simultaneously in as

many search tools and directories as necessary. The search

results can be brought back and displayed in a consistent

format [5].

Once a good ranking function has been engineered, query

throughput often becomes a critical issue. Large search

engines need to answer thousands of queries per second on

collections of several billion pages. Even with the

construction of optimized index structures, each user query

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

 8

requires a significant amount of data processing on average.

To deal with this workload, search engines are typically

implemented on large clusters of hundreds or thousands of

servers, and techniques such as index compression, caching,

and result presorting and query pruning are used to increase

throughput and decrease overall cost.

There is a growing need for formal methods that guarantee the

reliability, correctness, and efficiency of computerized

systems. Document Retrieval is more commonly referred to as

Information Retrieval. It is the computerized process of

producing a list of documents that are relevant to an inquirer’s

request by comparing the user’s request to an automatically

produced index of the textual content of documents in the

system. These documents can then be accessed for use within

the same system. Nearly everyone today uses Document

Retrieval systems, although they may not refer to them as such,

but rather as Web-based search engines. In Document

Retrieval, some processes take place dynamically when the

user inputs their query, while other processes take place off-

line in advance and in batch mode and do not involve

individual users. These static processes are run on the

documents that will be made available in the retrieval system

[3].

To provide users a certain degree of robustness of search in the

face of various shortcoming and bases of individual search

engines, we can rank the database with respect to several small

subsets of the queries, and aggregate these rankings. This is

commonly known as rank aggregation. Rank aggregation can

be used in situations where the user preference includes a

variety of criteria, and the logic of classifying a document as

acceptable or not is too complex such as multi-criteria

selection or word association queries. Multi-criteria selection

can be when a user tries to choose a product from its database

and word association queries can be when the user tries to

search for a good document on a topic, knowing a list of

keywords that collectively describe the topic, but not sure that

the best document on the topic necessarily contains all of them.

Ranking a list of several alternatives based on one or more

criteria is encountered in many situations like in identifying the

best alternatives [1]. In case of single criteria for ranking, the

task is easy and is simply a reflection of the judges (search

engine in the case of meta-search, individual criterion for

multi-criteria selection, and subsets of queries in the case of

word association queries) opinions. In contrast, there can be

another case when individual ranking preferences of several

judges is given.

2. META SEARCH ENGINES
Many search engines not only log query submissions but also

record details each time a user clicks on a search result. In

order to rank the results obtained, we have made use of rank

aggregation strategies. A meta search engine can be use to

transmit user’s search simultaneously to several individual

search engines and their database of web pages and get results

from all the search engines queried [2]. A lot of time can be

saved if the search is initiated at a single point sparing the need

to learn and use several separate search engines.

Figure 1. Architecture of a meta-search engine

The idea of querying and collating results from multiple

databases is not new. Internet meta-search engines, online

catalogues, multi-databases and other kinds of information

integration systems have attracted a lot of attention since the

advent of the network. There are many meta-search and

information integration systems are available.

Most current meta-search engines only use a simplest user

interface. Some systems only list all user interfaces of different

sources separately on a page or several hierarchically

organized pages. In order to avoid losing important functions

of search engines, both their generality and particularity should

be considered when constructing the user interface of a meta-

search engine.

Meta search engines help us in achieving the following

objectives- as the World Wide Web is a huge unstructured

corpus of information, various search engines crawl the WWW

from time to time and index the web pages [9]. However, it is

virtually impossible for any search engine to have the entire

web indexed. Most of the time a search engine can index only

a small portion of the vast set of web pages existing on the

Internet. Each search engine crawls the web separately and

creates its own database of the content. Therefore, searching

more than one search engine at a time enables us to cover a

larger portion of the World Wide Web. Secondly, crawling the

web is a long process, which can take more than a month

whereas the content of many web pages keep changing more

frequently and therefore, it is important to have the latest

updated information, which could be present in any of the

search engines. However, good ranking strategies are needed

in order to aggregate the results obtained from the various

search engines. Quite often, many web sites successfully spam

some of the search engines and obtain an unfair rank. By using

appropriate rank aggregation strategies, we can prevent such

results from appearing in the top results of a meta-search.

Meta search engines can be categorized as-

 Meta search engines for serious deep digging.

 Meta Search engines which aggregate the results
obtained from various search engines.

 Meta Search engines which present results without
aggregating them.

Meta search engine of the second type i.e. which aggregate the

results obtained is more useful. We have proposed an

aggregation method for such an aggregation. Any method for

rank aggregation [9] for Web applications must be capable of

dealing with the fact that only the top few hundred entries of

each ranking are available. Of course, if there is absolutely no

Parallel

Processes

Data

Structure

Ranking

Algorithm

Aggregated

Results

SE1

SE2

SE3

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

 9

overlap among these entries, there isn't much any algorithm

can do; the challenge is to design rank aggregation algorithms

that work when there is limited but non-trivial overlap among

the top few hundreds or thousands of entries in each ranking.

Finally, in light of the amount of data, it is implicit that any

rank aggregation method has to be computationally efficient.

There are several applications of rank aggregation methods in

the context of searching and retrieval [5] such as – Meta-

Search, Aggregating Ranking Functions, Spam Reduction,

Word Association Techniques and Search Engine Comparison.

3. RANKING
In every query formulation technique there is a human in the

loop. From very simple queries to extremely complex queries

and there must be a person to define the information need in

the form of a query. One of the system performance measures

that are often ignored is the level of effort required for query

construction. In many cases of the information need, the

required query is quite simple. Specifically, simple queries

perform well in the case where the information density is high.

For example, if the analyst wants to know the score of the

Lakers game last night, there are many sources that can

provide that information and a simple query will suffice. In

other cases, particularly where the information density low, the

query must be complex and broad so that relevant data is not

missed.

An online information seeker often fails to find what is wanted

because the words used in the request are different from the

words used in the relevant material. Moreover, the searcher

usually spends a significant amount of time reading retrieved

material in order to determine whether it contains the

information sought.

The conceptual indexing and retrieval system used for these

experiments automatically extracts words and phrases from

unrestricted text and organizes them into a semantic network

that integrates syntactic, semantic, and morphological

relationships. The resulting conceptual taxonomy is used by a

specific passage-retrieval algorithm to deal with many

paraphrase relationships and to find specific passages of text

where the information sought is likely to occur. The database

systems support a simple Boolean query retrieval model, where

a selection query on a SQL database returns all tuples that

satisfy the conditions in the query. This often leads to the

Many-Answers Problem: when the query is not very selective,

too many tuples may be in the answer [5].

Document surrogates containing both anchor text and query

associations have been found to improve retrieval

effectiveness. Indeed, Web search engines have long made use

of anchor text to improve result quality. For retrieval purposes,

a text document may be supplemented with additional terms

derived from external sources such as metadata, anchor text

and so on. In the case of document surrogates, the additional

terms form their own document which is used instead of the

original. Retrieval may be based on scoring the surrogate

collection or those scores may be combined with scores from

the original collection. The following are examples of the use

of surrogate or supplemented documents [5].

Given a universe U, an ordered list (or simply, a list) L with

respect to U is an ordering of a subset S of U, i.e. -

L = [x1 > x2 > ... > xd], with each xi in S, and > is some

ordering relation on S. Also, if i in U is present in L, let L(i)

denote the position or rank of i (a highly ranked or preferred

element has a low-numbered position in the list). For a list L,

let |L| denote the number of elements. By assigning a unique

identifier to each element in U, we may assume without loss of

generality that U = {1, 2, ..., |U|}.

Depending on the kind of information present in L, three

situations arise -

1. If L contains all the elements in U, then it is said to
be a full list. Full lists are, in fact, total orderings of
U. For instance, if U is the set of all pages indexed
by a search engine, it is easy to see that a full list
emerges when we rank pages with respect to a query
according to a fixed algorithm [10].

2. There are situations where full lists are not

convenient or even possible. For instance, let U

denote the set of all Web pages in the world. Let L

denote the results of a search engine in response to

some fixed query. Even though the query might

induce a total ordering of the pages indexed by the

search engine, since the index set of the search

engine is almost surely only a subset of U, we have a

strict inequality |L| < |U|. In other words, there are

pages in the world which are unranked by this search

engine with respect to the query. Such lists that rank

only some of the elements in U are called partial

lists.

A special case of partial list is as follows –

If S is the set of all the pages indexed by a particular

search engine and if L corresponds to the top 100

results of the search engine with respect to a query,

clearly the pages that are not present in list L can be

assumed to be ranked below 100 by the search

engine. Such lists that rank only a subset of S and

where it is implicit that each ranked element is above

all unranked elements, are called top d lists, where d

is the size of the list [12].

To measure the distance between two full lists with respect to a

set S, distance measures are -

(1) The distance (D1) is the sum, over all elements i in S, of the

absolute difference between the rank of i according to the two

lists. Formally, given two full lists L and M, their distance (D1)

is given by-

D1 (L, M) = ∑i |L(i) - M(i)| (1)

After dividing this number by the maximum value (1/2)|S|2,

one can obtain a normalized value of the distance (D1), which

is always between 0 and 1. The distance (D1) between two lists

can be computed in linear time.

(2) The second distance (D2) counts the number of pair wise

disagreements between two lists; that is, the distance between

two full lists L and M is -

D2 (L, M) = |{(i, j) : i < j, L(i) < L(j) but M(i) > M(j)| (2)

Dividing this number by the maximum possible value (1/2)

S (S - 1) we obtain a normalized version of the distance (D2).

The distance (D2) for full lists is the "bubble sort" distance, i.e.,

the number of pair wise adjacent transpositions needed to

transform from one list to the other. The distance (D2) between

two lists of length n can be computed in n log n time using

simple data structures. The above measures are metrics and

extend in a natural way to several lists. Given several full lists

L, M1, ..., Mk, for instance, the normalized distance (D1) of L to

M1, ..., Mk is given by-

D1 (L, M1,....., Mk) = (1/k) ∑i D1(L, Mi) (3)

One can define generalizations of these distance measures to

partial lists. If M1, ..., Mk are partial lists, let U denote the

union of elements in M1, ..., Mk, and let L be a full list with

respect to U.

(3) Given one full list and a partial list, the distance (D1)

weights contributions of elements based on the length of the

lists they are present in. More formally, if L is a full list and M

is a partial list, then -

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

 10

SD1 (L, M) = ∑i in M |(L(i)/|L|) - (M(i)/|M|)|

 (4)

We will normalize SD1 by dividing by |M|/2.

4. OUR PROPOSED WORK
In our proposed algorithm, the distances are used to rank the

various results. Let P1, P2,……….,Pn be partial lists obtained

from various search engines. Let their union be S. A weighted

bipartite graph for distance (D1) optimization (N, SP, D1) is

defined as-

N = set of nodes to be ranked

SP = set of positions available

D1(e,p) = is the distance (from the Pi’s) of a ranking that

places element ‘e’ at position ‘p’, given by-

D1(e,p) = ∑i =1k | Pi(e)/|Pi| - p/n| (5)

where n = number of results to be ranked and |Pi| gives the

cardinality of Pi.

Computation of aggregation for partial lists is NP-hard. Hence

we have used distance measure (D1). This problem can be

converted to a minimum cost perfect matching in bipartite

graphs. There are various algorithms for finding the minimum

cost perfect matching in bipartite graphs.

Our proposed algorithm works as follows–

Step1: Calculate the reduced cost matrix from the given

cost matrix by subtracting the minimum of each row
and each column from all the other elements of it.

Step2: Cover all the zeroes with the minimum number of
horizontal and vertical lines.

Step3: If the number of lines equals the size of the matrix,
find the result.

Step4: If all of the zeroes are covered with fewer lines than
the size of the matrix, find the minimum number that
is uncovered.

Step5: Subtract it from all uncovered values and add it to
any value(s) at the intersections of the lines.

Step6: Repeat until result is obtained.

In evaluating the performance of the ranking strategies for all

the queries, we have chosen precision as a good measure of

relative performance because all the ranking strategies work on

the same set of results and try to get the most relevant ones to

the top. Hence, a strategy that has a higher precision at the top

can be rated better from the user’s perspective. We have

plotted the precision of the ranking strategies with respect to

the recall. The recall is calculated as the number of relevant

documents retrieved/total number of relevant results thus

judged. It can be observed that on an average, our proposed

ranking aggregation method gives better precision for the

given set of results.

TABLE 1. Precision of several Rank Aggregation methods
at a given Recall

0

0.2

0.4

0.6

0.8

1

0.
12

0.
24

0.
48 0.

6
0.

72
0.

84
0.

96

Recall

P
re

c
is

io
n

Condorcet

Method

Borda's

Method

Our Method

Figure 2. Graphical Representation of Precision and

Recall

5. CONCLUSION
We have proposed a rank aggregation method which works on

our designed algorithm. This method has the advantage of

being applicable in a variety of contexts and tries to use as

much information as available. Our method is simple for

implementation and do not have any computational overhead

as compared to other methods. It is efficient, effective and

provides robustness of search in the context of web.

6. REFERENCES
[1]. J. I. Marden. Analyzing and Modeling Rank Data.

Monographs on Statistics and Applied Probability, No

64, Chapman & Hall, 1995.

[2]. Meng, W., Yu, C., & Liu, K.-L., Building efficient and

effective metasearch engines. ACMComputing Surveys,

2001, 34(1), 48–89.

[3]. Aslam, J. A., Montague, M., Models for metasearch. In:

Proceedings of the 24th ACMSIGIR conference (pp.

276–284), 2001.

[4]. Cynthia Dwork, Ravi Kumar, Moni Naor, D Siva Kumar,

Rank Aggregation Methods for the web. In proceedings

of the Tenth World Wide Web Conference, 2001.

[5]. Baeza-Yates, R., & Ribeiro-Neto, B., Modern

information retrieval. New York: ACM Press, 2010.

[6]. Amitay, E., Carmel, D., Lempel, R., & So.er, A., Scaling

IR-system evaluation using term relevance sets. In

Proceedings of the 27th ACMSIGIR conference, 2004,

pp. 10–17.

Condorcet Method

Precision 0.8 0.7 0.8 0.6 0.4 0.5 0.3

Recall 0.12 0.24 0.48 0.6 0.72 0.84 0.96

Borda’s Method

Precision 0.9 0.5 0.5 0.6 0.4 0.5 0.3

Recall 0.12 0.24 0.48 0.6 0.72 0.84 0.96

Our Method

Precision 0.9 0.6 0.9 0.8 0.6 0.6 0.3

Recall 0.12 0.24 0.48 0.6 0.72 0.84 0.96

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

 11

[7]. Soboro., I., Nicholas, C., & Cahan, P. Ranking retrieval

systems without relevance judgments. In Proceedings of

the 24th ACM SIGIR conference, 2001, pp. 66–73.

[8]. Croft, W. B., Combining approaches to information

retrieval. In W. B. Croft (Ed.), Advances in information

retrieval: recent research from the center for intelligent

information retrieval. Kluwer Academic Publishers,

2000.

[9]. Cynthia Dwork, Ravi Kumar, Moni Naor, D Siva Kumar,

Rank Aggregation Methods for the web. In proceedings

of the Tenth World Wide Web Conference, 2010.

[10]. Fan, W., Fox, E. A., Pathak, P., & Wu, H. The effects of

fitness functions on generic programming-based ranking

discovery for Web search. Journal of the American

Society for Information Science and Technology, 55(7),

2004, 628–636.

[11]. Hawking, D., Craswel, N., Bailey, P., & Gri.ths, K.,

Measuring search engine quality. Information Retrieval,

4(1), 2001, 33–59.

[12]. Nuray, R., & Can, F., Automatic ranking of retrieval

systems in imperfect environments. In Proceedings of the

26th ACM SIGIR conference 2009, pp. 379–380.

