
 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

33

Managing Knowledge in Agile Software Development

Amitoj Singh

Assistant Professor

Patel Memorial National
College, Rajpura

Kawaljeet Singh

Director,

University Computer Centre,

Punjabi University, Patiala

Neeraj Sharma

Associate Professor

Punjabi University, Patiala

ABSTRACT

These days business activities are changing at very rapid rate

and there are increasingly complex requirements set on

programming solution that puts traditional software

development methods (also called heavyweight) at the rear

and leads to the need for other development practices which

can overcome the problem of software crises. Modern

approaches, also known as agile or lightweight

methodologies, claim to provide solution to above said

problem. Heavyweight methodologies, commonly known for

its traditional ways to develop software put emphasis on

comprehensive planning, detailed documentation, and

expansive design. Unlike traditional methods, agile

methodologies employ short iterative cycles, and rely on tacit

knowledge within a team. Knowledge Management (KM) can

be easily accepted into agile software development

environments. Following are two reasons in favor of this point

of view. First, the agile cultural infrastructure already

encourages values such as cooperation, communication and

knowledge sharing; specifically, agile software development

processes include some practices that support KM, e.g. stand-

up meetings, the planning game, pair programming and the

informative workplace. Second, KM is about learning, and

ASD set up an environment that supports learning processes.

In this paper, attempt is made to find out specific agile

practices which promote KM.

General Terms

Knowledge Management, Agile software development

Keywords

Scrum, Extreme programming, Knowledge Sharing

1. INTRODUCTION
For many years a large number of different software

development methodologies have been proposed to tackle the

problems associated with software development. Avison and

Fitzgerald define methodology as a set of procedures,

techniques, tools and documentation aid which help

developers to implement a new information system [1],

[37]. Methodologies help in imposing a closely controlled

process upon software development with a goal to make a

software development process more efficient and predictable

[2].

One of the reasons for using these methodologies is to put in

order the different work processes by emphasis on planning,

and so that it can help the development team to succeed in the

project in which they are working. Another reason is to make

software development process more predictable and efficient

[3]. Traditional methodologies are plan-driven i.e. work

begins with the elicitation and documentation of an entire set

of requirements, complete architectural plan and followed by

high-level design. Traditional methodologies emphasize on

complete planning, detailed documentation, and expansive

design. Because of these heavy features, this methodology is

popularly known as heavyweight. But in spite of these

features, lots of projects get failed, over budget or delayed.

Lot of studies have been conducted which have reported the

failures with these heavyweight methodologies. These failures

are also referred to as „software crises (e.g. [4],[5]).

Glass (2001) makes use of the term „methodology wars‟ to

illustrate the often unfriendly dispute between advocates of

agile and plan-driven software development. He further added

that with the publication of the „Manifesto for Agile Software

Development‟ (Agile Alliance 2001) [7] the dispute became

more severe [6]. Advocates of agile argued that these

methodologies cope successfully with common problems of

software projects. To support this argument many surveys

have been carried out (e.g. [34], [35], [36]).

2. AGILE SOFTWARE DEVELOPMENT
What is the meaning of being agile? According to Jim

Highsmith being agile means being able to deliver quickly,

change quickly, and change often [8]. With an agile approach,

one can deliver business-oriented results rapidly and

effectively. Differentiating from the working point of view of

traditional methods, agile methodologies use short iterative

cycles, and rely on tacit knowledge within a team. The name

lightweight or agile can be defined as “1) marked by ready

ability to move with quick easy grace or 2) having a quick

resourceful and adaptable character” [9]. An agile method

generally encourages incremental development and delivery

of software product. This process should be able to allow

changes occurring during the development phase and should

be adaptive in nature [10].

The name “agile” came about in 2001, when seventeen

process methodologists held a meeting to talk about the future

trends in software development. The outcome to this meeting

was the formation of “Agile Alliance” and its manifesto for

agile software development.

2.1 Features of agile manifesto [7]
 Individuals and interactions over processes and tools.

 Working software over comprehensive documentation.

 Customer collaboration over contract negotiation.

 Responding to change over following a plan.

Agile techniques may differ in practices (XP, ASD, DSDM,

SCRUM, CRYSTAL etc.) but, they contribute to common

characteristics, including iterative development, and a focus

on interaction and communication. Cockburn and Highsmith

explain what is new about agile methods is not the practices

they use, but their recognition of people as the main driving

force which can lead to project success [11]. Many surveys

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

34

have claimed XP and Scrum methodologies are widely used

in the industry and are the most popular (e.g. [34], [35], [36]).

These methodologies are explained in brief.

2.2 Extreme Programming (XP)
Extreme Programming (XP) is the agile methodology that has

gained most attention in the last few years. Extreme

Programming (XP) was developed before the Agile Manifesto

was written and Principles of agile manifesto have influenced

this methodology. Extreme Programming (XP), created by

Kent Beck, have four fundamental values: communication,

feedback, courage, simplicity. A summary of XP practices are

given below [38].

2.2.1 Planning
Efforts needed to implement customer stories have been

estimated by programmer and the customer decides the scope

and timing of releases based on estimates.

2.2.2 Small/short releases
Series of small and regularly updated versions of application

is developed. New versions are released anywhere from daily

to monthly.

2.2.3 Refactoring
Refactoring refers to restructuring the system. It involves

adding flexibility and simplification of the code without

changing its functionality and removing duplication of code if

it exists.

2.2.4 Pair programming
Two Programmers work on a single computer. One person

types the code and is called the driver, another reviews it and

is called the navigator. Role of the navigator is to check the

code for errors simultaneously.

2.2.5 Test first development
In this approach, the automated tests are written prior to the

writing of functional code. It is similar to Test Driven

Development (TDD).

2.2.6 Collective ownership
Collective Code ownership means no single person possess or

is responsible for individual code segments, rather anyone can

change any part of the code at any time.

2.2.7 Metaphor
 It is defined by a set of metaphors between the customer and

the programmers which describes how the system works.

2.2.8 Continuous Integration
Continuous Integration means a new piece of code is

integrated with the existing system when it is ready to use and

while integrating new code to system, the system is built

again and all tests are performed on integrated system for the

changes to be accepted.

2.2.9 On-site customer

It means all the time customer will be available to the

development team.

2.3 SCRUM
The term „scrum‟ was originally derived from the game of

rugby where it means “getting an out-of-play ball back into

game” with teamwork. Scrum does not provide any specific

practices for software development but it provides a

management strategy or tools to control the development

process and to avoid the chaos by unpredictability and

complexity. In Scrum, software is delivered in increments

called “Sprints”. Each sprint begins with planning and ends

with a review. A sprint planning which is done by Scrum team

is a time-boxed event, which is used for detailed planning for

sprint. The stakeholders of a project attend sprint review

meetings to review the state of the business, market and

technology. A retrospective meeting is used to assess the

degree of teamwork in the completed sprints. Some of the key

Scrum practices are given below [39].

2.3.1 Product Backlog
This is the prioritized list of all features and changes that are

yet to be made to the system. The product Owner is

responsible for maintaining the Product Backlog.

2.3.2 Sprints
Sprints are 30-days in length. These are the iterations in which

all the development work is done.

2.3.3 Sprint Planning Meeting
Sprint planning meeting is attended by the customers, users,

management, Product owner and Scrum Team. This meeting

is used to set goals and functionality of the product.

2.3.4 Daily Scrum Meeting
 It is a daily meeting for approximately 15 minutes, which is

organized to keep track of the progress of the Scrum Team

and address any problem faced by the team

3. KNOWLEDGE MANAGEMENT
Software development process has always been a knowledge-

intensive task. As the complexity of software building has

increased, there is a greater need of knowledge processes to

solve the problems [12], [13]. Knowledge management is “a

method that simplifies the process of sharing, distributing,

creating, capturing and understanding the company

knowledge” [14]. Knowledge is one of the main competitive

assets of the organization, which allows the enterprise to be

productive and to deliver competitive products and services.

Companies and organizations can improve their ability to

create, acquire, disseminate, and retain knowledge simply by

applying knowledge management techniques, thus allowing

them to make efficient decisions, control complexity, and

improve productivity [15].

Nonaka [16] differentiates between implicit (tacit) and

explicit knowledge. Explicit knowledge is stored in textbooks,

software products and documents; implicit knowledge is

stored in the minds of people in the form of memory, skills,

experience, education, imagination and creativity. Classifying

it further, Spender [17] categorizes knowledge as implicit,

explicit, individual and collective knowledge. It is common

belief that implicit and explicit is important however, implicit

knowledge is more difficult to identify and manage [18].

But in practice, organisations deal with two fundamental and

opposing knowledge strategies, these are codification strategy

or a personalization strategy [19].

3.1.1 Codification
To arrange and store information that constitutes the

knowledge of the company, and to make this knowledge

available to the people working in the organisation.

3.1.2 Personalization
It maintains the flow of information in a company by having a

centralized store of information about knowledge sources, like

a ”yellow pages” of who knows what in a company.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

35

Earl [38] has classified work in knowledge management into

schools. The schools are broadly categorized as

“technocratic”, “economic” and “behavioural”. The

technocratic schools are 1) the systems school, which focuses

on technology for knowledge sharing, using knowledge

repositories; 2) the cartographic school, which focuses on

knowledge maps and creating knowledge directories; and 3)

the engineering school, which focuses on processes and

knowledge flows in organizations.

4. AGILE KNOWLEDGE

MANAGEMENT
Knowledge Management (KM) has emerged in response to

the importance of knowledge and the need to maximize its

usefulness. Much of early KM research was focused on

Information Technology (IT), often used for building software

systems to explicitly record, organize, and disseminate

knowledge within an enterprise. The range of KM research

has since widen and become more multidisciplinary.

Specifically, KM researchers are emphasizing on the social

and tacit aspects of knowledge which affect the software

development process especially in this era where software

development is done by distributed teams of different cultural

and social background. The challenge for future KM

strategies is to address these social and tacit aspects of

knowledge [20], [21], [22].

KM and Agile Software Development (ASD) are two

organizational processes that face common barriers when

introduced and applied in software development. The main

barrier in initiating the product development in agile software

development and implementing knowledge management into

software organizations is the need to deal with the conceptual

change, mainly the organizational cultural change that ASD

and KM brings when introduced. Many studies have revealed

that the introduction of KM and ASD processes have

increased productivity, shortened time-to-market and resulted

in higher product quality (e.g. [29], [30]). The major

challenge of KM is to transfer implicit knowledge to explicit

knowledge, as well as to transfer explicit knowledge from

individuals to groups within the organization. Software

developers possess highly priceless knowledge relating to

product development, the software development process,

project management and technologies which go along with the

developer.

Boehm and Turner [23] note that agile methods rely on tacit

knowledge and it depends on the ability to cultivate and share

it. That is why management of workers‟ knowledge is major

concern in agile methods. The pairing of KM and ASD is not

new; a connection between the two concepts has been

recognized by various researchers [31], [32]. This association,

however, is not surprising because both disciplines deal with

organizational culture and change management.

KM has the potential to be easily accepted into ASD

environments. Following are two clarifications for this

viewpoint. First, the agile cultural infrastructure already

includes values such as cooperation and knowledge sharing;

specifically, ASD processes include some practices that

support KM, such as stand-up meetings, the planning game,

pair programming and the informative workplace. Second,

KM is about learning, and ASD establishes an environment

that supports learning processes [28]. There are many agile

practices that foster KM in agile projects

4.1 On Site Customer
In agile software development methods, the product customer

is a part of the development process. This direct

communication channel increases the probability that the

software requirements are communicated correctly and it

helps to deal successfully with change introduction at later

stages. On site customer helps in developing new knowledge

and using that knowledge by directly communicating with

software development teams and producing regular feed for

moving the project according to ones need.

4.2 Pair Programming
Pair programming is a practice of XP that contributes to an

effective knowledge management framework. In this practice

two developers work together on a single computer

collaborating on the same analysis, design implementation,

and testing. Pair formation and pair rotation also serves the

purpose of preserving and sharing knowledge among the team

members. Programmers learn and become more skillful by

working in coordination. In case the developer leaves the

project, there need not be a loss of momentum or impact to

project schedules because there is always at least one person

that can provide the relevant knowledge.

4.3 Collective Code Ownership
Collective code ownership means that everyone is responsible

for all of the code and its not single person‟s property. This

means that everyone must have confidence in every member

of the team. But it also means that there must be a provision

for everyone to acquire everyone else‟s specialized

knowledge. This helps in developing new knowledge. No one

owns code. Any developer is expected to be able to work on

any part of the code at any time. This helps in sharing and

preserving one‟s knowledge with another.

4.4 Collaborative Workspace
The walls of the development workspace (either virtual or

physical) serve as a communication means. The information

posted on the walls includes, among additional relevant

information, the status of the personal tasks that belong to the

current iteration and the measures taken. Thus, this helps in

dissemination and sharing of knowledge as all project

stakeholders can be updated at a glance at any time about the

project progress and status.

4.5 Whole team
The practice of Whole Team also promotes KM as the

development teams (which include all kinds of roles)

communicate face-to-face. The whole team practice can be

implemented in several ways, e.g. all the different roles in

traditional teams are merged together to make a team, these

are co-located teams and use space to maximize the

communication and knowledge sharing among team members

which hold different roles. All team members participate in

team meetings to review the planning process and get

feedback from the customer about requirements [24], [25].

4.6 Stand-up meetings
The entire team comes together for a daily stand-up meeting

which is organized to keep track of the progress of the Scrum

Team. It helps in learning process as people share their

successes and failure in these meetings, each team member

presents the status of his or her development tasks and what

he or she plans to accomplish during the days to come, both

with respect to the development tasks and the personal role.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

36

Better communication helps in sharing personal views by each

team with respect to anticipated problems.

4.7 Sprint planning meeting
Sprint planning meeting is always conducted before the

starting of new sprint. The meeting is attended by the

customers, users, management, product owner (onsite

customer) and Scrum team where the goals state and

functionality of the code which will be the outcome of the

sprint is decided. These meetings help in understanding the

actual requirements of the customers and the structure which

is used to implement these requirements. These kinds of

planning meeting help in transferring and preserving

knowledge among team members.

4.8 Roles
Within the whole team concept, each team has an additional

role of acting as a team leader, because it does not matter how

skilled you are, it is impossible to handle all the essential and

complex responsibility of software project. The allocation of

responsibility through roles helps in better management of the

project. This means all team members are involved in all parts

of the developed software [24], [25].

5. Conclusion
In today‟s competitive and complex global market, companies

are required to manage their intellectual resources as well as

their financial resources. Therefore, KM is accepted as a

genuine management practice that helps organizations to

distribute the right knowledge to the right people at the right

time [33]. The ASD approach emerged over the past decade in

response to the unique problems that characterize software

development processes. In general, ASD emphasizes customer

needs, communication among team members, short releases

and heavy testing all through the entire development process.

These ideas are implemented by the different agile

development methods. Agile methodologies promote

knowledge dissemination, retention, and often informal

sharing of tacit knowledge among the team members.

However agile practices do not support acquisition of

knowledge about new technologies very much. Because the

priority is quick delivery of working system, the time which

can be spent in acquiring knowledge about new technologies

is greatly reduced. On the other hand, acquiring of domain

knowledge is highly promoted by agile, because its processes

prescribe a tight cooperation with customers and their

representatives.

6. REFERENCES
[1] Beck, M. K. 1999 Embracing change with Extreme

Programming. IEEE Computer, Vol. 32.

[2] Awad, M. A. 2005 Comparison between Agile and

Traditional Software Development Methodologies,

Honours Programme Thesis, University of Western

Australia.

[3] Fowler, M. 2000 The New Methodology ,

http://www.martinfowler.com/articles/newMethodology.

html accessed on 11.11.11

[4] Lycett, M. Macredie, R. Patel, C. and Paulk, R. J. 2003

Migrating Agile Methods to Standardized Development

Practice, Computer, Vol. 36, issue 6, pp. 79-85.

[5] The CHAOS Report, 1994

www.standishgroup.com/sample_research/chaos_1994_1

.php, accessed on 15.10.11

[6] Glass, R. L. 2001 Agile Versus Traditional: Make Love,

Not War, Cutter IT Journal, Vol. 14, No. 12, pp12-18.

[7] Agile Alliance 2001 Manifesto for Agile Software

Development, www.AgileAlliance.org accessed on

12.11.11

[8] Highsmith, J. Orr, K. and Cockburn, A. 2000 Extreme

Programming, E- Business Application Delivery, pp. 4-

17

[9] Job Trends

www.indeed.com/jobtrends?q=agile%2C+scrum%2C+%

22extreme+programming%22%2C+%22test+driven%22

&l=,accessed on 11.11.11

[10] Tudor, D.2006 An update on Agile methods, ITadviser,

Issue 56.

[11] Highsmith, J and Cockburn, A. 2001 Agile Software

Development: The Business of Innovation, Computer,

Vol. 34,No. 9, pp. 120-122.

[12] Desouza, K.C. 2003 Barriers to effective use of

knowledge management systems in software

engineering, Communications of the ACM, Vol; 46 (1).

pp 99–101.

[13] Disterer, G. 2002 Management of project knowledge and

experiences, Journal of Knowledge Management Vol. 6

(5) pp. 512–520.

[14] Davenprot, T. H. Prusak, L.1998 Working Knowledge:

how organizations Manage what they Know, Harvard

Business School Press, Boston, USA.

[15] Tiwana, A, 2000 The Knowledge Management Toolkit,

Upper Saddle River, NJ: Prentice Hall PTR, Prentice-

Hall, Inc.

[16] Nonaka, I. 1986 A Dynamic Theory of Organizational

Knowledge Creation, Organization Sciences, Vol. 5(1),

1986, pp. 14-37.

[17] Spender, J. C. 1998 Pluralist Epistemology and the

Knowledge-Based Theory of the Firm, Organization,

Vol. 5(2), pp. 233-256.

[18] Aurum, A. Jeffery, R. Wohlin, C, and Handzic, M. (Ed.),

2003 Managing Software Engineering Knowledge,

Springer-Verlag, New York.

[19] Hansen, M.T., Nohria, N. and Tierney, T. 1999 What's

Your Strategy for Managing Knowledge?, Harvard

Business Review, March/April, pp106-116 Jashapara, A.

(2004) Knowledge Management, Prentice Hall.

[20] Abou-Zeid, E. S. 2002 A knowledge management

reference model. Journal of Knowledge Management,

Vol. 6(2) pp. 486-499.

[21] Manville, B. 1999 Complex adaptive knowledge

management, in The Biology of Business, J.C. III,

Editor. 1999, Jossey-Bass: San Francisco. pp 89-111

[22] Bonifacio, M. Bouquet, P. and Traverso, P.2002

Enabling Distributed Knowledge Management:

Managerial and Technological Implications. Novatica

and Informatik/Informatique, Vol. 3(1) pp, 22-29

[23] Boehm, B. and Turner, R. 2004 Balancing Agility and

Discipline, Addison-Wesley.

[24] Hazzen, O. Levy, M. 2009 Knowledge Management in

Practice:The Case of Agile Software Development. In

Proceeding of ICSE Workshop on Cooperative and

Human Aspects on Software Engineering.

http://www.martinfowler.com/articles/newMethodology.html%20accessed%20on%2011.11.11
http://www.martinfowler.com/articles/newMethodology.html%20accessed%20on%2011.11.11
http://www.standishgroup.com/sample_research/chaos_1994_1.php
http://www.standishgroup.com/sample_research/chaos_1994_1.php
http://www.agilealliance.org/
http://www.indeed.com/jobtrends?q=agile%2C+scrum%2C+%22extreme+programming%22%2C+%22test+driven%22&l
http://www.indeed.com/jobtrends?q=agile%2C+scrum%2C+%22extreme+programming%22%2C+%22test+driven%22&l
http://www.indeed.com/jobtrends?q=agile%2C+scrum%2C+%22extreme+programming%22%2C+%22test+driven%22&l

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

37

[25] Hazzan, O. and Dubinks . 2008 Agile Software

Engineering, Undergraduate Topics in Computer Science

(UTiCS) Series, Springer.

[26] Ding, W. and Marchionini, G. 1997 A Study on Video

Browsing Strategies. Technical Report. University of

Maryland at College Park.

[27] Fröhlich, B. and Plate, J. 2000. The cubic mouse: a new

device for three-dimensional input. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems

[28] Hazzan, O. and Dubinsky, Y. 2003. Teaching a Software

Development Methodology: The Case of Extreme

Programming, In proceedings of the 16th International

Conference on Software Engineering Education and

Training, Madrid, Spain, pp. 176-184.

[29] Bennet, D. and Bennet, A. 2003 The Rise of the

Knowledge Organisation, chapter 1 in Holsapple, C.W.

(ed.), Handbook on Knowledge Management,Vol 1,

Springer, Berlin, pp. 5–20.

[30] Reifer, D. J. 2002 How to Get the Most out of Extreme

Programming/Agile Methods , In proceeding Proc.

Extreme Programming and Agile Methods - XP/Agile

Universe

[31] Dove, R. 1999 Knowledge management, response

ability, and the agileenterprise", Journal of Knowledge

Management, Vol. 3 Iss: 1, pp.18 - 35

[32] Harald Holz, Melnik, G. Schaaf, M.: Knowledge

Management for Distributed Agile Processes: Models,

Techniques, and Infrastructure. WETICE 2003 pp 291-

294

[33] Spek, R. Kruizinga, E Annelies Kleijsen, 2009

Strengthening lateral relations in organisations through

knowledge management, Journal of Knowledge

Management, Vol. 13 Iss: 3, pp.3 – 12

[34] Version one, 2008 3rd Annual Survey: The State of

Agile Development,

www.versionone.com/pdf/3rdAnnualStateOfAgile_FullD

ataReport.pdf.

[35] Version one, 2007 Agile development: Result Delivered,

http://www.versionone.net/pdf/AgileDevelopment_Resul

tsDelivered.pdf.

[36] Versiion One, 2009 4th Annual Survey 2009,

www.versionone.com/agilesurvey.

[37] Avison, D.E. and Fitzgerald, G. 1995. Information

Systems Development: Methodologies, Techniques and

Tools. 2nd ed., Maidenhead: McGraw Hill

[38] Beck, K. 1999 Extreme programming explained:

embrace change, Addison-Wesley Longman Publishing

Co., Inc. Boston, MA, USA

[39] Schwaber, K. and Sutherland, J. 2011 The Scrum Guide,

www.scrum.org/storage/scrumguides/Scrum%20Guide%

20-%202011.pdf

http://132.68.98.62/Courses/cs_methods/eXtremeProgramming/XP_Papers/CSEE&T2003Hazzan&Dubinsky.pdf
http://132.68.98.62/Courses/cs_methods/eXtremeProgramming/XP_Papers/CSEE&T2003Hazzan&Dubinsky.pdf
http://132.68.98.62/Courses/cs_methods/eXtremeProgramming/XP_Papers/CSEE&T2003Hazzan&Dubinsky.pdf
http://132.68.98.62/Courses/cs_methods/eXtremeProgramming/XP_Papers/CSEE&T2003Hazzan&Dubinsky.pdf
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Melnik:Grigori.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Schaaf:Martin.html
http://www.informatik.uni-trier.de/~ley/db/conf/wetice/wetice2003.html#HolzMS03
http://www.versionone.net/pdf/AgileDevelopment_ResultsDelivered.pdf
http://www.versionone.net/pdf/AgileDevelopment_ResultsDelivered.pdf
http://www.versionone.com/agilesurvey
http://www.scrum.org/storage/scrumguides/Scrum%20Guide%20-%202011.pdf
http://www.scrum.org/storage/scrumguides/Scrum%20Guide%20-%202011.pdf

