
 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

23

A Case Study Based Approach for Effective Use of

Software Architecture Guidelines

Parminder Kaur
Department of Computer Science
and Engineering, Guru Nanak Dev
University, Amritsar-143005, India.

 Hardeep Singh
Department of Computer Science
and Engineering, Guru Nanak Dev
University, Amritsar-143005, India

ABSTRACT

Software architecture is emerging as an important discipline

for engineers of software. Software architects have been

limited by a lack of standardized ways to represent

architecture as well as analysis methods to predict whether an

architecture will result in an implementation that meets the

requirements. Architects also have had little guidance in how

to go about designing the architecture, which decisions should

be made first, what level of detail the architecture should

encompass, how conflicting concerns should be satisfied and

what range of issues the architecture should cover. A case

study is performed to illustrate architectural design guidance

in form of functional dimensions and structural dimensions

essential to identify the requirements as well as overall

structure of database systems.

General Terms

Software Architecture, Architectural Design, Architectural

Styles, Architectural Patterns

Keywords

Design Space Dimensions, Functional Dimensions, Structural

Dimensions

1. INTRODUCTION
Software architecture is emerging as a natural evolution of

design abstractions for engineering the software. The success

of a software system depends on a good architectural design.

As the size and complexity of software systems increase, the

design and specification of overall system structure become

more significant issues than the choice of algorithms and data

structures for computation. Software architectural patterns and

styles deal with various structural issues like organization of a

system as a composition of components, global control

structures, the protocols for communication, synchronization

and data access, the assignment of functionality to design

elements, the composition of design elements, physical

distribution, scaling and performance, dimensions of

evolution, and selection among design alternatives (Taylor,

2009; Garlan, and Shaw, 1994; 2010).

The software architecture should define and describe the

elements of the system at a relatively coarse granularity. It

should describe how the elements fulfill the system

requirements, including which elements are responsible for

which functionality, how they interact with each other, how

they interact with the outside world and their dependencies on

the execution platform. Architectural design guidance helps in

formulating design rules that indicate good and bad

combinations of choices and use them to select an appropriate

system design based on functional as well as structural

dimensions (Thomas, 1990 (a & b)).

2. SOFTWARE ARCHITECTURE

TERMINOLOGY
Software architecture encompasses the structures of large

software systems, where every system comprises of elements

and the relations among them. Table 1 shows the comparison

of some of the terms used to describe software architectures.
Table 1: Comparison of Software Architecture Terms

[Booch et al, 1999]

Term Define

Element

Types and

How They

Interact

Define a

Mapping of

Functionality to

Architecture

Elements

Define

Instances of

Architecture

Elements

An Architectural

Style or

Architectural

Pattern (Usually

not domain

specific)

Yes Sometimes No

A reference

architecture or

domain - specific

software

architecture

(applies to a

particular

domain)

Yes Yes No

A product-line

architecture

(applies to a set of

products within an

organization)

Yes Yes Sometimes

A software

architecture

(applies to a

system or product)

Yes Yes Yes

3. SOFTWARE ARCHITECTURE

DEFINITIONS
According to (Bass et. al, 2003), “The software architecture of

a program or computing system is the structure or structures

of the system, which comprise software elements, the

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

24

externally visible properties of those elements and the

relationships among them”. (Boehm, 1995) explains, “If a

project has not achieved a system architecture, including its

rationale, the project should not proceed to full-scale system

development. Specifying the architecture as a deliverable

enables its use throughout the development and maintenance

process”. (Booch, Rumbaugh, and Jacobson, 1999) defines

software architecture as “An architecture is the set of

significant decisions about the organization of a software

system, the selection of the structural elements and their

interfaces by which the system is composed, together with

their behavior as specified in the collaborations among those

elements, the composition of these structural and behavioral

elements into progressively larger subsystems, and the

architectural style that guides this organization---these

elements and their interfaces, their collaborations, and their

composition”. Figure 1 shows that how software architecture

fits in with other development tasks.

Fig. 1: Relation of software architecture to other

development activities [Hofmeister et al (2000)]

Fig. 2: The ‘4+1’ view model [Muskens, 2002]

As its essence, software architecture is defined as a set of

principal design decisions made about the system. The „4+1‟

view model is depicted in figure 2 (Muskens, 2002), which

consists of logical view, development view, process view and

physical view along with use cases or scenarios which can be

considered as fifth view. For each view, most of the design

decisions are independent of other views, but there are some

decisions that are affected by the views that are designed later.

4. FEW COMMON SOFTWARE

ARCHITECTURES
The success of a software system depends on a good

architectural design. There are a number of common software

architectural styles and patterns such as pipelines, client-

server organization, layered architecture, component-based

architecture, message bus architecture, and service-oriented

architecture (SOA) (Garlan et. al 1992; Shaw, 1990, 1991,

1993, 1994, 2010; Allen and Garlan, 1992, Erich et. al 1995;

Wolfgang, 1995). Table 2 lists the major areas of focus and

the corresponding software architectures (Garlan, and Shaw,

1994, Gorton, 2006).

Table 2: Common Software Architectures

Category Architecture styles

Communication Service-Oriented Architecture (SOA),

Message Bus, Pipes and Filters, Event-

Based, Implicit Invocation

Deployment Client/Server, N-Tier, 3-Tier

Domain Domain Driven Design

Data-Centered Repositories

Structure Component-Based, Object-Oriented,

Layered Architecture

Virtual

Machines

Interpreters

5. DESIGN SPACE DIMENSIONS
The notion of design space is useful in its own right as a shared

vocabulary for describing and understanding systems for

specific domains. A multidimensional design space helps in

classifying system architectures. Each dimension describes

variation in one system characteristics or design choice. A

specific system design corresponds to a point in the design

space, identified by the dimensional values that describe its

characteristics and structure. Thomas, (1990) discussed two

major types of dimensions i.e. functional dimensions and

structural dimensions. Functional dimensions identify the

requirements for user-interface system that most affect its

structure. It deals with the requirements of particular

Domain

Analysis,

Requirement

Analysis, Risk
Analysis

Domain

Analysis,

Requirement

Analysis, Risk
Analysis

Domain

Analysis,

Requirement

Analysis, Risk
Analysis

Domain

Analysis,

Requirement

Analysis, Risk
Analysis

Requirement s,

desired qualities

Modifications

to

requirements

Hardware

architecture

Modifications

to hardware

architecture

Software

Architecture
Implementation

constraints

End-user
Functionality

Programmer’s software
 Management

Integrators, Performance,

Scalability

Topology, Communications

Logical view Deployment

view

Process view Physical view

Scenarios

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

25

applications, users, I/O devices to be supported, constraints

imposed by the surrounding computer system, key decisions

about the user-interface behavior, development cost

considerations and degree of adaptability of the system.

Structural dimensions deals with the decisions that determine the

overall structure of a user-interface system. It deals with the

issues like how system functions are divided into modules, the

interfaces between modules, information contained within each

module, data representations used within the system and

dynamic behavior of the user-interface code.

In order to study the practices followed by the undergraduate

students with respect to the various architectural features for the

development of different database applications. Two primary

dimensions of software architecture namely functional

dimensions and structural dimensions were considered as the

benchmarks for evaluating these projects. A total of 15 - 20

projects with respect to different types of database management

systems, were taken into consideration as part of the study. The

various features available in these projects are listed in the table

3 and table 4 against the threshold features.

Table 3: Functional Dimensions for Database Systems

 Projects

 (Database)

Functional Dimensions

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

External Event Handling

 No external events

 Process events while

waiting for input

 External events preempt
user commands

User Customizability

 High

 Medium

 Low

User Interface

Adaptability across

devices

 None

 Local behavior changes

 Global behavior changes

 Application semantics

changes

Computer System

Organization

 Uniprocessing

 Multiprocessing

 Distributed processing

Basic Interface class

 Menu selection

 Form filling

 Command language

 Natural language

 Direct manipulation

Application portability

across User Interface

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

26

styles

 High

 Medium

 Low

Table 4: Structural Dimensions for Database Systems

 Projects

 (Database)

Structual

 Dimensions

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

Application Interface

abstraction level

 Monolithic program

 Abstract device

 Toolkit

 Interaction manager with fixed

data types

 Interaction manager with

extensible data types

 Extensible Interaction manager

Abstract Device variability

 Ideal device

 Parameterized device

 Device with variable operations

 Ad-hoc device

Notation for User Interface

definitions

 Implicit in shared user interface

code

 Implicit in application code

 External declarative notation

 External procedural notation

 Internal declarative notation

 Internal procedural notation

Basis of Communication

 Events

 Pure state

 State with hints

 State plus events

Control thread mechanism

 None

 Standard processes

 Lightweight processes

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

27

 Non-preemptive processes

 Event handlers

 Interrupt service routines

The major prominently observed features are:

 Lack of sight for the global behavior of the User

Interface.

 There is no consideration for semantic changes.

 User Customization is neglected.

 Application portability across user interface is

negligible.

 No use of non-preemptive processes.

 Use of Interrupt service routines is negligible.

It has been conclusively found that the majority of the projects

make use of very few features of architectural dimensions.

This can be attributed to a number of reasons namely:

 The lack of awareness of various architectural practices

among the students.

 Intentional ignorance of various architectural features

because of paucity of time and resources. Thereby

compromising on the overall application quality.

 Lack of the specification of exact requirements with

respect to the architecture of the overall application.

 The ad-hoc development approaches result in

degradation of overall software architecture over a

period of time.

6. CONCLUSIONS AND FUTURE

WORK
In order to develop a good quality software based on a strong

architecture, it is suggested that the corresponding practices

be exhaustively taught to the developers of various

applications. Their effective implementations must also be

effectively demonstrated. This shall remove the gap between

the acquired levels of competence in this area and desired

levels at the application development level. However, this

should all be the part of overall application development

environment which includes different processes like

requirement engineering and the translation of the software

architecture into effective design and code.

This is not to say that more work is not needed in this field

(Garlan, and Shaw, 1994). There is a need to expect

significant advances in a number of areas including better

software architecture taxonomies, better taxonomies of

architectural styles, formal models for characterizing and

analyzing architectures, better understanding of the primitive

semantic entities from which these styles are composed,

enhanced notations for describing architectural designs, better

tools and environments for developing architectural designs,

improved techniques for extracting architectural information

from existing code and better understanding of the role of

architectures in the life-cycle process.

There is a requirement to supplement these results with the

study of applications from other domains like web-based

applications, file-based applications and the function-based

applications.

7. ACKNOWLEDGMENT
We thankfully acknowledge the contribution of various

students of our department towards this study.

8. REFERENCES
[1] Active Reviews for Intermediate Design (ARID),

available at
http://www.sei.cmu.edu/architecture/tools/evaluate/arid.cfm

[2] Allen, R. and Garlan, D. (1992), “A formal approach to

software architectures,” in Proceedings of IFIP’92 (J.

van Leeuwen, ed.), Elsevier Science Publishers B.V.

[3] Architecture Tradeoff Analysis Method (ATAM),

available at
http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm

[4] Bass, L; Clements, P. and Kazman, R. (2003), Software

Architecture in Practice, 2nd Edition, Addison Wesley.

[5] Boehm, B. (1995), “Engineering Context”, Proceedings

of the First International Workshop on Architectures for

Software Systems. Available on CMU-CS-TR-95-151

from the school of Computer Science, Carnegie Mellon

University.

[6] Booch, G,; Rumbaugh, J. and Jacobson, I. (1999), The

Unified Software Development Process. Addison-Wesley

Professional, ISBN 0-201-57169-2.

[7] Cost Benefit Analysis Method (CBAM), available at

http://www.sei.cmu.edu/architecture/tools/evaluate/cbam

.cfm

[8] Erich, G.; Richard, H.; Ralph, J. and John, V. (1995),

Design Patterns: Elements of Reusable Object-Oriented

Design, Addison Wesley.

[9] Garlan, D. and Shaw, M. (1994), An Introduction to

Software Architecture, CMU-CS-94-166, see at

http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softa

rch/intro_softarch.pdf

[10] Garlan, D. and Shaw, M. (2010), Software Architecture,

Perspectives On An Emerging Discipline, PHI Learning

[11] Garlan, D.; Shaw, M.; Okasaki, C.; Scott, C. and

Swonger, R. (1992), “Experience with a course on

architectures for software systems,” in Proceedings of

the Sixth SEI Conference on Software Engineering

Education, Springer-Verlag, LNCS 376.

[12] Homeister C., Nord R. and Soni D. (2000), Applied

Software Architecture, Addison Wesley

[13] Muskens, J. (2002), Software Architecture Analysis Tool,

Master Thesis, TECHNISCHE UNIVERSITEIT

EINDHOVEN, Department of Mathematics and

Computing Science, available at:

http://www.win.tue.nl/~clange/empanada/thesis_johanm

uskens%20v01a.pdf

http://en.wikipedia.org/wiki/Special:BookSources/0201571692
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

28

[14] Shaw, M. (1990), “Toward higher-level abstractions for

software systems,” in Data & Knowledge Engineering,

vol. 5, pp. 119-128, North Holland: Elsevier Science

Publishers B.V.

[15] Shaw, M. (1991), “Heterogeneous design idioms for

software architecture,” in Proceedings of the Sixth

International Workshop on Software Specification and

Design, IEEE Computer Society, Software Engineering

Notes, (Como, Italy), pp. 158-165.

[16] Shaw, M. (1993), “Software architectures for shared

information systems,” in Mind Matters: Contributions to

Cognitive and Computer Science in Honor of Allen

Newell, Erlbaum.

[17] System and Software ATAM, available at

http://www.sei.cmu.edu/architecture/tools/evaluate/syste

matam.cfm

[18] Taylor, R.N. (2009), Software Architecture:

Foundations, Theory, and Practice, Wiley Publications,

ISBN-10:0470167742, ISBN-13:9780470167748.

[19] Thomas G. Lane (1990a), “Studying software

architecture through design spaces and rules”, Technical

Report CMU/SEI-90-TR-18 ESD-90-TR-219 and CMU-

CS-90-175, Carnegie Mellon University.

[20] Thomas G. Lane (1990b), User Interface Software

Structures, Ph.D. thesis, Carnegie Mellon University.

[21] Wolfgang, P. (1995), Design Patterns for Object-

Oriented Software Development. Addison Wesley, ACM

Press.

