
 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

1

Analyzing the enablers and challenges for Successful

Methodological Transition

 Jagpuneet Bajwa

Punjabi Uni. Regional Centre,
Mohali

 Kawaljeet Singh
University Computer Center
Punjabi University, Patiala

 Neeraj Sharma
Dept. of Computer Science
Punjabi University, Patiala

ABSTRACT

Agile methods are gaining popularity over a wider range of

domains, predominantly in enterprise environments. Software

methodologies are evolving due to the challenges imposed by

ever changing software development scenarios. Agile

methodologies particularly demand for an organizational

culture which focuses on high responsibility and greater

discipline of every individual in an organization. The

transition from traditional methodology to agile is an

overwhelming task and poses greater challenge for

organizations which are striving for better customer

satisfaction and producing higher quality products. This paper

investigates the underlying reasons behind this

„methodological shift‟, discusses about the contrasting

differences between the traditional or conventional software

development methods and light weight or agile

methodologies. Further in this paper we discuss the present

need for methodological transitions. Third section provides an

insight of „preconditions‟ (core reasons), „enablers‟ (changes

required) and „challenges‟ (risks involved) for a successful

methodological transition in the form of a proposed

framework.

General Terms

Software engineering, Software development methods

(SDM), Methodological transition.

Keywords

Agile methods, XP, Scrum, DSDM, spiral model, waterfall

model .

1. INTRODUCTION
Software development strategies/methods (SDM) have been

an integral part of Software engineering from the last five

decades. The credibility of these methods has always been a

debatable issue. The proponents of traditional “Waterfall-

type” methodologies of development consider “Light-Weight”

methodologies such as “Agile” a „non realistic hype‟. But

„Agilators‟ (people who practice agile) believe that traditional

methodologies are not able to match up the pace with rapidly

changing technological and business requirements.

The process of improving the existing methodologies attained

greater pace since the advent of WWW and Internet based

applications. The spread of e-commerce brought in

architectures that demanded software processes for supporting

customer services at internet speed. Gradually, for software

methodologists, it became imperative to shorten process

lifecycle for rapid product development. As a related

consequence, business became more „customer-centric‟.

Today, business houses have become more competitive as

customer requires more services in lesser time and cost.

Many organizations are sensing this business need and are

transforming their traditional software development methods

into more flexible, change oriented Agile Methods.

2. RELATED LITERATURE
„Software Crisis’ of 1960‟s lead to an era which recognized

the need for change in existing SDMs and acted as a stimulant

in further development of numerous process models. 1970‟s

saw the rise of „Iterative enhancement‟ Model (Basili and

Turner, 1975) which was a step towards iterative

development. Major turning point in SDM evolution came in

1987. This year a report was published by ‘The Defense

Science Board Task Force on military Software’ [5]. It created

debate about the credibility of „Traditional Software Process

Models‟ as these process models were not able to

accommodate the most useful and effective software

development approaches such as „Reuse‟ and „Prototyping‟.

Also this report acted as a catalyst in the advancement of

existing process models into much improved ones. The classic

example was of „Spiral Model‟ [Barry Boehm]. Boehm

advocated the use of such process models which were risk-

driven, capable of handling complex development projects

and less document driven [2]. This was in contrasting

comparison with the „Waterfall Model‟ (Royce, 1987).

 In 1995, Standish Group published a survey report. This

report highlighted some hard facts about software industry. It

is also called „Chaos Report‟ as it revealed facts about the non

completion of software projects in the United States mainly

due to cost overruns and unclear user requirements [26].These

facts presented a grim picture of software development. But

the fact is many projects are still failing. In spite of great

planning and detailed preparations, projects still suffer from

cost and time overruns.

Facing this daunting problem, the Standish Group gave some

possible solutions for software development. Standish Report

[26] further suggested some features to aid software

development such as smarter time frame, suggested simple

tools for Management understanding, laid stress on more and

more customer involvement, smaller milestones, open work

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

2

culture and also advocated the concept of „Growing Software‟

as opposed to developing software.

The changing business created need for researchers to

experiment with alternative methodologies which could

deliver software rapidly and had inherent simplicity. Software

methods offering faster delivery in rapidly changing user

requirements came into practice. For instance, Dynamic

systems development method (DSDM, 1994), Scrum

development process (Schwaber, 1995; Schwaber and Beedle,

2001), Crystal family of methodologies (Cockburn,

1998;2001), Extreme programming g (XP) (Beck, 1999),

Adaptive software development (ASD) (Highsmith, 2000),

Rational Unified Process (RUP) (Kruchten, 2000), Feature-

Driven Development (FDD) (Palmer and Felsing, 2002),

Pragmatic Programming (Hunt and Thomas, 2000) have

emerged during the last fifteen years .

 In 2001, seventeen software process methodologists signed a

manifesto called ‘Agile Manifesto’. The above mentioned

methods contributed towards the framing up of this manifesto

and a new methodology called „Agile Methodology‟. Agile

denotes “dexterity in motion, readiness for motion, the quality

of being agile, nimbleness, and activity” (Oxford Advanced

Learner‟s Dictionary). Software projects using agile

methodologies report efficient handling of software

development risks of cost overrun, extended time frame,

failure to meet needs [28].This methodology works efficiently

if it gets conclusive environment.

Agile software development processes depict a drift from

„heavy weight‟ document driven software processes to „light

weight‟ processes. Glen B. Alleman differentiates between

„light weight‟ and „Agile‟. He explains that „light weight‟ and

„Agile‟ are not interchangeable concepts as the term „light

weight‟ describes the non-requirement of those artifacts

insignificant with respect to the final software product [7].

Abrahamsson et al. defines „agile‟ to be an answer to business

needs of ever growing Internet and mobile software

applications [17].

3. TRADITIONAL AND AGILE

SOFTWARE DEVELOPMENT
Traditional methods also called „plan driven‟ methods differ

from agile methods at methodology level. In traditional

methods supports rigid structural frameworks where focus is

on processes which require formal/ heavy documentation,

upfront planning and supports very less customer to team and

team to team interaction. Agile methods are in stark contrast

to traditional methods as the focus is on improving quality of

ongoing projects on daily basis. This accentuates the need to

have a flexible process framework which relies on less

process ceremonies, face to face communications, less

documentation and focus on skilled work force which could

provide higher responsiveness to rapidly changing user

requirements, higher customer satisfaction and reduces defect

rates. Traditional Methodologies employ development models

like „Waterfall Model‟, „Spiral Model‟ etc which cannot

handle „rapidly changing requirements‟ and „short product

cycles‟. In order to cope up rapidly changing business

scenario developers have innovated new development

techniques which respond as well as embrace requirements

change gracefully. They have developed „Agile software

development Methodologies‟ imbibing some concepts from

earlier methodologies like „iterative and incremental

development‟ and prototyping.

 With the arrival of numerous process models in the software

development arena, a „Methodology war‟ has also been

reported in literature. Proponents of different process methods

advocate their own process model as more effective and

efficient. But there is ample evidence about successful agile

projects reported in various survey reports, agile success

stories, company whitepapers and agile enthusiast work

groups [24,27,28].

4. CURRENT SCENARIO:

TRANSITIONING FROM

TRADITIONAL TO AGILE
The current product development scenario is going through a

major overhaul. Older methodologies of development are

becoming outdated as they are not able to match up their pace

with rapidly changing technological and business

requirements. Today, business is governed by „Internet

Economies‟. So the rules of business are changing at a greater

speed. Newer god on business horizon is „Customer‟; this

makes today‟s fast-paced business more competitive as

customer requires more services in lesser time and cost.

„Software‟ has become the key to successful business. So

changes in business require an equivalent change in software

development methods.

The current research in software development arenas is to

study methodological transition. Because it has become

imperative for software developers to adopt much sought after

methodologies which provide an environment of responding

to business needs faster than ever thus providing a

competitive edge above others. To survive market

competition, software developers are under immense pressure

for developing better processes with which high quality

products are released into market in lesser time. Adopting a

new methodology is not as easy as it sounds. It‟s a mammoth

task involving changes at various levels (mapping of size and

scope, developmental process level, business process level,

human resource level) of working hierarchy in a corporate

house. Blending of agile processes into traditional existing

processes requires either completely ignoring the agile

principles or completely revamping the existing software

processes. The latter option triggers series of problems

because it abrogates the efforts spent on improving and

refining the existing system. In this paper we present a

conceptual framework where we have tried to identify focus

areas where change is required during methodological change.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

3

5. IDENTIFYING AGILE ENABLERS

AND CHALLENGES FOR SUCCESSFUL

METHODOLOGICAL TRANSITION

In this section, a conceptual framework (depicted in fig. 1) is

presented that may provide insights during methodological

transition. The frame work may help managers identify the

pre-conditions for agile adoption, relating it to their own

organization culture and perception. The focus is on

identifying „agile enablers‟ which help in guiding towards the

required changes, critically needed for adopting agile

practices and the risks or the challenges involved in this much

needed transition. Identification of pre-conditions, enablers

and challenges are based on existing literature [21, 23, 25,

29]. Presence of pre-conditions is important to initiate any sort

of change in methodology and the list of enablers provided in

framework symbolizes potential critical process activities for

smooth methodological transition. If the enabler activities are

focused during transition, it may help create an environment

suitable for gradual agile adoption. The transition of

methodologies is basically transition of (work) cultures and

the history of software engineering reveals that only those

methodologies have survived „methodology wars‟ which have

efficiently tapped the change in economies and customer

behavior ahead of turbulent market times. So we conclude that

agile transition is important for majority of corporate domains

irrespective of their working domains and our proposed

framework is a very basic step towards solving the much

complicated task of methodological transition.

Fig 1: Conceptual Framework

6. FUTURE WORK
Currently, we are extending this list of preconditions, enablers

and challenges through an extensive survey. The results will

be empirically tested to identify the most distinguishing

factors enabling methodological transition.

[1] REFERENCES Buchalcevova. 2008. Research of

the Use of Agile Methodologies in the Czech Republic.

The Inter-Networked World: ISD Theory, Practice, and

Education. Springer-Verlag: New York, ISBN 978-

0387304038.

[2] Bohem, W. B. 1988. A Spiral Model of Software

Development and Enhancement. IEEE Computer, (May

1988), pp. 61-72..

[3] Cockburn, A. and Highsmith, J. Agile Software

development: The People Factor. Computer, Vol. 34

(11), pp. 131-133.

[4] Digital Focus, “Agile 2006 Survey: Results and

Analysis”, Herndon, Command Information,

http://www.rallydev.com/agileblog/page/2/, 2006, as

accessed on 19.7.10.

[5] Brooks, F. P., et al., 1987. Defense Science

Board Task Force Report on Military Software, Office of

the Under Secretary of Defense for Acquisition,

Washington, DC 20301.

[6] Berteig, M. 2008. Experience Report: Extremly

short Iterations as a Catalyst for Effective Prioritization

of work. In the proceedings of Agile 2008 conference,

IEEE explore, pp. 265-268.

Pre –conditions

Unsatisfied customers/ Stakeholders

Low Team Morale

Poor Project Success Rates

Communication gap between management and Staff

Non effective communication between customers and team

Rigid and unsupportive higher management

 Enablers Challenges

The cultural drift at organizational level
Promoting humans as assets rather than liabilities

Encouraging and acceptance of new ideas in organization.

Collaborating with customers at a greater extent.

Creating environment for free flow of ideas and knowledge.

Focusing on process and teamwork rather than engineering.

Enablers at managerial level
Managers should promote leadership collaboration rather than command control management.

Managers should be macromanagers rather than micromanagers.

Reducing the cost of information movement.

Reducing the time between decision making and feedback by making user part of team.

Enablers at project team level
Focusing critically on individual competency.

Strengthening teams as self organizing

Developing software in short releases, continuous iterative integration and through integrative

testing should be followed.

The changes should be incorporated as they arrive.

Project visibility should be there by using task boards, project stake holder charts for depiction

upcoming tasks.

Dealing with challenge for making agile as a „religion‟ rather than just a

methodology.

Dealing with resistance against change in existing culture from organizational

leadership.

Dealing with hardships in convincing the perceived benefits of methodological

change.

Dealing with team and customer communication challenges.

Dealing with prioritizing of change requests.

Dealing with prioritizing multiple stakeholders with financial modeling

techniques.

Identifying parameters and applying correct agile practice.

Dealing with self-organizing teams.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

4

[7] Alleman, G. B. 2002. Agile Project Management

Methods for IT Projects, The story of Managing Projects:

A global, Cross Disciplinary collection of Perspectives,

Greenwood Press/ Quorum Books.

[8] Schatz, B. and Abdelshafi, I. 2005. Primavera

Gets Agile: A successful Transition to agile

development. IEEE Software, May/June 2005, pp. 36-42.

[9] Highsmith, J. and Cockburn, A. 2001. Agile

Software Development: The Business of Innovation.

IEEE Computer, Vol. 18(9), Sept 2001, pp. 120-122.

[10] Livermore, A. Jeffrey, “Factors that Significantly

Impact the Implementation of an Agile Software

development Methodology”, Journal of Software, Vol. 3

(4), pp. 31-36, 2008.

[11] Jiang, L. and Eberlin, A. 2008. Towards a

framework for understanding the relationships between

classical software Engineering and Agile Methodologies.

In proceedings of APSO‟ 08, ACM, May 2008, pp. 9-14.

[12] Aoyama, M. 1998. Agile Software Process and

its Experience. In proceedings of 20th ICSE, Kyoto,

Japan, pp. 3-12.

[13] Aoyama, M. 1998. Web-Based Agile Software

development. IEEE Software, Vol. 15 (6), pp. 56-65.

[14] Cohn, M. and Ford, D. 2003. Introducing an

Agile Process to an Organization, Computer, pp. 74-78.

[15] Griffiths, M. 2007. Developments in Agile

Project Management. In proceedings PMI Global

Congress, Atlanta Georgia.

[16] Laanti, M., Salo, O and Abrahamsson, P. 2010.

Agile methods rapidly replacing traditional methods at

Nokia: a Survey of opinions on agile transformation.

Information and Software Technology, Elsevier, 2010,

doi: 10.1016/j.infsof.2010.11.010, in press.

[17] Abrahamsson, P., Warsta, J., Simponen, M. T.

and Ronkainen, J. 2003. New directions on Agile method

: a comparative analysis. In the Proceedings of 25th

International Conference on Software Engineering,

Portland, Oregon, pp. 244-254.

[18] Jalote, P., Palit, A., Kurien, P. and Peethamber,

V. T. 2004. Timeboxing: a model for iterative software

development. The Journal of Systems and Software,

Elsevier, Vol. 70, pp. 117-127.

[19] Rajamanickam. 2005. Successful Project

Management using Agile Methodology. Journal of the

Quality Assurance Institute, Vol. 19, pp. 15-18.

[20] Ambler, S. 2007. Examining the Effectiveness of

Agile Practices. Dr. Dobb‟s journal,

http://www.ddj.com/architect/200001986,accesed on

4.5.10.

[21] Misra, S. C., Kumar, V. and Kumar, U. 2009.

Identifying some of the success factors in adopting agile

software development practices. Journal of systems and

software, Vol. 82 (11), pp. 1869-1890.

[22] Cronholm, S. 2009. Using Agile method ? –

Expected effects. Information Systems Development,

Springer US, Chapter 96, pp 913-921.

[23] Nerur, Mahapatra, R., Mangalaraj, G.

2005.Challenges of migrating to agile methodologies.

Communications of the ACM, Vol. 48 (5), pp. 72-78.

[24] Shine Technologies.2007. Agile Methodologies

Survey Results.

http://www.shinetech.com.dowload/attachments/98/shine

techAgileSurvey2003-01-17.pdf, accessed on 10.10.09.

[25] Sidky, Arthur, J., Bohner, J. 2007. A disciplined

approach to adopting agile practices: the agile adoption

framework. Innovations in Systems and Software

Engineering, Springer London, Vol. 3 (3), pp. 203-216.

[26] The Chaos report, 1994,

http://www.projectsmart.co.uk/docs/ chaos-report.pdf,

accessed on 8.1.10.

[27] Version One, 4th Annual Survey 2009,

www.versionone.com/agilesurvey, accessed on 2.4.11.

[28] Version One, 3rd Annual Survey: The State of

Agile Development. 2008. http://

www.versionone.com/pdf/3rdAnnualStateOfAgile_FullD

ataReport.pdf, accessed on 2.4.11.

[29] Rajlich, V. T. 2006. Changing the Paradigm of

Software Engineering. Communications of the ACM,

vol. 49 (8), pp. 67-70.

